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Unraveling the packing structure of dense assemblies of semiflex-
ible rings is not only fundamental for the dynamical description
of polymer rings, but also key to understand biopackaging, such
as observed in circular DNA of viruses or genome folding. Here
we use X-ray tomography to study the geometrical and topo-
logical features of disordered packings of rubber bands in a
cylindrical container. Assemblies of short bands assume a liquid-
like disordered structure, with short-range orientational order,
and reveal only minor influence of the container. In the case
of longer bands, the confinement causes folded configurations
and the bands interpenetrate and entangle. Most of the sys-
tems are found to display a threading network which percolates
the system. Surprisingly, for long bands whose diameter is more
than twice the diameter of the container, we found that all
bands interpenetrate each other, in a complex fully entangled
structure.

filamentous matter | entanglements | X-ray tomography |
geometry | topology

The structural and dynamical properties of melts of noncon-
catenated circular polymers stand as one of the most contro-

versial and interesting topics in polymer physics (1, 2). Here, the
reptation (end-directed curvilinear diffusion) of chains, as occurs
in linear or ramified polymers (3), is inhibited because of the
absence of free ends in the ring molecules. Therefore the con-
formations, relaxation, and diffusion mechanisms of systems of
rings remain unclear.

Due to the topological constraints of nearby rings, early mod-
els of the dynamics of polymer rings assume that the molecules in
melts adopt lattice animal configurations, where each bond in the
animal represents a doubled polymer strand (1, 4–6). Neglecting
mutual threading of the rings, the chains are assumed to relax
stress by sliding along the contour of other loops, which leads
to a power-law relaxation, in agreement with experiments (7).
Simulations of ideally flexible polymer rings showed, however,
that the molecules form more compact crumpled globules (8–
10), and there can be strong intercoil interactions (11–13), which
slow down the dynamics of the system, even to glass-like behavior
(2, 14, 15).

Despite the progress in understanding systems of fully flex-
ible rings, much less is known on the structural properties
for the case of semiflexible polymer rings. Here, a good com-
prehension of the fundamental features of dense packings of
semiflexible rings should be also essential for understanding
biopackaging (16, 17), such as observed in circular DNA of bac-
teriophage viruses or prokaryote and eukaryote cells. For these
biological systems, the compliance of efficient packing and their
functionality in the process of genomic reproduction remains
yet unclear.

Here we study disordered assemblies of rubber bands which
represent rather systems which reveal the property of entan-
glement. Despite being athermal, these simple systems dis-
play the key features observed in circular filamentous mat-
ter and, as shown below, allow the detailed characterization
of topology and entanglements as functions of the band’s
length.

The disordered, entangled systems studied here are obtained
by placing the bands one by one in a cylindrical container of

radius Rc = 3.25 cm and height 7.2 cm and subsequent mix-
ing by mechanical agitation. The structural properties of the
packings are obtained by means of X-ray tomography and sub-
sequent data analysis to locate each band individually (see SI
Appendix for details on sample preparation and segmentation
analysis).

Fig. 1 shows typical packings of rubber bands of different
lengths as obtained from the tomograms. Movies S1–S3 show
further examples of the raw X-ray data, assembly reconstruction,
and individual chain configurations. Having identified all bands
of the system, we study the geometrical and topological features
of these entangled structures (18).

Obviously, the lengths of the bands must influence the pack-
ing structure, and this is the effect we study here. To this
end, we characterize packings of bands of different lengths
at similar packing fractions, φ∼ 0.17. Table 1 summarizes
the main characteristics of types of bands used. These are
the persistence length, Lp , characterizing the stiffness of the
rings, and the number of rings, Nrings, used to obtain simi-
lar packing fractions, φ. Finally, the aspect ratio between the
radius of gyration of the rings and the radius of the cylin-
der, Rg/Rc , quantifies the degree of confinement, specified
below.

