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The spontaneous formation of a crystal phase is one of the most common and beautiful

pattern formation mechanisms in nature. Different instabilities in the crystal interface may

lead to the growth of ramified structures, known as dendritic crystal growth. In this work,

we use a Phase Field Model and numerical simulations to study 2D dendritic growth

on curved surfaces. We show how the degree of ramification of a growing nucleus is

modified by the underlying curvature of the substrate.
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1. INTRODUCTION

The formation of a crystalline structure from an initial liquid phase (crystallization), is one of
the richest pattern formation processes, with deep consequences in condensed matter physics and
chemistry, material science, and even biology (Kashchiev, 2000; Kelton and Greer, 2010). For years
this process has been scrutinized by means of experiments, simulations, and mathematical models,
in both 3D and 2D systems.

In general, the fundamental mechanism of crystallization is given by nucleation and growth,
where an initial fluctuation in the liquid spontaneously forms a small seed of the equilibrium
crystal. In the simplest picture, there are only two energies associated with this seed (Kashchiev,
2000; Kelton and Greer, 2010). There is an energy gain due to the formation of a piece of the
equilibrium (less energetic) structure. But there is also an energy penalty due to the formation of an
interface between the crystal and the liquid. This competition leads to an activated process where
only those seeds overcoming a critical size are able to grow, while the rest collapse and disappear
by surface tension.

Conventional nucleation and growth commonly leads to the formation of growing compact
nuclei, with typical polygonal shapes depending on the anisotropies of the surface tension.
However, instabilities in the liquid-crystal interface, originated for example by the diffusion of heat
needed in the formation of the crystal phase, may lead to the ramifications of the nuclei, in a process
known as dendritic crystal growth (Langer, 1980).

On the other side, in the last years, condensed matter scientists have also begun to study the
properties of 2D ordered phases deposited on curved substrates (Nelson, 2002; Vitelli and Nelson,
2004; Vitelli et al., 2006; Irvine et al., 2010; Tarjus et al., 2012; García et al., 2013, 2015; Gómez et al.,
2018). In such cases, it has been shown that the underlying curvature of the substrates modifies the
structure of the phases, such that topological defects, like dislocations and disclinations, equilibrate
and locate on particular regions of the substrate. This is because, on curved geometries, topological
defects may help to reduce the strain energy in the ordered phases (crystal or liquid crystal phases).

In the same line, it was recently shown that the curvature of substrates can also affect the
crystallization dynamics and mechanism of crystal growth on curved surfaces (Meng et al., 2014;
Horsley et al., 2018). This is because curvature modifies the imbalance of volume and surface free
energies of nuclei leading to crystallization. For example, in the case of nucleation on spherical
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substrates, it was shown that the size of a critical nucleus Rc on
a sphere of radius a decreases, as compared with the critical size
(at same conditions) on the plane R0c , following the expression
(Gómez et al., 2015):

Rc = a arctan(R0c/a) (1)

Thus, it is easier to nucleate on a sphere than on a plane.
This is just because on a sphere a nucleus has a bigger ratio
between volume and surface energy, favoring the nucleation of
the equilibrium phase. Such expression, obtained from a coarse
grained phase field model, has been confirmed by molecular
dynamic simulations (Law et al., 2018), and complementary
theoretical calculations (Horsley et al., 2018).

On curved surfaces, it was also found that curvature modifies
the shape of critical and growing nuclei (Meng et al., 2014;
Köhler et al., 2015, 2016; Paquay et al., 2017; Ma et al.,
2019,?; Wang et al., 2019). This is mainly observed when the
growing nuclei are unable (due to the particles’ interactions)
to relax the strain energy by nucleating topological defects
(dislocations and disclinations). In such cases, curvature induces
and elastic instability which produces the growth of ramified
un-defected nuclei.

