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We introduce q statistics concepts to improve the performance of some methods based on the

histogram to estimate dynamic speckle activity. It is shown that some improvements are obtained by

choosing appropriate q values that have been empirically determined. The possibility of increasing the

precision and diminishing the acquisition time are explored for a usual study case as is the drying

of paint.
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1. Introduction

In 1988 Tsallis [1] extended the domain of validity of standard
thermodynamics and Boltzmann–Gibbs (B–G) statistical mechanics
in order to cover a variety of anomalous systems. Systems involving
long range interactions, long range microscopic memory in
non-markovian stochastic processes, pure electron-plasma two
dimensional turbulence, phonon–electron anomalous thermaliza-
tion in ion-bombarded solids, solar neutrinos, etc. are some exam-
ples where the B–G theory presents difficulties. To overcome at least
some of these problems, Tsallis’ formalism proposed the extension
of the concept of entropy by including a free parameter q to give
origin to what is called non extensive statistics. This generalization
proved to be very fruitful and, aside from thermodynamics, it was
successfully applied to a wide variety of phenomena and to further
generalizations including q parameter versions of several functions
and operators (named q deformed algebra) such as q Gaussian, q

mean value, q exponential, q logarithm, etc.
Some general properties of Tsallis entropy Sq are: Sq is positive,

takes zero value for absolute certainty and increases monoto-
nously with increasing uncertainty.

The generalization found interesting applications in widely
different (some perhaps unexpected) fields. It has been applied to
both theoretically well founded situations and experimental ones.
A somewhat random view includes the order of words in a text,
the citation of scientific papers, electroencephalography signals of
epilepsy, to monitor brain injury after cardiac arrest, in financial
ll rights reserved.
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markets, seismicity, atmospheric turbulence, gravitation, etc. An
extended review of these subjects was presented in Refs. [2,3]. In
image processing it has been applied to image registration, image
thresholding, segmentation of cerebral tissue in multiple sclerosis
magnetic resonance images, etc.

In optics, the study of the speckle patterns, due to their
random nature, requires using statistical tools, the properties of
which depend on the coherence of the incident light and the
characteristics of the diffusing surface [4]. In the case of living
samples and in some industrial processes, speckle patterns evolve
in time and the dynamic speckles have different characteristics
that can be used to obtain information on the phenomena
participating in its origin [5].

In dynamic speckle metrology, where different statistic tools
are required, some improvements in the measurements of activ-
ity, based on the histogram, could be expected by exploring
different q values. However, the choice of the q value will be
then dependent on the investigated phenomenon and the type of
measurement.

In this work, we analyze some aspects of the statistical
properties of dynamics speckle patterns using the Tsallis q

formalism. We test q statistics adapted to that end to find the
best suited values of the q parameter that optimize the applica-
tion of several usual measurement algorithms in dynamic speckle.
The improvements are, in some cases, rather subtle.

For q¼1 the classic results are obtained; small (close to zero) q

values emphasize the weight of rare events of the intensity
histogram while high values of q emphasize the effect of frequent
events. Since the effect of the variation of q is to change the
balance between rare and frequent events, the improvements are
in some cases are rather subtle.
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We present a brief description of the Tsallis q formalism and
review some algorithms for the characterization of dynamic
speckle patterns. Then, q mean value, q-entropy, q-standard
deviation, LASCAq, a q variation of the inertia moment of the
co-occurrence matrix and the Briers temporal contrast (BTC) are
tested. We use a numerical simulation and a classic study of the
drying of paint process. This is a well known process, the behavior
of which is adequately characterized by dynamic speckle pat-
terns [6]. The numerical simulation was used only in the techni-
que (BTC) where experimental data could not be obtained and a
well based theoretical basis already existed.