To check for robustness of our results, for each type,
A to E, we prepared three packings independently. The
subsequent analysis did not reveal significant differences in
both geometrical and topological features. For details see SI
Appendix.

Significance

Understanding the structure of disordered assemblies of
ring molecules is key for the description of polymer rings
and cyclic biomolecules. Here we study the geometrical and
topological properties of these systems by imaging disor-
dered assemblies of macroscopic rubber bands through X-ray
tomography. Commonly, these systems contain networks of
interthreading bands which percolate the whole assembly.
But when the bands are much longer than the container,
we observe the formation of fully entangled states, where
each band is in the neighborhood of the others. Thus, con-
fined semiflexible ring macromolecules are expected to have
extremely correlated configurations with very slow glassy-like
dynamics.
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Fig. 1. Packing structure of confined rubber bands. Shown are X-ray tomograms of bands’ packing of different lengths. From Left to Right the tomograms
correspond to bands of types A, B, C, and E (Table 1).

Geometrical Properties
Fig. 2 A–C shows typical reconstructions for bands’ packings
of different lengths. In Fig. 2 A–C, Top different bands are
displayed by different colors, and in Fig. 2 A–C, Bottom one
of the bands is highlighted to provide a visual impression of
the structure. A more quantitative characteristic is the shape
tensor (19),

Qij =
1

L

∫
ri(s)rj (s) ds − 1

L2

∫
ri(s) ds

∫
rj (s) ds, [1]

averaged over the bands in the sample.
The invariants of this tensor, which characterize the geome-

try of the rings, are the radius of gyration given by the trace
of the shape operator, R2

g = TrQ ; the asphericity ∆ = 3TrQ̃2

2(Tr Q̃)2
;

and the nature of the asphericity Σ = 4 det Q̃/(2/3 TrQ̃2)3/2,
where Q̃ij =Qij − δij TrQ/3. The asphericity assumes values
0≤∆≤ 1, where the limits ∆ = 0 represent a fully symmetric
object and ∆ = 1 a fully extended rod-like object. The nature of
asphericity assumes values −1≤Σ≤ 1. Here Σ =−1 represents
an oblate object, and Σ = 1 for a prolate object.

Fig. 2D shows the values of ∆ and Σ, obtained for the ensem-
bles of rings of different length (the distributions of ∆ and Σ
for different bands are provided in SI Appendix). For the short-
est bands (Fig. 2A) we found Σ≈−1 and ∆≈ 0.3, showing that
most bands pack like planar nearly undistorted circular rings (for
a rigid ring we would find Σ =−1 and ∆ = 0.25).

For longer bands, we observe that the bands fold due to the
confinement by the container (Fig. 2 B and C). First, some
bands start to fold into “eight”-like configurations (Fig. 2B).
For yet longer bands the confinement enforces more com-
plex folding patterns (Fig. 2C). The averaged shape invari-
ants show that ∆ decreases toward 0 and Σ remains posi-
tive for long bands. This means that with increasing length
the bands acquire more symmetric configurations, with an
average prolate form. This asymptotic prolate shape is a
direct consequence of the cylindrical container (confinement
effect).

The third shape invariant is the radius of gyration of the
bands. For polymer rings, it is found that the average-square
gyration radius scales with a power law with the total con-
tour length R2

g ∼L2ν , where the characteristic exponent varies
from model to model: ν= 1/2 for rings folded into lin-
ear ribbons, ν= 1/4 for ideal lattice trees or animals (1),
and ν= 1/3 for rings with the shape of crumpled globules
(10). Fig. 2 D, Inset shows the average radius of gyration squared
as a function of bands’ lengths. Here, for long bands we found
an exponent near ν= 1/4 (red line). However, a visual inspec-
tion in Fig. 2 B and C reveals that ring configurations clearly
differ from lattice trees or animals, mostly due to ring

semiflexibility and threading. This is also different from
the crumpled globules observed in simulations of fully flex-
ible polymer rings (8–10). Table 1 shows that indeed
the degree of confinement is high (Rg/Rc ≈ 0.9) for the
longest bands.

