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Abstract

In this work a derivation of the effective interactions between two rotated graphene layers inside
a microcavity is obtained. Assuming an electromagnetic wave clockwise-polarized, propagating
along the z-axis and applying the Schrieffer-Wolff transformation, an explicit interaction between
electrons in different graphene layers is obtained, where the interaction strength depends on the
distance between layers, the cavity photon frequency and the rotation angle of the layers. Projecting
over the low-energy sector, an effective Hamiltonian for each graphene layer introduces a resonance
in the Fermi velocities and modify the dispersion relation near the Dirac point by introducing
a bandgap. In the subspace of the double-layer graphene, the effective interaction is suitable to
develop two-qubit devices with appropiate gate voltages.

1 Introduction

Graphene, a monolayer of carbon atoms have aroused enormous interest due to its potential applications
([1], [54] and [3]). Recently, double-layer graphene (DLG) has acquire considerable interest due to
appearance of exotic quantum states like fractional quantum Hall effect due to the interactions of
electrons both whitin and across graphene layers ([4]). In turn, the possibility of excitonic condensation
in DLG with and without negligible hopping between graphene sheets has been studied carefully in
([5] and [6]), where the excitonic gap can reach values on the order of the Fermi energy at strong
interactions, taking into account the screening of the interlayer Coulomb interaction by the carriers
in the layers. For ABC stacked few-layer graphene, strongly correlated electron-hole pairing regime is
accesible to observe superfluidity at enhanced densities [7]. Rotational stacking faults in multilayer
graphene dramatically reduce interlayer coherence and increase the magnitudes of correlation energies
and decrease quasiparticle velocities [8]. Moreover, a magic angle has been found for bilayer graphene
twist at which the stack seems to exhibit superconductivity ([9], [10] and [11]) . The favourable
conditions for these excitonics effects can be achieved when kF d < 1 where d is the distance between
layers. In this limit, the behavior of the system is determined by the dimensionless parameter rs =
〈V 〉 /EF that for graphene is rs = e2/κ~vF and is independent of the carrier density n. In general,
when two graphene layers are present, correlations between them should appears due to the strong
coupling of electron-electron interactions even when they cannot exchange particles, provided that the
layer separation d is comparable to a characteristic distance l between charge carriers within layers
[12]. One of the consequences of this remote coupling is a phenomenon called Coulomb drag, in which
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an electric current passed through one of the layers causes frictional charge flow in the other layer,
even when both layers are neutral [13]. In turn, entanglement generation in double-layer graphene in a
microcavity is possible due to the vacuum fluctuations of the electromagnetic field cavity [14].

On the other side, the composite electron-photon states, known as polariton excitations exhibit
a bandgap when a graphene sheet is illuminated by circularly polarized light [15]. In general, the
electron-quantum field interaction is considered within the regime of weak light-matter coupling, where
the interaction results only in electron transitions between unperturbed electron states, which are
accompanied by absorption and emission of photons. However, the regime of strong light-matter in-
teractions cannot be described as a weak perturbation. In this case, the system consists of a bound
electron-photon system, which was called “electron dressed by photons” and became a commonly used
model in modern physics ([17] and [18]). In this strong regime, a lot of interesting physical effects can
be expected, such as optical planar microcavities with semiconductor ([19] and [20]), microcavities with
individual quantum dots ([21] and [22]) and others. Effects of strong coupling can be used for variety
of technological applications [23], including novel types of the lasers ([24] and [25]), optical switches
and logic gates ([26] and [27]), sources of entangled photon pairs [28] and others. In graphene related
research, the attention has been paid to the field-induced modification of energy spectrum of dressed
electrons ([29], [30], [31], [15], [32] and [33]), optical response of dressed electrons [34], transport of
dressed electrons in graphene-based p-n junctions [35] and electronic transport through dressed edge
states in graphene ([36], [37] and [38]).