There is also an interest in understanding the features of
irregular crystal growth on curved surfaces. In this sense, the
dendrite growth of metal patches on colloidal particles was
recently experimentally studied (Bihr et al., 2017), and it was
also experimentally showed that the mechanism of freezing of
soap bubbles (crystallization on spheres) may involve convection
flows transporting seeds and small crystallites across the system
(Ahmadi et al., 2019). In addition to that, crystal growth on the
non-plane surface has proven to be relevant in understanding the
structures of virus (Ganser et al., 1999; Dharmavaram et al., 2017)

Here, we use numerical simulations to study the features of
adiabatic crystal growth on curved surfaces. For the sake of
concreteness, and due to the experimental relevance, here we will
focus on crystal growth on spherical substrates. By using simple
models, we will show how the curvature of spheres modifies the
growth of compact and dendritic (ramified) nuclei.

2. MODEL

Here we study crystallization in curved geometries within the
framework of the Phase Field Model approach (Provatas and
Elder, 2011), by using a scalar and real order parameter φ(r, t).
Points on the surface of the substrate are specified by curvilinear
coordinates r = (x1, x2). In this coordinates, the metric of the
surface takes the form ds2 = gαβdx

αdxβ , where gαβ is the metric
tensor (O’Neill, 1997). The order parameter φ is a measure of
the degree of order in the system during the phase transition, its
values ranged from 0 when the system is in the disorder (liquid)
phase, to 1 when the ordered (crystal) phase has been formed.

In this model, the phase equilibria is described in terms of
the total free energy F of the system expanded as a functional
of φ(r, t). In general, the free energy for a mixed state system is

express as (Yu et al., 2017):

F =
∫

d2r
√
g
[

e(r)gαβ∂αφ(r)∂βφ(r)+ f (φ,T)
]

(2)

The term e(r) represents the magnitude of penalization in the
free energy by the interphase, and f (φ,T) is the local free energy
density of a homogeneous system having an order parameter
φ at temperature T, and g is the determinant of the metric
tensor. The dimensionless temperature T is such that T = 0
is the subcooling temperature, and Te = 1 is the two-phase
equilibrium temperature. The function f has the typical shape
of a double well potential with two local minima, one of them
φ = 0 corresponding to the liquid, and the other in φ = 1 to the
crystal phase. The competition between the desire of the system
to remain in one of the bulk phase minima of f (liquid or solid)
and the cost of high gradients results in a finite interface width
(Warren et al., 2003). The local free energy f is represented as:

f (φ) = w

4
φ4 − (

w

2
− m(T)

3
)φ3 + (

w

4
− m(T)

2
)φ2, (3)

where the parameterm(T) controls the driving force to the crystal
phase and w controls the height of the double well. Here we have
set w = 1.

In the specific case of a liquid-solid interphase, the parameter
e(r) represents surface tension of the crystal that depends on the
direction of the crystal orientation. In curvilinear coordinates,
the crystal orientation is measured by the angle ψ that the crystal

makes with the x̂1 versor, i.e., tan(ψ) =
(−∂x2φ/

√
g22

−∂x1φ/
√
g11

)

. Then

e(ψ) = 1

2

[

e0(1+ δ0cos(nψ))
]2

(4)

where e0 controls the magnitude of penalization in the free
energy, n represents the anisotropy of the system (n = 4 for a
square, n = 6 for a hexagon, and so on), and δ0 controls the
strength of the anisotropy.

In this approach the dynamics of the phase transition
can be studied through a relaxational equation of the form
(at constant T):

∂φ

∂t
= −µφ

δF

δφ
(5)

where µφ is the mobility of the system and δF
δφ

is the functional
derivative of F in terms of the order parameter φ. Defining the
free energy F as F =

∫

L(φ,▽φ,T)d2r, the functional derivative
is written:

δF

δφ
= ∂L

∂φ
−▽ ·

( ∂L

∂ ▽ φ

)

(6)

where the curvilinear gradient and divergence are ▽ = gαβ∂α
and▽· = 1√

g ∂α
√
g.

In the case of adiabatic crystal growth, the effects of
temperature variation in the neighbor of the liquid/crystal
interface are key, and an equation for the diffusion of heat is
also needed. Note that local changes in the temperature modifies
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FIGURE 1 | Scheme of the computational approach used to study dendritic

growth on spherical substrates. The evolution equations are solved in

spherical coordinates. The number of grid-points are adjusted to obtain

equivalent grids on substrates of different curvature.

the parameter m(T), which controls the deep of the double well
[1f = f (0,m) − f (1,m) = m

6 ]. An evolution equation for
the temperature field can be obtained from the conservation
of enthalpy:

∂T

∂t
= 1LBT + K

∂φ

∂t
(7)

where 1LB represents the Laplace-Beltrami operator
1LB = 1√

g ∂α
√
g(gαβ∂β ). Here K is an adimensional parameter,

proportional to the latent heat and inversely proportional to
the heat capacity of the solid phase. For the sake of simplicity,
we establish the same constant of diffusion for the solid and
liquid phases.