The geometrical properties of the bands can be further studied
through the Frenet–Serret expressions (20, 21)

dT
ds

=κN

dN
ds

=−κT + τB

dB
ds

=−τN, [2]

where s is the arc length, and T, N, and B are the local tan-
gent, normal, and binormal vectors, respectively (Fig. 2E). The
values of κ and τ represent the local curvature and torsion
of bands.

Due to short bands behaving as nearly undistorted planar
rings, an average band orientation can be obtained by averaging
the binormals (Fig. 2 F, Inset). Then, orientational correlations
between near bands can be quantified through the order param-
eter S(r) =

〈
3
2

cos2 θ(r)− 1
〉
, where θ(r) is the misorientaton

between bands’ binormals separated by a distance r , and the
average is performed over the entire system. Fig. 2F shows that
at short distances (of the order of the band’s radius r0) the
binormals are somewhat aligned, such that short bands pack
parallel to their near neighbors, depicting short-range orienta-
tional correlations (blue line). This local discotic order was also
observed in simulations of short polymer rings (22) and is a con-
sequence of excluded volume interactions. For longer bands, this
short-range order disappears due to chain flexibility (red line
in Fig. 2F).

Let us consider the distribution of the local curvature, P(κ), of
the bands. Fig. 2G shows P(κ) for the shortest bands (black line
dots) and for the rest of the bands (colored lines), where the cur-
vature κ is normalized by the peak κpeak value of the curvature
distribution. We found that κpeak decays with a power law with
the bands’ length κpeak∼L−1/2 (SI Appendix, Fig. S7). Fig. 2G

Table 1. Rubber band’s main properties

type L (cm) L/Lp Nrings φ Rg/Rc

A 7.6 0.9 331 0.145 0.35
B 20.4 1.2 130 0.159 0.68
C 24.1 1.9 71 0.172 0.61
D 30.4 2.0 58 0.186 0.70
E 63.4 3.7 28 0.180 0.87

Gómez et al. PNAS | February 18, 2020 | vol. 117 | no. 7 | 3383

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ay

 1
1,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1914268117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1914268117/-/DCSupplemental


Fig. 2. Geometrical analysis of bands. (A–C, Top) Typical reconstruction of packings, where the different rubber bands can be distinguished by color. (A–C,
Bottom) A single band is highlighted in blue color while the others appear thinner to improve visibility. (D) Averaged shape invariants Σ and ∆ as functions
of the bands’ lengths. Inset shows the squared radius of gyration, the red line is a power-law fit for long chains, and the dashed line illustrates the ceiling
R2

g = R2
c . (E) Scheme of the Frenet–Serret frame. (F) Orientational correlations as a function of length r, normalized with the radius of bands r0. (G) Curvature

distribution of bands. The dashed red line shows the theoretical prediction for the curvature distribution of linear semiflexible polymers, and the solid red
line shows a fit. (H) Torsion distribution of bands. The solid red line is a single exponential. Inset shows the dependence of τ* with length. (I) Average writhe
of bands as a function of length.

shows that the curvature distribution for long bands nicely col-
lapses on a master curve. On the contrary, the distribution for
the shortest (almost undistorted) rings clearly displays a differ-
ent, more narrowed, curvature distribution. Note that for very
rigid rings (Lp >>L) there should be small distortions from a cir-
cular shape, and the curvature distribution is expected to became
a Gaussian centered in the intrinsic curvature κ0 = 1/r0, with r0
the radius of rings.

For comparison, in Fig. 2G we also include the prediction
for the curvature distribution of linear semiflexible polymers

(dashed red line), which is of the form P(k̃) = κ̃ exp(−κ̃ 2/2),
κ̃=κ/κpeak (23–25). In contrast to linear semiflexible poly-
mers, the rubber bands studied here display a wider distri-
bution of the curvature, such that the probability of find-
ing regions of large values of curvature is higher, as it can
be expected due to the cyclic topology of chains. Here we
found that the curvature of long bands can be well approxi-
mated by the expression P(k̃) = κ̃ exp(−3 κ̃ 4/3/4), correspond-
ing to a generalized Gamma distribution (shown as a solid red
line in Fig. 2G).