Combining the effects of light-matter coupling in a microcavity with the unusual properties of
twisted double-layer graphene, in this work the effective interactions between electrons in different
layers are studied by applying the Schrieffer-Wolff transformation (SW) with the condition kF d > 1
and negligible carrier density n in each layer. These conditions do not allow excitonic effects and
in turn, the intralayer Coulomb interaction can be neglected. The SW has been used extensively in
different areas of physics under different names [39] and can be thought of as a kind of renormaliza-
tion procedure because not only diagonalizes the Hamiltonian in a perturbative manner, but it also
renormalizes the parameters in the free Hamiltonian ([40], [41]). Based on a canonical transforma-
tion of the Hamiltonian eSH−S, with an appropiate choice of S, the transformed Hamiltonian leads
to a low-energy effective Hamiltonian that contains interactions between carriers in different layers of
graphene due to the quantum correlations originated from each layer with the electromagnetic field in
the microcavity. In this work, we show that this correlation appears as a type of pseudospin exchange
∼ −JDP [cos θσ1 · σ2 + sin θ(σ1 × σ2) · êz ] where the coupling constant depends strongly in the layers
height, the photon energy and the rotation angle θ between layers. Manipulating this effective inter-
action can be performed by an independent control over the carrier type and density on each layer,
easily realized with gate voltages. The manuscript will be organized as follows: In Section II, the
Schrieffer-Wolff transformation is applied and the operator S is found. In section III, the low-energy
effective interaction is obtained where the photon subspace is projected out and is analyzed. In last
section, the conclusions are presented.

2 The Schrieffer-Wolf transformation

Consider two copies of graphene, one on the top of another, forming a double-layer graphene, where
interlayer transitions are neglected (see figure 1 a)). This approximation can be applied when both
graphene layers are separated a distance ∆d = |d1 − d2| much larger than the mean distance between
electrons in each layer given by 〈r0〉 = 1/

√
πn, where n is the carrier density. In graphene kF =

√
πn,

then near the Dirac point kF ∼ 0 and n ∼ 0 and 〈r0〉 → ∞, which implies that intralayer-Coulomb
interaction is negligible. In turn, if kF ∆d > 1 then ∆d > 〈r0〉 which implies that the interlayer Coulomb
interaction ∼ ∆d−1 can be neglected. Then by tuning n with a gate voltage near the Dirac point, the
Hamiltonian of two copies of graphene without interaction between them is a good approximation
for negligible carrier density and large interlayer separation. Hopping energy between layers can be
neglected for ∆d > 3Å which is the typical distance between layers in graphite and larger than the
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Figure 1: a) Microcavity setup with twisted double-layer graphene. b) Diagrammatic description of
Hamiltonian of eq.(3). Emission and absorption of one photon with energy ~ω and electron sublattice
transition

interaction parameter rs < 2.2 (see [54]). Now we can proceed with a twist of one layer an angle θ/2
and the other layer an angle −θ/2, then the total angle twist is θ (see figure 1a)). By rotating the Pauli
matrices the twisted Hamiltonian of the decoupled graphene layers read (see [42])1

H0T =
∑

i=1,2

vF (e−iθiσ
(i)
− p

(i)
− + eiθiσ

(i)
+ p

(i)
+ ) (1)

where σ
(i)
± = 1

2(σ(i)
x ± iσ

(i)
y ) and p

(i)
± = 1

2 (p(i)
x ± ip

(i)
y ) and θ1 = θ/2 and θ2 = −θ/2. If we introduce

the double-layer graphene in a microcavity of length L with a monochromatic electromagnetic wave,
both layers are coupled to this electromagnetic field via the minimum coupling p → p + e

cA, where A
is the potential vector (see eq.(1) of [31]). This implies that a dot product between σ and A appears
(similar to σ and p) an identical result is obtained with p

(i)
± replaced by A

(i)
± = 1

2
(A(i)

x ± iA
(i)
y ) in

last equation (see eq.(4) of [31]).Considering a clockwise polarized electromagnetic wave with wave
frequency ω propagating perpendicular to the graphene layers, the potential vector acting on each layer
can be written as (see eq.(2) of [15])2

Ai =

√
2π~c2

εωV
sin(

mπdi

L
)(ê(i)

+ a + ê
(i)
− a†) (2)

where ê
(j)
α = 1

2(ê(j)
x + iαê

(j)
y ) are the polarization vectors, ê

(j)
x,y are the unit vectors directed along the

x and y axis, V = SL is the volume of the cavity, where S is the area of the graphene sheet and ε
is the dielectric constant and a and a† are creation(annihilation) operators of the cavity mode of the
photon field with frequency ω = c

n0

mπ
L , where m ∈ N, n0 is the refractive index of the dielectric in

which the circular polarized light travels in the microcavity and c is the velocity of light in the vacuum.
The a and a† operators obeys the usual commutation relations

[
a, a†] = I. Should be stressed that in

the case of real microcavities, in general, the reflectivity of the mirrors is finite, then a standing wave
mode of the cavity decays. This is a dissipation process arisen from nonideal structure of the cavity
and is usually parametrized by the Q-factor of the resonator and lead to the finite spectral linewidth of
the cavity mode. For simplicity we will ignore cavity decays which implies that the cavity mode is not
broaden. The interaction Hamiltonian between twisted double-layer graphene and the potential vector
−evF σ(i)·A(i) reads

Hint = −
∑

i=1,2

γi(e−iθiσ
(i)
− a + eiθiσ

(i)
+ a†) (3)

1The rotation implies that σx(θ) = e−iθσ− + eiθσ+ and σy(θ) = ieiθσ+ − ie−iθσ−, where σ± = 1
2
(σx ± iσy).