The q values in the 0, 1 interval were tested and it was found
that some of these tools perform better when used with ade-
quately chosen q values, as well as q values greater that 1 which
we also tested. Values of q greater than 1 did not show any
appreciable improvement in the tested cases. By adequately
chosen values of q we mean that when those values are used,
resolution is better or standard deviation is smaller, etc.
2. Theory

We work with dynamic speckle processes [7]. In the case
where the sample shows a similar behavior all over its surface it is
possible to study it with a single image obtained in a free
propagation experimental device using objective speckles. This
geometry provides a large amount of data describing simulta-
neously the same physical situation as contributions of the
scattered light that are collected by every pixel of the detector.
So, every pixel in the CCD camera provides a simultaneous
measurement of the dynamics.

Conversely, if it is necessary to screen regions of the surface that
show similar behavior, then an image forming configuration,
named subjective speckle patterns, is required, and eventually
many images might be needed to follow the time evolution of
the intensity in each separate pixel to obtain significant statistics.
As the processing with q statistics requires the use of the intensity
histogram, for the results to be different from classical quantities
(q¼1) a higher number of samples is necessary. The sampling rate
should then be faster than the explored phenomenon and it should
be assumed stationary during the acquisition of the images.

Of course, the grabbing and processing of a single image is
faster, and for fast phenomena this configuration might be the
only adequate one. In what follows, we are going to refer them to
the histogram of a spatial distribution obtained from a dynamic
speckle pattern sample by free propagation.

2.1. q-mean value

To apply the q formalism in dynamic speckle techniques,
following [2] we call q-mean value of a certain magnitude A:

A
� �

q
�

1

S

XW
i ¼ 1

pq
i Ai ð1Þ

where pi is the probability of the Ai value, q is called the
parameter of non-extensivity and W is the number of possible
values of the magnitude A. S is a normalization value defined as

S¼
XW
i ¼ 1

pq
i ð2Þ

To calculate q-mean value, first the histogram of the intensity I

is constructed. From the histogram the probabilities pi are
determined and the q mean value is calculated using Eq. (1) and
using the intensity I as the magnitude A. This first step is a
mapping of the ordinary normalized histogram H(i) by raising
every value of it to the q power and dividing by the normalizing
factor. Fig. 1 shows an example of the result of this operation for
three different q values: (a) q¼1, (b) q¼0.05 and (c) q¼3. For
q¼1 the histogram is not modified and the classic mean value is
obtained. For qo1 this operation has the effect of comparatively
increasing the value of the probability of rare events. The
modified histogram Hq (i) is then more even, thus resulting in
an increase of the classical entropy. For q41 the converse is true;
frequent values are emphasized and classical entropy decreases.

The resulting Hq(i) is then used for the calculation of q versions
of other statistical measures used in dynamic speckle that are
defined next.

2.2. q Variance

The q-Variance s2
q is defined here as the q mean value of

I� Ih iq
� �2

.
It is

s2
q ¼ I� Ih iq

� �2
D E

q
ð3Þ

where I is the intensity.

2.3. LASCA (laser contrast speckle analysis)

LASCA [8] is an almost real time and non-scanning technique
that uses the spatial first order statistics of time integrated
speckle. It is used to build images to measure blood perfusion.

If intensity variations are relatively fast, finite integration time
causes the (spatial) standard deviation sx,y of the measured inten-
sity I variations to diminish and so does the contrast defined as

C ¼
sx,y

Ih i
ð4Þ

where Ih i is the spatial average of the intensity. This magnitude is a
measure of the degree of blur exhibited by the diagram.

As C diminishes with increased activity and blur, an image
constructed on this basis shows reversed contrast;with its active
places appearing in dark regions and conversely. As a spatial
standard deviation is required, the operation is calculated on
spatial windows and involves some reduction in resolution. It is
widely used in medicine applications [9].

LASCA with q values is defined as

Cq ¼
sq

Ih iq
ð5Þ

where mean values and standard deviations are calculated using Eqs.
(1) and (3), on time integrated speckle pattern spatial statistics.