3384 | www.pnas.org/cgi/doi/10.1073/pnas.1914268117 Gómez et al.
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Fig. 3. Threading analysis. (A–C) Examples of minimal surfaces obtained
for bands of different lengths. (D) Twice threading of one band (in blue)
over another (red). (E) Averaged area A of the minimal surfaces, normalized
with the section of the container Ac, as a function of the band’s length. The
line represents a linear fit. (F) Averaged number of threading on bands as
a function of the area of the minimal surfaces A. Inset shows the size of
the largest interthreading cluster as a function of length. Note that only for
the shortest bands (system A) the threading cluster does not percolate the
system.

In Fig. 2H we show the distribution of the absolute value of
torsion of bands P(τ), for all of the system studied. In this plot
the torsion of the bands is normalized with a characteristic tor-
sion τ∗, which scales linearly with the band’s length (Fig. 2 H,
Inset). Clearly, when normalizing with τ∗, the torsion distribution
of all of the systems collapses in a universal master curve, which
can be well approximated by a single exponential decay function
(red line in Fig. 2 H, Inset) P(τ̃) = exp(− τ̃), with τ̃ = τ/τ∗.

The folding of bands can also be quantified through the
writhe Wr , which measures the degree of coiling of a closed
curve, by counting the number of crossings of the curve with
its axis (26),

Wr =
1

4π

∮ ∮
(dr1× dr2)r12
|r12|3

, [3]

where r1 and r2 are the points along the curve, and r12 = r2− r1.
The writhe has been mainly used to characterize the supercoil-
ing transition of circular DNA (27, 28), but also to distinguish
configurations obtained in simulations of flexible and semiflex-
ible polymers, in bulk and under confinement (29, 30). For
polymers in bulk, it has been found that 〈|Wr |〉∼L1/2 and
the exponent of the scaling increases in the case of confine-
ment. Fig. 2I shows that for our confined semiflexible bands

the average writhe scales with the contour length with a simi-
lar exponent 〈|Wr |〉∼L0.55. It has been argued that for closed
curves in space, the absolute value of writhe cannot grow faster
than 〈|Wr |〉∼L4/3, where the 4/3 is an upper bound for the
exponent (26).

Topological Properties
Threading Number and Network. Up to now, we have focused on
the averaged geometrical properties of bands. The confinement
does, however, cause not only folding of the bands, but also
entanglement and mutual interpenetration. For long bands we
can expect a highly entangled structure, which is considered in
this section.

The bands’ threading can be studied through a minimal sur-
face analysis. This technique was proposed to study threading
in simulations of fully flexible polymer rings (12, 13). The
idea is that the minimal surface spanned by a ring’s contour
(Fig. 3 A–C) can be used to estimate the number of topolog-
ical conflicts among overlapping rings through the intersection
of the minimal surfaces (Fig. 3D). Fig. 3E shows that the
area of the minimal surfaces linearly scales with the length
of bands.

In Fig. 3F we show the average total number of threadings
on a band, as a function of the minimal surface area. Note that
the total number of threadings on a ring can be much larger
than the number of rings due to multiple threadings (which is
rather common for long bands). Here we find that the num-
ber of threadings increases linearly with the area expanded by
the band’s contour (red line in Fig. 3E). As the length of rings
increases (at similar packing fractions) there is a correspond-
ing increase in the number of threadings. Clearly, the larger the
area the band expands, the more probable it will be threaded by
other bands.