2The general expression for the potential vector for both polarizations can be seen in [31].
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where γi = sin(mπdi

L ). Finally, adding the electromagnetic field Hamiltonian H0F = ~ωa†a, we can
write

H = H0T + H0F + gHint (4)

where g = e

√
2π~v2

F

εωmV is the coupling constant3. Hamiltonian of eq.(3) contains two processes: an electron
jumps from sublattice A to B by absorbing a photon with energy ~ω and the inverse process, where an
electron jumps from B to A by emmiting a photon with energy ~ω (see figure 1 b). In order to obtain
the effective interaction between the graphene layers and the electromagnetic field, we can apply the
Schrieffer–Wolff transformation ([39],[40]) or Löwdin partitioning [43]. This transformation is similar
to the conventional stationary perturbation theory but with the improve that does not distinguish
between degenerate and non-degenerate states. By considering a unitary anti-Hermitian operator S and
an unitary transformation egSHe−gS on H, the transformed Hamiltonian must have a block-diagonal
form. The only requirement for the Hamiltonian H is that the matrix elements of the interaction Hint

are small with respect to the eigenvalues of the matrix H0F , then by using the Campbell-Hausdorff
expansion, H ′ can be expresssed as

H ′ = egSHe−gS = H + g [S, H] +
g2

2
[S, [S, H]] + O(g3) (5)

by replacing H = H0S +H0F +gHint in last equation and imposing that linear order in g in H ′ vanishes,
we obtain an equation for S such that Hint + [S, H0S + H0F ] = 0. Then last equation reads

H ′ = egSHe−gS = H0S + H0F +
g2

2
[S, Hint] + O(g3) (6)

The transformed Hamiltonian H ′contains interactions at order g2. In order to obtain the matrix
operator S we can consider the following ansatz

S =
∑

i,α

σ(i)
α

(
X

(i)
α+a† − X

(i)
α−a

)
+

∑

i

σ(i)
z

(
W

(i)
+ a† − W

(i)
− a

)
(7)

where the twelve unknown coefficients X
(i)
αα′ and W

(i)
α must be determined through the equation Hint +

[S, H0S + H0F ] = 0. Using that
[
σ

(i)
z , σ

(j)
α

]
= 2αδijσ

(i)
α and

[
σ

(i)
α , σ

(j)
α′

]
= αδijδα,−α′σ

(i)
z for the Pauli

matrices and
[
a†, a†a

]
= −a† and

[
a, a†a

]
= a for the creation and annihilation operators, through a

lengthly but straightforward calculation we obtain the following set of equations for the twelve unknown
coefficients X

(i)
αα′ and W

(i)
α condensate in three equations

γie
−iαθi = −~ωX

(i)
−α,α − 2vF e−iαθip(i)

α W (i)
α (8)

2vF eiαθip
(i)
−αW (i)

α − ~ωX(i)
α,α = 0

vF e−iαθip(i)
α X(i)

α,α − vF eiαθip
(i)
−αX

(i)
−α,α − ~ωW (i)

α = 0

where α = ±1 and i = 1, 2. Last system of equations can be solved with the following results

X(i)
α,α =

2γie
iαθi

~ω

v2
F p2

i e
−2iαϕi

~2ω2 − 4v2
F p2

i

(9)

X
(i)
−α,α =

γi

~ω
e−iαθi

2v2
F p2

i − ~2ω2

~2ω2 − 4v2
F p2

i

W (i)
α =

γivF pie
−iαϕi

~2ω2 − 4v2
F p2

i

3Hamiltonian of eq.(3) resembles the Jaynes-Cumming model [16].
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where pi =
√

p2
xi

+ p2
yi

=
√

p
(i)
+ p

(i)
− and ϕi = arctan(pyi/pxi) is the angle in the momentum space of

each layer. With the knowledge of the anti-Hermitian operator S, we can compute the second order
contribution in g to H by computing the commutator [S, Hint]. By using that