In a spatial window for classical LASCA (q¼1) there are few
values (usually 3�3, 5�5, or 7�7 square pixels windows) as
these windows are kept small to maintain the maximal spatial
resolution. So, in general there will be few repetitions and the
histogram will be very poor. There will be very few frequent
values. Most of them will appear only once. If all the values are
different (the most probable situation) then all the q powers of
the pi are the same for all q, so that in mean value calculations the
value pi appears as a common factor that can be taken out of the
sum and cancels with the same value in the normalization
denominator. All events are then equally frequent and the result
is the same as with ordinary (q¼1) LASCA. Something similar
happens if all the values inside the window are the same.

Then, the result only differs from ordinary LASCA if some value
appears more than once in the histogram and that variation is
small unless q is very different from 1. Then, unless the window is
big the result will be very similar to LASCA.

A big window is a serious limitation to image spatial resolu-
tion. It also requires that all the pixels inside it represent the same



Fig. 1. Normalized probabilities for three different q values: (a) q¼1, (b) q¼0.05 and (c) q¼3. Notice the different scales of the ordinates.
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physical situation. Then the speckle pattern must be obtained by
free propagation (objective speckles). The result is then a single
number and not an image for each q value.

The choice of the value of q is free and can be used to calculate
a function: LASCA-q as a function of q. It requires only a single
frame of a dynamic speckle pattern.
2.4. Tsallis entropy and q parameter

Sq is the q-entropy defined by Tsallis [1] is

Sq ¼ k
1�
PW

i ¼ 1 pq
i

q�1
ð6Þ

where k is a positive constant. It reduces to the classical
Boltzmann–Gibbs entropy in the limit when q-1.
2.5. Inertia moment of the Co-occurrence matrix

The Co-occurrence matrix (COM) of a set of frame consecutives
in time, called the Temporal History of the Speckle Pattern (THSP)
[10], is defined as a matrix where the entries are the number Nij of
occurrences of a certain intensity value i, that is immediately
followed in time by an intensity value j. It is

COM¼ ½Nij� ð7Þ

For normalization purposes, it is convenient to divide each row
of this matrix by the number of times that the first gray level
appeared.

pij ¼
NijP

j

Nij
ð8Þ

Then the sum of the components in each row equals 1.



Fig. 2. Experimental set up used to acquire objective speckle pattern sequences.

Fig. 3. LASCA q statistics for a speckle pattern obtained with 10 different frames of

wet and almost dry paint. For q near to 1, wet and dry states overlap. Small q

values considerably reduce the spread and both states can be differentiated.
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A measurement of the spread of the COM values around the
principal diagonal with these features can be constructed as
the sum of the matrix values times its squared row distance to
the principal diagonal [10]. This is a particular second order
moment called the Inertia Moment (IM) of the matrix with
respect to its principal diagonal in the row direction. So inertia
moment (IM) is defined as

IM¼
X

ij

pijði�jÞ2 ð9Þ

where i, j are intensity levels and pij are the time transition
probabilities of those levels.

This concept is now generalized to the q statistic of Inertia
Moment (IMq) as follows:

IMq ¼
X

ij

pij
qði�jÞ2 ð10Þ

This result most also be divided by S as in Eq. (2) for normal-
ization purposes.

2.6. Briers�s temporal contrast

There is a time contrast measure that was proposed by Briers
[11] B¼

s2
t ðx,yÞh i
Ih i2

where /S indicates spatial ensemble average and
st is the standard deviation with respect to time at pixel (x,y).

It theoretically relates the proportion r of moving to total
number of scattering centers in the illuminated sample as

r¼ 1� 1�
s2

t ðx,yÞ
� �

Ih i2

" #1=2

ð11Þ

This relationship agrees very well with numerical simulations
[12], when these classical definitions of mean value and standard
deviation are employed.

The definition of B can be generalized to include a parameter q by
replacing both s2

t and Ih i by their q versions as in Eqs. (1) and (3).