It is expected that a network of interthreading rings will natu-
rally emerge in these highly entangled systems. Such a network,

Fig. 4. Voronoi analysis. (A) Voronoi partition of space by using the parti-
cles of all chains in the system. (B) Voronoi tubes defining the closest regions
on the red and blue bands (the rest of the bands in the packing are not
shown). (C) Average number of neighbors on bands as a function of length.
(D) The fraction of the system which is neighbors of a band, as a function of
length. Note that for the longest bands, all of the bands are first neighbors,
resulting in a fully entangled structure.
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depending on its size, will probably slow down the dynamics of
thermal systems (2, 15). Here, to characterize such threading net-
works in our system, in Fig. 3 F, Inset we plot the size of the larger
cluster of interthreading rings, normalized by the number of rings
in the structure fclust =Nclust/Nrings, as a function of the length
of bands. Note that we find a percolating network of threading
bands for most of the systems studied. Only the shortest bands
(system A) do not establish a threading network spanning the
entire system, but the larger cluster involves only half the system
approximately.

Generalized Voronoi Diagrams. Note, however, that the inter-
penetration of bands gives only partial information on the
entanglements and topology of the structure. Many rings in
the packings are very close, however, not interpenetrating.
These not-interpenetrating rings should also influence the
static properties of disordered packings and the dynamical
response of thermal systems like ring polymer melts or confined
circular DNA.

To complete the characterization of the rings’ environment,
we introduce a Voronoi partition of space by using the particles
of all chains in our systems, as if they were unlinked (Fig. 4A).
Next, we merge all of the Voronoi volumes corresponding to
particles belonging to the same chain. This process produces a
Voronoi tessellation, where all of the bands are contained in
their closest tubular-like region (Fig. 4B). With this tessellation
we can obtain the number of bands which are first neighbors of
each band (coordination number). Fig. 4C shows the averaged
coordination number as a function of the band’s length. The dis-
tributions of neighbors per band can be observed in SI Appendix,
Fig. S8.

Even for the smallest bands we find a coordination num-
ber of 26, which approximately doubles the coordination of
dense liquids and solids. In our case, the maximum coordina-
tion number is achieved by system B, with about 50 band’s
neighbors. For the largest bands the coordination number
decreases, but this is just because the number of bands in
the packing decreases. Fig. 4D shows the coordination num-
ber normalized with the number of bands in the structure,
as a function of length. This fractional coordination number
grows monotonously with the bands’ length, showing that the
system gets more entangled for longer bands. Remarkably, for
the longest bands, it is observed that all of the bands are first

neighbors of each other, forming a complex disordered fully
entangled structure. It is expected that thermal systems with
a similar degree of entanglement will display extremely slow
dynamics.

It is interesting to compare the results obtained here for
the topology of the structure of semiflexible filamentous mat-
ter with previous ideas and results concerning melts of fully
flexible rings. It is clear that the configurations of the semi-
flexible rings are far from lattice animals or crumpled globules,
where interthreading should be marginal, as obtained for fully
flexible molecules. Here, the semiflexibility of rings produces
more open configurations, favoring interthreading and entan-
glements. This is not too surprising because, even for linear
molecules, the stiffness of molecules induces more expanded
configurations and more entanglements (31). Our structural
analysis suggests that, contrary to fully flexible rings, semiflex-
ible rings should have much slower dynamics than their linear
counterparts. We hope this work can motivate further stud-
ies on the dynamics of semiflexible polymer rings and circular
biomolecules.

Conclusion. Since Bernal’s early contributions, the in-depth anal-
yses of the close-packed structures made of spheres (32), ellip-
soids (33), tetrahedra (34), other compact objects (35), and
granular chains (36) have improved our current vision of crystals,
liquids, and glasses. Such studies have revealed that molecular
geometry and symmetry, independent of the specific microscopic
details and interactions, stand at the end of the structure of
condensed matter. In the same line, here we have shown that
a simple bunch of rubber bands can be used to elucidate the
universal structural features of disordered filamentous matter,
which should be key in the description of synthetic polymers and
biomolecules, among others.

Data Availability. The data reported in this paper are available at
https://github.com/garciana/PolymerRings.
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