Since the driving force of the interphase is the subcooling, the
parameter m must be a function of m(Te − T). In that way, we
can modelm as:

m(T) =
(

K1

π

)

tan−1(K2(Te − T)) (8)

where K1 and K2 are parameters such that K1 < 1 thus |m| < 1
2 .

Thus, in this model the adiabatic evolution of the system
is given by the coupled differential Equations (5) and (7). To
study crystal growth on the sphere we write the equations in
spherical coordinates, where points on the sphere are specified
by r = (θ ,ϕ) where x1 = θ ∈ [0,π] is the polar angle measured
from a fixed zenith direction, and x2 = ϕ ∈ [0, 2π) is the azimuth
angle, Figure 1 shows the mesh on the sphere due to the spherical
parametrization. In these coordinates, the arc length ds is given

by ds2 ≡ |dr|2 = a2dθ2 + sin(θ)2a2dϕ2, and the differential
operators take the form:

▽ φ = 1

a

∂φ

∂θ
θ̂ + 1

a sin(θ)

∂φ

∂ϕ
ϕ̂ (9)

▽ ·φ = 1

a sin(θ)

∂

∂θ
(sin(θ)φθ )+

1

a sin(θ)

∂φϕ

∂ϕ
(10)

▽2 φ = 1

a2 sin(θ)

∂

∂θ

(

sin(θ)
∂φ

∂θ

)

+ 1

a2 sin2(θ)

∂2φ

∂ϕ2
(11)

The evolution equations are numerically solved by a finite
difference scheme, forward in time and centered in space. As
the initial crystal seed we use a geodesic circle. Multiple growing
nuclei can be modeled by seeding different circular (geodesic)
seeds on different parts of the sphere.

Typically, we set the parameters e0 = 0.01, µφ = 1
0.0003 , δ0 =

0.01 . To model the double potential well we set K1 = 0.9 and
K2 = 10. Due to the spherical coordinates, our computational
grid is not uniform, see an scheme in Figure 1, and the cell size
decreases in the polar angle direction. At the pole of the sphere
the element size is zero, and hence, the pole is singular point.
Therefore, in our analysis, we ignore the growth near the poles. In
order to use equivalent grids, we vary the number of grid points
for spherical substrates of different radius (up to nθ × nϕ = 512
× 1024 for a sphere of radius 4). The angular step, are then,
1θ = π

nθ
and1ϕ = 2π

nϕ
.

3. RESULTS

In order to test the model, we first consider isothermal
crystallization on spheres. Figure 2 shows snapshots at different
times of isothermal growth of nuclei for different degrees of
anisotropy. From top to bottom the different rows in this figure
show the evolution of the system for n = 1, n = 3, n = 4, and
n = 6, respectively. As clearly seen from the panels, on spheres,
initial circular nuclei acquire symmetric shapes as a consequence
of the symmetry in the surface tension, similarly to isothermal
crystallization in planar geometries (Kashchiev, 2000; Kelton and
Greer, 2010).

We now consider the features of dendritic growth on spherical
substrates. Figure 3 shows the shape of dendritic nuclei grown
on spherical substrates of different radius a = 1.5, 2, 3, 4. To
make this comparison we use the same circular seed of geodesic
radius r = 0.25, and the panels show the crystallites at the same
time t = 0.1.