Bq ¼

ðs2
t Þq

D E
x,y

Iq

� �2
ð12Þ

where the subscript x,y indicates ordinary spatial average.
3. Experiments and results

In this section we are going to show examples where the
proposed q formalism is applied to the case of the study of
dynamic speckle patterns in an experimental situation. It
concerns the following of the drying of paint process which is a
well known example where the evolution of the speckle patterns
[6] carries out the analysis that reproduces very well drying
curves. We are then going to use it as a test for the application of
the algorithms to analyze its performance.

This process had been previously analyzed using dynamic
speckle and was compared with the weight loss of the sample [6].
The results obtained from the optical and the gravimetric measure-
ments show that the activity over the whole sample decreases
monotonically with time as the solvent is evaporated. Fig. 2 shows
the experimental set up. White water-borne paint films were
applied onto a 4�4 cm2 of glass substrate using a standard
drawdown 150 mm applicator. An attenuated unexpanded
10 mW He–Ne laser was used to illuminate the sample. A lensless
CCD camera Pulnix TM-6CN (cell size 8.6 (H)�8.3 (V) microns)
connected to a personal computer with a frame grabber was used
to record the images that were digitized to 256 intensity levels
(8bits). The speckles were well resolved by the CCD sensor and the
average intensity of the laser was maintained constant.

Different q-algorithms were employed to analyze the drying of
paint process experiment.

The LASCA method, involving a single frame, although giving
good results in blood flow measurement is not a good descriptor
in some other dynamic phenomena (the paint drying phenom-
enon, for example). However, the reformulated LASCAq algorithm
for qa1 shows a noticeable improvement for the description of
the drying of paint experiment.

The successive steps for this calculation were:
We used each frame obtained of the dynamic speckle produced

by fresh paint, for example. The intensity histogram of this frame
was calculated, and with it, the normalized probability distribution
for each q value was calculated. An example is shown in Fig. 1.
Then, the q mean value was calculated as in Eq. (1) and its q standard
deviation using the square root of Eq. (3). LASCAq was then obtained
using Eq. (5) and the results plotted for different q values.

Fig. 3 shows the result of using LASCA with q statistics for a
speckle pattern obtained with fresh and almost dry paint. It can
be seen that for q near to 1 the results obtained with the
repetition of the same experiment show a very high spread and



Fig. 4. Standard deviation of the 10 LASCAq measurements corresponding to

Fig. 3. A minimum value is registered near q¼0.1.
Fig. 5. Drying process using LASCAq for q¼0.1. The measured LASCAq (q¼0.1)

value increases as the activity of the sample diminishes with the progressive

drying of the sample.

Fig. 6. Tsallis q entropy of the wet and dry states of the drying of paint data plotted

for different q values. The measurement was repeated 10 times.
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wet and dry states overlap. This result confirms previous experi-
mental results [6]. However, notice that the use of small q values
considerably reduces the spread, thus permitting the assessment
of each drying state with a single frame. Fig. 4 shows the standard
deviation of the 10 measurements in Fig. 3 as a function of q and
the diminishing of the spread can be easily appreciated and a
minimum value is registered near q¼0.1.

Choosing this q value, a measurement of a drying process
using single frames and the LASCAq algorithm was processed. As
it has already been shown in previous work [6], when the paint is
wet the speckle activity is high and it diminishes as the sample
drying progresses. As LASCA is a measure of the contrast it can be
expected that it should be smaller at the beginning, when the
speckle pattern is more blurred and that it should increase with
time as paint dries and to achieve its maximum value when the
paint is completely dry. It is shown in Fig. 5 that the measured
LASCAq (q¼0.1) value increases as the activity of the sample
diminishes with the progressive drying of the sample as could be
expected.

Tsallis q-entropy was also tested on the same experimental
data as in the previous description.

It is to be expected that when the sample is very active: when
the paint is wet, the image blurs, the differences between
different pixels tend to wash out, most of the pixel intensities
tend to similar values, the spatial contrast diminishes and the
entropy value tends to be low. Conversely, when the paint is dry,
all the images are similar, the contrast of the added images
remains high, the histogram of the intensity levels is more evenly
populated and the entropy is higher than in the former case. It
was found that the use of single frames did not permit very good
discrimination between different drying states but the perfor-
mance notably improved if more than one frame was added.