[
σ

(i)
z a, σ

(j)
α a†

]
= σ

(i)
z σ

(j)
α +

2αδijσ
(i)
α a†a,

[
σ

(i)
z a†, σ

(j)
α a

]
= −σ

(i)
z σ

(j)
α + 2αδijσ

(i)
α aa†,

[
σ

(i)
α a†, σ

(j)
α′ a

]
= −σ

(i)
α σ

(j)
α′ + αδijδα,−α′σ

(i)
z aa†

and
[
σ

(i)
α a, σ

(j)
α′ a†

]
= σ

(i)
α σ

(j)
α′ +αδijδα,−α′σ

(i)
z a†a it can be shown that the contribution to second order

in g to the effective Hamiltonian reads

[S, Hint] =
∑

i,j,α

γje
iαθjW (i)

α σ(i)
z σ(j)

α +
∑

i,j,α,α′

γje
iα′θj X

(i)
αα′σ

(i)
α σ

(j)
α′ (10)

+
∑

i

γie
−iθi(2W

(i)
+ σ

(i)
− − X

(i)
++σ(i)

z )a†a† +
∑

i

γie
iθi (2W

(i)
− σ

(i)
+ − X

(i)
−−σ(i)

z )aa+

+
∑

i,α

γie
iθi(X(i)

−+σ(i)
z − 2W

(i)
+ σ

(i)
+ )aa† +

∑

i,α

γie
−iθi(X(i)

+−σ(i)
z − 2W

(i)
− σ

(i)
− )a†a

The last four terms of last equation contain photon operators for emission and absorbtion of two
photons and corrections to the photon field energy. This correction gives the AC-Stark shift. The
first and second contribution introduce corrections to the H0S term in the Hamiltonian and contain
the effective interaction between the electrons in different graphene layers. This effective interaction
between layers can be rooted to the absorption-emission photon process when electrons in different
layers change sublattices. A second order transition implies that one electron emits a photon with a
sublattice transition A → B in one layer and an electron in the other layer absorbs the same photon with
a transition B → A. In this case, the photon is virtual and cannot be observed, although renormalizes
the bare parameters in the initial Hamiltonian.

3 Effective interactions of twisted double-layer graphene

In order to study the effective interactions that appears between electrons in different graphene layers,
we can restrict us to the first two terms of eq.(10)

[S, Hint]el = H ′
ef + H ′′

ef (11)

where
H ′

ef =
∑

i,α

γie
iαθiW (i)

α ασ(j)
α +

∑

i,α6=α′

γie
iα′θiX

(i)
αα′σ

(i)
α σ

(i)
α′ (12)

and
H ′′

ef =
∑

i6=j,α

γje
iαθjW (i)

α σ(i)
z σ(j)

α +
∑

i6=j,α,α′

γje
iα′θjX

(i)
αα′σ

(i)
α σ

(j)
α′ (13)

where we have used that σ
(i)
z σ

(i)
α = ασ

(i)
α and σ

(i)
α σ

(i)
α = 0. Basically, we have considered the first two

terms in eq.(10) and we have written
∑

i,j =
∑

i=j +
∑

i6=j in eq.(10), then the first Hamiltonian H ′
ef

contains only one body potentials terms that do not couple the layers and the crossed terms between
layers appear only in H ′′

ef . The second sum in H ′
ef can be written as

∑

i,α6=α′

γie
iα′θiX

(i)
αα′σ

(i)
α σ

(j)
α′ =

∑

i

(
γ2

i

~ω

2v2
F p2

i − ~2ω2

~2ω2 − 4v2
F p2

i

)
Ii (14)

where we have used that σ
(i)
α σ

(i)
−α = Ii+ασ(i)

z

2 , X
(i)
−,+eiθi = X

(i)
+,−e−iθi and the obtained value of X

(i)
+,− in

eq.(9). The last term introduces different diagonal matrix elements in the independent Hamiltonians of
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both layers due to the factor γi. In turn, these matrix elements depend on pi then cannot be dropped.
By replacing W

(i)
α in the first term of eq.(12) an effective independent Hamiltonian for both graphene

layers is found where the energy eigenvalues of H0S + H ′
ef reads

ε′s1,p1;s2,p2
=

g2

2~ω

2∑

i=1

γ2
i ∆i(pi) +

2∑

i=1

sivF ηi(pi)pi (15)

where si = ±1 for both layers and indicates the valence (−) and conduction (+) bands respectively, pi

is the wave-vector norm of electrons in each layer and

ηi(pi) =

√(
1 − g2γ2

i

2(~2ω2 − 4v2
F p2

i )

) (
1 +

g2γ2
i

2(~2ω2 − 4v2
F p2

i )

)
(16)

and we have called ∆i(pi) = 2v2
F p2

i−~2ω2

~2ω2−4v2
Fp2

i
. The Fermi velocity correction at order g2 in each layer can

be obtained by computing v
′(i)
F (pi) =

∂ε′s1,p1;s2,p2
∂pi

and is different in each layer due to the factor γi and
tends to vF for both layers when g → 0 as it is shown in figure 2a).