From this figure it can be qualitatively observed that the
nuclei look less ramified on substrates of smaller size (compare
Figures 3A,D). This suggests that curvature may originate a
reduction in the ramifications of nuclei. In order to study this
in more detail we calculate the degree of Circularity C of nuclei
under same conditions, but on spherical substrates of different
radius:

C = 4πA

L2
, (12)
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FIGURE 2 | Isothermal crystallization on spheres. This figure shows the

isothermal growth of initial circular nuclei on spheres (time flows from left to

right), for different surface tension anisotropy. From top to bottom the different

rows show the evolution of nuclei for anisotropies n = 1, n = 3, n = 4, and

n = 6. At the bottom we show the color map of the order parameter φ.

where A is the area of the nucleus, and L its perimeter. Note that
the Circularity of a planar circular nucleus is C ≡ 1, while the
Circularity of a fractal nuclei approaches zero C ≡ 0.

Figure 4 shows the Circularity of nuclei grown on different
spherical substrates. Note that for different values of K, the
circularity C continuously increases for smaller substrates,
showing that the curvature contributes to the reduction of
ramifications and the propagation of more compact nuclei. Phase
field models can be sensitive to the discretization (mesh-induced
anisotropy). In order to study if these results are influenced by the
meshes, we have run simulations of growing crystal of different
orientations (Dobravec et al., 2020). The variations observed in
the circularity plotted as error bars in Figure 4, and are of the
order of symbol size showing the robustness of the results.

FIGURE 3 | Shape of dendrites as a function of curvature. This figure

compares the shape of dendrites grown on substrates of different curvature.

Panels (A–D) correspond to crystallites grown on substrates of radius

a = 1.5, 2, 3, 4, respectively. Note that for small substrates (higher curvature)

the dendrites look less ramified. The color bar shows the amplitude of the

order parameter φ.

FIGURE 4 | Circularity of dendrites. This figure shows the Circularity of

dendrites at time t = 0.1 for nuclei grown on substrates of different radii a, and
for different values of the constant K (error bars are of the order of symbol size

and omitted for clarity). Note that for smaller (higher curvature) the nuclei

become less ramified.

It is also interesting to study how the substrate’s curvature
influences the selection of tip radius and propagation velocity of
dendrites. In order to obtain the tip radius, we measured from
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the simulations the geodesic curvature of the interface at the tips
as a function of the size of the spherical substrate. Suppose that
the curvature of a curve C belonging to a surface S is k. The
curvature of the curve at that point can be composed in two
components, the normal curvature kn and the geodesic curvature
kg (see Figure 5) (O’Neill, 1997). While the normal curvature is
obtained by projecting curvature vector on the surface normal,
the geodesic curvature is obtained by projecting on the tangential
plane at that point. The curvatures are related by the identity:

k2 = k2n + k2g (13)

Note that the geodesic curvature is the intrinsic curvature of a
curve inside the surface, and its the relevant quantity related to
curvature-driven growth on surfaces. To measure the tip radii
from the simulations, we first extracted the contour interface
and calculated the curvature k at the tip by using the Frenet-
Serret formulas. We then calculate the normal curvature kn
by projecting to the sphere’s normal and that point. Then, the
geodesic curvature of the tip is obtained from Equation (13).
Finally, the radius of curvature Rg of the tip can be approximated

FIGURE 5 | Sketch of the curvature of curve embedded in a surface in the

3D-space. This figure shows the curvature k on curve C which has a normal n

on a surface S. The normal of the surface is N, and its projection with the

curvature k is the normal curvature kn. The geodesic curvature kg , that is

perpendicular to kn is, by definition, k2g = k2 − k2n .

by kg ≈ 1
Rg
, which is valid for small circles on a sphere, as shown

in Figure 6.
Figure 7 shows how surface curvature affects the selection

criterion. Here we plot the selected velocity of the tips as a
function of the radius of the tip, for dendritic crystals growing
on spheres of different curvature (the radius of the spherical
substrates is indicated right on the side of the data). Note that
as the size of the spherical substrate decreases, the selected tip
radius increases. This is the same as reported above, the dendrites
get more rounded for spherical substrates of higher curvature
(smaller spheres). On the contrary, the selected velocity shows
a non-monotonic behavior. For smaller spherical substrates the
tip velocity increases at first, but later starts to decrease. It is
interesting to note that a similar non-monotonic behavior of
the tip velocity as a function of tip radius is also observed
in planar geometries when a different degree of undercooling

FIGURE 7 | Tip velocity as a function of the tip radius. This figure shows the

tip velocity as function of the tip radius for dendrites growing on spheres of

different radii (labeled at the right of each symbol). Errors bar are of the order of

symbol size and omitted for clarity.