Fig. 6 shows Tsallis q entropy of the wet and dry states of the
drying of paint data plotted for different q values where 8 inte-
grated contiguous frames were used as input to the algorithm. In
this case, the measurement was repeated 10 times and the results
are plotted together but they can hardly be distinguished because
the spread in the measurements is very small. To show the
spread, Fig. 7 is a plot of the relative error for those
measurements. Notice that even in the worst of cases the relative
error is very small.

It can be seen that, even if in Fig. 6 it is not obvious where the
measurement shows better discrimination between drying states,
it is for q close to 1 where the relative error is smaller and of the
order of 0.1% showing excellent discrimination.

An example of the use of the q version of the Inertia Moment of
the co-occurrence matrix can be seen in Fig. 8 for the drying of
paint. The relative error of these measurements can be seen in
Fig. 9. In this case, q¼0.8 is the value where it is the minimum,
but for the other qo1 values the difference is not very significant
(notice the scale of the relative error).



Fig. 7. Relative error of the Tsallis q entropy for the measurements shown in Fig. 6.

Fig. 8. q Inertia Moment of the co-occurrence matrix for the drying of paint. Both

states are clearly resolved.

Fig. 9. Relative error of the q Inertia moment. q¼0.8 is the value where it is the

minimum; in other qo1 values, the difference is not very significant.

Fig. 10. Briers�s temporal contrast of different q values using numerical simulations

for the proportions of moving scatterers. For q¼1, the measurements coincide

with the classical theoretical result. For q41 the result overshoots the q¼1 curve

and it is lower for qo1.
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So, it is evident that for the different measuring methods the
value of q that performs better is different, as for LASCA it is small,
for Tsallis q entropy close to 1 and almost the same value for all the
0, 1 interval when it is the Moment of Inertia q.

Finally, using Eq. (12) the q version of Briers’s temporal
contrast was calculated with different q values using numerical
simulations for the proportions of moving scatterers. When the q

versions of these magnitudes are employed and plotted versus r
(see Fig. 10) it is found that for q¼1, of course, the measurements
coincide with the classical theoretical result as in Eq. (11). For
q41 the result overshoots the q¼1 curve and is lower for qo1.
This is not the right physical description but if the proportion of
moving scatterers is to be inferred from experimental values of
the q contrast, Fig. 10 shows that when q¼0.1 it saturates at r
approximately 40% and that for q¼2 the plot continues to
increase thus permitting a better discrimination when r is a
higher value (up to about 60%).
4. Conclusions

We have explored a generalization of several tools usually
used to measure dynamic speckle activity that includes a free
parameter q to change the balance between rare and frequent
events in the intensity histogram. We have found that some of
them improve their performance when a certain q value, which
depends on the analyzed phenomenon and on the method of
measurement, is chosen. Given the wide variety of dynamic
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phenomena the approach might not be successful for some of
them, but the improvement in the analyzed case was important.

In general, the assessment of the drying of paint process has
been characterized with methods that require the processing of
many frames. Drying of paint measured using LASCAq, for
example, when used with small q values shows a notorious
improvement in resolution and could permit the following of
the drying process by using single frames so that it could be
followed in almost real time.

The Tsallis entropy requires in this case the integration of
8 frames, thus requiring a somewhat longer acquisition time; but
a high discrimination is obtained as a trade.

The moment of inertia of the q version of the co-occurrence
matrix, involving longer acquisition and processing times, did not
show any noticeable improvement for the tested q values.

Besides, the choice of the q value that optimizes a measure of
the activity with respect to some criterion could be eventually be
used as a descriptive feature of the involved dynamics. The study
of the degree of non-extensivity q as a descriptor in itself of the
dynamics is deferred to a further work. Other phenomena, for
example using activity images by dynamic speckle segmentation
by q statistic will be also explored.
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