Near the Dirac point in both layers, the effective Fermi velocity is v
′(i)
F ∼ vF

√
1 − g4γ4

i

4~4ω4
m
− 2v2

Fγ2
i g2

~3ω3 p

which is smaller than the bare Fermi velocity in each layer. This behavior can be experimentally
detected for the condition kF |d2 − d1| > 1, that is fulfilled for negligible p. The opposite condition
kF |d2 − d1| < 1 implies that d < 〈r0〉 which is favourable for the hole-electron pairing for small inter-
layer separation |d2 − d1| as it is studied in [44]. The dispersion relation given by eq.(15), considering
both layers with identical small carrier density n, then k1 = k2 = kF =

√
πn is plotted as a function of

ε = vF p in figure 2b). In dashed lines the asymptotic pristine double-layer graphene dispersion relation
is shown ε± = ±2vF p (the degenerate band ε0 = 0 is not shown). Near the resonance point pres = ~ω

2vF
,

the dispersion relation shows a dip which is the precursor of a bandgap formation in the system. This
forbidden region for pF is a novel feature of double-layer graphene that does not appear in normal 2D
systems. The square root renormalization (eq.(16)) of the pristine graphene dispersion relation implies
a forbidden region in the momentum pF when any of the factors inside the square root of eq.(16) is
negative. The forbidden region in energy reads

∆εforbidden
i =

1
2

√
~2ω2 +

g2γ2
i

2
− 1

2

√
~2ω2 − g2γ2

i

2
∼ γ2

i g2

4~ω
+ O(g4) (17)

This forbidden region implies a complex value of ε′ in eq.(15) and this implies that these energy states
are broadened (see figure 2b)). The scattering time is given by τ = 1/2Imε′ and vanishes at p = ~ω

2vF

which implies that the broadening is larger near the edge of the forbidden region ∆εforbidden
i and vanishes

at the middle (see figure 2b). In turn, by using that g = e

√
2π~v2

F

εωmV and that the energy stored in a

capacitor C = εS
d of parallel plates is W = 1

2
Q2

C , where S is the area of the plate, d is the distance
between them and ε the dielectric constant, the forbidden region γig2

4~ω can be written as the energy
stored in a capacitor given by the respective layer at distance di to the mirror. That is, by putting
γig

2

4~ω = W , then Ci = εS

def
i

, where in this case S is the area of the layers and def
i = γ2

i πv2
F

ω2L = γ2
i

m2π (vF

c )2L
is the effective distance of the capacitor, where we have replaced ω = cmπ

L where m is the mode index.
For large modes, higher photon frequencies and small effective distances are found. In the case we
consider that di

L << 1, where di is the distance of the i-layer of graphene to one of the mirrors, then

γi ∼ mπdi

L
and def

i = (vF

c
)2 d2

i

L
.

In order to study the effective Hamiltonian H ′′
ef that contains the coupling between layers we can
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a) b)

Figure 2: a) Fermi velocity renormalization for both layers where g = 0.5eV, ~ω = 1eV, γ1 = 0.3 and
γ2 = 0.6. b) Dispersion relation ε′ for identical Fermi momentum p1 = p2 = p and where g = 0.5eV,
~ω = 1eV, γ1 = 0.3 and γ2 = 0.6. Inset figure: time relaxation as a function of energy in the gap zone.
Dashed lines indicate pristine dispersion relation 2vF p and −2vF p.

replace W
(i)
α and X

(i)
αα′ in eq.(13), and by restoring the Pauli matrices σx and σy we obtain

H ′′
ef = γ1γ2R(p1)

[
cos(

θ

2
+ ϕ1)σ(2)

x + sin(
θ

2
+ ϕ1)σ(2)

y

]
σ(1)

z + (18)

γ1γ2R(p2)
[
cos(

θ

2
− ϕ2)σ(1)

x − sin(
θ

2
− ϕ2)σ(1)

y

]
σ(2)

z +

γ1γ2

~ω
rC
2 (p1, p2)