FIGURE 6 | Dendrite’s tip. (A) Phase-field simulation of a dendrite (sphere of radius 3 and time t = 0.1). (B) Interface contour. (C) Approximated tip radius R.
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FIGURE 8 | Interface analysis of crystal growth. This figure shows the analysis of the interface of a growing nuclei. Panels (A,B) correspond to the crystal interface of

isotropic and six-fold symmetry, respectively, as seen in the θ − ϕ plane (t = 0.116). Panel (C) shows the crystal interface deviation form a geodesic circle ǫ(ϕ) at

t = 0.056 (below), the structure factor of this interface configuration (upper left), and the exponential growth of the peak of the structure factor (upper right). Panel (D)

shows the circularity of the growing nuclei for a spherical substrate of different radius a, as obtained by the numerical solution of the interface model (t = 0.0001, and

α = β = γ = 1).

are used. Such behavior is roughly described by the spherical
approximation which considers the tip of the dendrite as a
growing sphere (Langer, 1980). Our simulations show that not
only the undercooling, but also the substrate’s curvature selects
both, tip’s radius and velocity.

In order to rationalize how the underlying curvature can
modify the shape of dendrites on curved substrates, here we
consider the interfacial instabilities associated with dendritic
growth. To do this we use an equation describing the temporal
evolution of the interface curvature:

−→n .−→x = V(κg)+ γ
∂2κg

∂s2
(14)

whereV(κg) = κg + ακ2g − βκ3g , and s and κg are the arc length
and the geodesic (intrinsic) curvature of the interface. Originally,

this equation was used as a geometrical model for interface
evolution in a variety of different problems (Brower et al., 1984;
Kessler et al., 1984), including dendritic crystallization. Although
in the original model the key property of the interface was the
total curvature κ , here we slightly modify the model by using the
geodesic curvature κg , which is the curvature of the interface as
seen from the curved substrate. In general, the geodesic curvature
of a curve is also known as the intrinsic curvature of a curve
(O’Neill, 1997).

We now use this model to develop an instability analysis of
initial circular nuclei growing on a spherical substrate. This can
be done by considering normal perturbations to an initial circular

nuclei of geodesic radius r, such that the equation of the interface
can be written as −→x (ϕ, t) = [r(t) + ǫ(ϕ, t)], where ǫ is the
perturbation and ϕ is the azimuthal angle.
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FIGURE 9 | Temporal evolution of a large crystal seed. This figure shows the

temporal evolution of a large crystal seed of geodesic radius of r/a = 4.78 on

a sphere of radius a = 2. Panels (A–D) correspond to

t = 0.26, 0.11, 0.18, 0.26, respectively. Note that tip-splitting is replaced by tip

narrowing. The color bar shows the amplitude of the order parameter φ.

In general, the geodesic curvature of a closed curve on the
sphere can be written as (Parisio et al., 2001):

κg =
a2 cos (r/a) sin (r/a)2 + 2 cos (r/a)( ∂r

∂ϕ
)2 − a sin (r/a) ∂

2r
∂ϕ2

[a2 sin (r/a)2 + ( ∂r
∂ϕ

)2]3/2

(15)
where r is the local geodesic radius of the curve (the coordinates
r, ϕ are usually known as geodesic polar coordinates; Gómez
et al., 2015).

Thus, to first order in the perturbation ǫ, we can approximate:

κg = cos (r/a)

a sin (r/a)
− 1

a2 sin (r/a)2
[1+ ∂2

∂ϕ2
]ǫ

d2κg

ds2
= 1

a2r2 sin (r/a)2
∂2

∂ϕ2
[1+ ∂2

∂ϕ2
]ǫ

Now, by expanding the perturbation in the polar angle using the
eigenfunctions ǫm = ǫ0e

λmt cos (mϕ), we obtain the growth rate:

λm = m2 − 1

a2 sin (r/a)2
[V ′(1/r)− γ

r2
m2] (16)

We note that for large spherical substrates (r << a) the
above expression reduces to growth rate obtained previously
for dendritic growth in the plane λ0m = (m2 − 1)[V ′(1/r) −
γm2/r2]/r2 (Brower et al., 1984; Kessler et al., 1984).