(
σ(1)

x σ(2)
x − σ(1)

y σ(2)
y

)
+

γ1γ2

~ω
rS
2 (p1, p2)

(
σ(1)

x σ(2)
y + σ(1)

y σ(2)
x

)
+

γ1γ2

2~ω
r(p1, p2, ω) [cos θσ1 · σ2 + sin θ(σ1 × σ2) · êz]

where R(pi) = vF pi

~2ω2−4v2
F p2

i
multiplies trigonometric functions that couple the twist angle θ with the

angle in the momentum space of each layer. The coefficients rC
2 and rS

2 reads

rC
2 (p1,p2) =

∑

i=1,2

v2
F p2

i cos(2ϕi)
~2ω2 − 4v2

F p2
i

(19)

rS
2 (p1,p2) =

∑

i=1,2

v2
F p2

i sin(2ϕi)
~2ω2 − 4v2

F p2
i

and r reads
r(p1, p2, ω) =

∑

i=1,2

∆i(pi) (20)

The most interesting term in eq.(18) is the last one because it does not vanish at the Dirac point and
where σ1 · σ2 is the dot product of Pauli matrices and (σ1 × σ2) · êz is the z-component of the vector
product.

We can apply second-order perturbation theory with the transformed Hamiltonian of eq.(6) consid-
ering [S, V ] the perturbation. The eigenvectors of the unperturbed H0S + H ′

ef can be written as

|Ψp1,s1;p2,s2〉 =
eip1·r1
√

2S

eip2·r2
√

2S

(
|A1〉 + s1e

iϕp1 |B1〉
)
⊗

(
|A2〉 + s2e

iϕp2 |B2〉
)

(21)

which is a tensor product of the respective eigenvectors of the two graphene layers. The second order
perturbation of the energy is given by

ε′′p1,s1;p2,s2
=

2∑

i=1

sivF pi +
g2

2
〈Ψp1,s1;p2,s2 |H ′

ef + H ′′
ef |Ψp1,s1;p2,s2〉 (22)
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a) b)

Figure 3: a) Dispersion relation ε′′ as a function of the twisting angle θ with ε1 = vF pF = 0, ε2 =
vF p2 = 1eV, g = 0.5eV, ~ω = 0.05eV, γ1 = 0.3 and γ2 = 0.6 and ϕ1 −ϕ2 = π/4. b) Dispersion relation
ε′′ as a function of the momentum angles ϕ1 − ϕ2 with ε1 = vF pF = 0, ε2 = vF p2 = 1eV, g = 0.5eV,
~ω = 0.05eV, γ1 = 0.3 and γ2 = 0.6 and θ = π/4.

The eigenvectors of H ′
ef are identical to those of H0S, then the term g2

2 〈Ψp1,s1;p2,s2|H ′
ef |Ψp1,s1;p2,s2〉

introduces the eigenvalues of eq.(15). The correction due to H ′′
ef reads

g2

2
〈Ψp1,s1;p2,s2 |H ′′

ef |Ψp1,s1;p2,s2〉 = −g2γ1γ2

2~ω
s1s2

[
cos(ϕ1 − ϕ2) cos(

θ

2
) + ξ(p1, p2) sin(ϕ1 − ϕ2) sin(

θ

2
)
]

(23)
where

ξ(p1, p2) =
2~2ω2(v2

F p2
1 − v2

F p2
2)

(~2ω2 − 4v2
F p2

1)(~2ω2 − 4v2
F p2

2)
(24)

where we have replaced θ1 = −θ2 = θ
2 . The correction at second order in g given by last equation

implies that when both electrons or holes in each layer have identical Fermi momentum p1 = p2 = pF ,
then

〈Ψp1,s1;p2,s2|H ′′
ef |Ψp1,s1;p2,s2〉p1=p2

= −g2γ1γ2

2~ω
s1s2 cos(ϕ1 − ϕ2) cos(

θ

2
) (25)

then the correction decreases the energy when both layers are electron doped (s1 = s2 = 1) or hole
doped (s1 = s2 = −1) whenever θ 6= π or ϕ1 −ϕ2 6= π

2
which is in concordance with a superfluid phase

of interlayer excitons ([45], [46] and [47]). When the twist angle vanishes, the second order correction
reads

〈Ψp1,s1;p2,s2 |H ′′
ef |Ψp1,s1;p2,s2〉θ=0 = −g2γ1γ2

2~ω
s1s2 cos(ϕ1 − ϕ2) (26)

Last equation implies that when the Fermi level µi is such that µ1, µ2 > 0 both layers are electron
doped, then s1s2 = 1 and the minimum of ε′′+,p1;+,p2

is obtained for ϕ1 = ϕ2. Identically, when µ1 < 0
and µ2 < 0, ε′′−,p1;−,p2

minimizes when θ1 = θ2 for both holes doped layers. For µ1 > 0 and µ2 < 0 and
µ1 < 0 and µ2 > 0, the minimum ε′′+,p1;−,p2

and ε′′−,p1;+,p2
is obtained for θ2 = θ1 + π. For electron-hole

doped layers, the angle-correlation induces a coherence given by a net flow of current between layers
[48]. On the other side, when p1 6= p2 in eq.(23) and θ = π, the correction to the energy due to H ′′

ef

is modulated by sin(ϕ1 − ϕ2). These results indicate a momentum angle-twisting angle correlation
that induce a coherence between electrons in different layers (see figure 3b)). In turn, it can be seen
that for specific rotation and relative momentum angle, two bandgaps appear, which exhibits novel
insulating phases modulated by the relative direction of propagation of electrons in each layer. When
both graphene layers are neutral, the electrons are located at the Dirac point, p1 = p2 = 0 and we can
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Figure 4: Dispersion relation ε
(i)
±n of double-layer graphene at the Dirac point where g = 0.5eV, ~ω =

1eV, γ1 = 0.3 and γ2 = 0.6.

exploit eq.(11) to find the Hamiltonian HDP at order g2

HDP =
[
1 − g2

~2ω2

(
γ2
1σ(1)

z + γ2
2σ(2)

z

)]
~ωa†a − g2

2~ω

(
γ2
1σ(1)

z + γ2
2σ(2)

z

)
(27)

−JDP [cos θσ1 · σ2 + sin θ(σ1 × σ2) · êz]

where a constant term − g2

2
( γ2

1
~ω

+ γ2
2

~ω
)I has been dropped and JDP = g2γ1γ2

2~ω
is the pseudospin exchange

coupling between layers. The minus sign indicates a pseudo-ferromagnetic coupling, where the sublattice
basis are anti-correlated. When θ = 0, the effective interaction between layers reduces to −JDP σ1 · σ2

and for orthogonal twist θ = π/2, the effective interaction reduces to −JDP (σ1 × σ2) · êz . The effective
interaction can be very small compared to the free evolution due to H0. However, by moving to the
rotating frame, H0 no longer appears and the interaction becomes important. On the other side, by
tuning ω with the cavity height L and the refractive index, JDP can be large and the pseudo-spin
interaction between layers is predominant in the Hamiltonian of eq.(27). Last result is similar for two
Cooper pair box qubits coupled to a transmission line resonator [49]. In this frame, the two-qubit
interaction becomes important and can be used to entangle the two qubits together and perform gates
on them. In turn, the entanglement can be tuned through ω, γ1 and γ2. The effective distance of the
capacitor between layers is dG−G

ef = 2π(vF

c
)2 d1d2

L
and can be compared with the quantum capacitance of

double-layer graphene [50]. From Hamiltonian HDP it can be seen that the A. C. Stark effect split the
photon energy state ~ωn in ~ω± g2

~ω

(
γ2
1 ± γ2

2

)
. More insight into the dispersion relation of double-layer

graphene inside the microcavity at the Dirac point for weak coupling is gained by obtaining the full set
of eigenvalues of HDP , where we can consider the basis {|A, A, n〉 , |A, B, n〉 , |B, A, n〉 , |B, B, n〉} and
the energy of the dressed states reads

ε
(1)
n,± = ~ωn ± g2

2~ω
(2n + 1)(γ2

1 + γ2
2 ) (28)

ε
(2)
n,± = ~ωn ± g2

2~ω

√
(γ4

1 + γ4
2 )(2n + 1) − 2γ2

1γ2
2 (4n(n + 1) − 1)