Thus, the first correction of the amplification factor due to
curvature can be written as λm ≈ λ0m/(1 − r2/3a2), such
that although the growing nuclei are still linearly unstable on
spheres, the exponential amplification of perturbations reduces
for higher curvatures.

In order to study the evolution of the interface at early times
(linear behavior), but also at long times (non-linear behavior),
we numerically solve Equation (14), on spherical substrates
of different sizes, by using a predictor-corrector approach.
Figure 8A shows a typical interface morphology obtained at early
times, as seen in the θ − ϕ space (t = 0.116). In Figure 8B we
show that anisotropic dendritic growth on spheres can also be
modeled by including a factor 1+ε cos(nθ), multiplying the right
hand of equation 14 (this figure corresponds to a simulation with
hexagonal symmetry n = 6). In the lower panel of Figure 8C, we
show the interface deviation from a geodesic circle ǫ, as a function
of ϕ (t = 0.056). This can be used to analyze the evolution of
the different modes during dendritic growth. In the top panels of
Figure 8C we show the structure factor of the lower figure, and
the evolution of the peak of the structure factor. As predicted
by the linear analysis there is a range of unstable modes, and
the amplification factor grows exponentially in time, until the
non-linearities of the equation slows-down the growth, similarly
as occur in other unstable systems like spinodal decomposition
(Vega and Gómez, 2009).

It is worth to study the degree of ramifications as obtained
during dendritic growth for this interface equation model.
In Figure 8D, we show the circularity of growing nuclei, for
spherical substrates of different sizes. Similarly to obtained with
the phase field model, here we also observe a reduction of
ramifications as the size of the substrate is reduced. Here, we
note that a similar result was obtained for a phase field crystal
model, where the degree of ramifications of growing nuclei was
also observed to be reduced for smaller spheres. In such cases it
was observed that growing nuclei evolve from a sixfold branching
geometry to a ribbon as the size of the spherical surface is reduced
(Köhler et al., 2016). Note that our results show that the reduction
of ramification by curvature is also found even when the elastic
interaction terms due to the crystal lattice are not taken into
account, as in our model.

A similar mode expansion analysis was developed to study
the instability of an interface separating two immiscible viscous
fluids on a sphere (the Saffman-Taylor problem on a sphere)
(Parisio et al., 2001). In such a work, a perturbation analysis
up to second order in ǫ, showed an asymmetry on the tip-
splitting behavior depending on the region where the interface
was evolving. While tip-splitting is still present for interfaces on
the northern hemisphere, tip-splitting completely vanishes in the
southern hemisphere, where is completely replaced by a finger
tip-sharpening mechanism.

Here we also found that tip-splitting is suppressed for large
nuclei whose interface goes beyond the equator. Figure 9 shows
the temporal evolution of a large crystal (in red). Note that
the interface still becomes linearly unstable, but there is no
tip-splitting leading to dendritic patterns. As can be observed
from panel Figures 9B,C there is a tip-narrowing mechanism
rather than tip splitting, similarly as predicted for fluids (Parisio
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et al., 2001). This is a simple direct consequence of the geometry
and topology of the sphere, where such a large growing nuclei
produce a converging flow, where the mechanism of tip-splitting
is completely suppressed (Thomé et al., 1989).

4. CONCLUSIONS

In this work, we have explored the features of dendritic crystal
growth on spherical substrates. In general, the underlying
curvature of the substrates can be used to control the shape of
crystals and propagation velocity. We found a reduction in the
ramification of growing nuclei as a consequence of the curvature
of spheres, which can be understood from a linear instability
analysis of the crystal-liquid interface. For large nuclei whose size
surpass half the surface of the sphere (the interface goes beyond
the equator), there is a vanishing tip-splitting mechanism. For
such nuclei the interface is still unstable, but the non-linear
process of tip-splitting is replaced by a tip-narrowing behavior.
Our results show that geometry and topology can drastically
affect crystallization and aggregation mechanisms on spherical
substrates. This could help to control the features of crystalline
textures on micro/nano particles.
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