From figure (4) it can be seen that the spectrum contains a set (different n) of four non-degenerated
energy eigenvalues as a function of of the cavity photon frequency. In turn, it can be seen that these
eigenvalues naturally separates into two branches (valence and conduction bands) and the splitting
between states depends on n. The cavity resonance ωres is located at ωres = 0 because both layers are
neutral.
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Current technology allows the experimental realization of few-layer graphene in large areas by
both mechanical exfoliation or chemical techniques with controlled stacking order ([51] and [52]). The
schematic setup of our proposed system is depicted in figure 1, where the two parallel graphene sheets
can be suspended or on top of a substrate. The layer separation must be > 3Å in order to prevent
tunneling between the graphene sheets. An operational procedure to detect the non-local correlation in
double-layer graphene involves applying an external voltage on both layers, which can vary the carrier
concentration in the material [53]. An usual procedure to change the charge concentration is to use
graphene as the second parallel plate of a capacitor, where the first plate is SiO2 and a backgate voltage
is applied perpendicular to the graphene sheet which creates an electrostatic potential drop between
the sample and the gate electrode and shifts the Fermi level [54]. The distance between graphene
layers should be an order of magnitude larger than the capacitor in order to not change the boundary
conditions for the electromagnetic field used in the calculations [55]. An improvement to the setup is to
introduce a dielectric in the whole cavity that changes the refractive index and the velocity of light in
order to decrease the time intervals at which the back-gate voltages are switched on and off in order to
detect the entanglement at early times [56]. In turn, the two sheets are separated in order to prevent
tunneling between the sheets and electron-hole recombination in the case one of the sheet is hole doped
and the Coulomb drag can be neglected [13]. As well there can be two separate electrical contacts to
the two layers, allowing independent control over the carrier density in each sheet. For negligible carrier
density, the effective Hamiltonian is given by eq.(27) and by allowing the electromagnetic wave inside the
microcavity to be turned on and off with a duration T , the time evolution of the density operator of both
layers can be computed. Considering an initial state in which both electrons are in an eigenstate of the
free Hamiltonian or in a particular sublattice basis, the time-evolved density operator is ρT = Uρ0U

†,
where U is the evolution operator expanded in g. Quantum correlations between layers appears as
non-diagonal elements of the density matrix in the basis chosen, for example X states [57]. These non-
diagonal elements will depends strongly in the switching function, d1, d2, L and T . The generation of
entanglement between graphene layers through the electromagnetic field in the microcavity allows us to
makes these materials attractive to be applied to different branches of quantum optics, such as quantum
information [58], polaritonics [59], quantum teleportation ([60] and [61], quantum cryptography ([62]
and [63]) and creates a basis of modern technological applications ([64], [65]). A simple inspection of
the effective Hamiltonian HL−L = −JDP [cos θσ1 · σ2 + sin θ(σ1 × σ2) · êz] implies that an initial state
|Ψ(0)〉 = |A1, B2〉 evolves to e−iHL−Lt |Ψ(0)〉 = cos(JDP t) |A1, B2〉 − ie−iθ sin(JDP t) |B1, A1〉, then the
twisting angle θ can be used to tune the entanglement between the layers.

4 Conclusions

In summary, we have presented a theoretical procedure, based on the Schrieffer-Wolf transformation
of the Hamiltonian, to obtain the effective interaction between electrons in different rotated layers
of graphene inside a planar microcavity. We have shown that considering a monochromatic clockwise
polarized electromagnetic wave that interacts with each layer through the minimal coupling, both layers
gets coupled through the interchange of a second order transition that involves a virtual photon emmited
from one layer and absorbed in the other layer. The effective interaction depends strongly in the twisting
angle θ of the layers, the cavity photon frequency ω and the distances between the layers and the mirrors
of the cavity. It was shown that the Fermi velocity in each layer is different and a resonance appears.
In turn, a band gap appears around the resonance due to imaginary values of the energy obtained.
It was shown that the dispersion relation decreases when the momentum angle of the electrons are
ϕ1 = ϕ2 when the Fermi level is above or below the Dirac point for both layers and decreases when
ϕ2 = ϕ1 + π when both layers are identically electron-hole doped. These results implies an angle-
correlation coherence that can induce a net flow of current between the layers with a twisting angle θ
modulation. In turn, when both layers are not doped identically and θ = π/2, the energy dispersion
decreases when ϕ2 = ϕ1. This unexpected behavior for different θ is the precursor of a momentum angle-
twisting angle correlation between layers which indicates that the transport properties of the system
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are highly sensitive to θ. Finally, the dispersion relation was found at the Dirac point, showing that
the effective interaction can be written compactly as −JDP [cos θσ1 · σ2 + sin θ(σ1 × σ2) · êz], where a
pseudo-ferromagnetic coupling JDP appears between layers and can be used to entangle two qubits
given by the sublattice basis in each layer and perform gates on them through the manipulation of the
twisting angle θ.
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