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ABSTRACT: We explore the possibility of a deep learning (DL) platform that
steers drug design to target proteins by inducing binding-competent
conformations. We deal with the fact that target proteins are usually not fixed
targets but structurally adapt to the ligand in ways that need to be predicted to
enable pharmaceutical discovery. In contrast with protein folding predictors, the
proposed DL system integrates signals for structural disorder to predict
conformations in floppy regions of the target protein that rely on associations
with the purposely designed drug to maintain their structural integrity. This is
tantamount to solve the drug-induced folding problem within an AI-empowered
drug discovery platform. Preliminary testing of the proposed DL platform reveals
that it is possible to infer the induced folding ensemble from which a
therapeutically targetable conformation gets selected by DL-instructed drug design.
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■ STEERING DRUGS TO TARGET PROTEINS BY
LEARNING TO RECOGNIZE BINDING-INDUCED
FOLDS

The implementation of deep learning (DL) methods enabled
remarkable progress toward solving the protein folding
problem,1 that is, the prediction of the 3D structure adopted
by a protein chain based on its amino acid sequence.2 It is
broadly acknowledged that this challenge has been met with
considerable success by a machine learning system named
AlphaFold1 created by Deep Mind Technologies. Here we
explore the possibility to adapt this platform for a different set of
needs associated with drug design. We effectively deal with the
fact that target proteins are typically not fixed targets: they
structurally adapt to the ligand in ways that need to be predicted
to empower pharmaceutical discovery. Specifically, we aim at
predicting structures that only prevail within obligatory
complexes, that is, structures for nonautonomous folders. The
goal is to instruct drug design to target specific conformations
predicted to be reliant on association with the purposely
designed drug to maintain their structural integrity. This is
tantamount to adapt the AlphaFold platform to solve the drug-
induced folding problem.
To adapt the AlphaFold platform, we first review its

architecture and associated workflow. AlphaFold trains a
multilayered convolutional neural network (CNN)3 with
PDB-reported protein structures and generates 3D models
that fit accurate predictions of distances between residue pairs.
Such predictions are based on a 2D-array representation of
pairwise coevolutionary information,4 under the premise that if

the evolution of two residues is correlated within a multiple
sequence alignment, it is likely that they are spatially related. The
evolutionary information is concatenated with residue profiling
including amino acid identity and secondary structure
prediction. Local propagation of distance constraints from one
layer to the next is achieved via progressively dilated convolu-
tional operations,5 where convolutional “filters” allow incorpo-
ration of features not just from neighbors of a pixel but also from
further afield, incorporating surrounding context by expanding
the receptive field of the filter. In this way, AlphaFold fulfills a
major imperative since the elucidation of protein structure is key
to delineate biological function, and its experimental determi-
nation often eludes available methods.1

Protein structure prediction assumes that the chain will adopt
a 3D structure and that the structure is unique.1,2 In practice,
many proteins cannot fold autonomously, and the structure is
not unique but dependent on binding partnerships, reliant on
such associations to maintain its integrity.6 In fact, more often
than not, the binding context selects the protein fold fromwithin
an ensemble of closely related folding possibilities that we
hereby name the induced folding ensemble (IFE). For example,
proteins such as transcription factors typically possess only
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induced structures; that is, their fold cannot prevail in an “apo”
(separated) form,7 and antibodies usually present antigen-
induced conformational multiplicity,8 while proteins which
constitute drug targets often have a variety of “holo” (within-
complex) forms, depending on the ligand/drug they associate
with.9

The latter context is the focus of this work and may be
illustrated by the structural diversity of the stress-responsive
molecular chaperone Hsp90,10 a cancer target that adopts
different structures depending on the drug−target complex
(Figure 1). This type of induced folding diversity should prompt
rational drug designers to focus on inferring the target’s IFE,
rather than a unique 3D structure, probably only suitable for
autonomous folders,11 forming nonobligatory complexes. Thus,
efforts in structure-based drug design are often marred by the
need to encompass the target structural adaptation.8,9

Obviously, the IFE concept shifts the focus of structure
prediction, especially of DL prediction, that must be adapted
to infer a priori holo forms, introducing significant complica-
tions. Here we propose a DL scheme to enable IFE prediction of
pharmaceutically relevant holo forms, geared at tackling the
“drug-induced folding problem”, possibly the next frontier for a
rational drug designer involved in lead optimization.

■ NETWORK ARCHITECTURE FOR DEEP LEARNING
TO INDUCE DRUG-TARGETABLE PROTEIN FOLDS

Induced folding implies that the protein relies on binding
partnerships to maintain structural integrity6−9 with the ligand
selecting a conformation from within the IFE. Thus, to delineate
a suitable CNN architecture of a DL-based predictor of the IFE
requires that we first identify the culprit for the loss of structural
integrity. Since backbone hydrogen bonds (BHBs) are
determinants of protein structure, it is obvious that hydration
of backbone amides and carbonyls competes with intra-
molecular hydrogen bond formation, exerting a structure-
disruptive effect. An autonomous folder11 is thus capable by
itself of shielding most BHBs from the disruptive effects of
backbone hydration. Thus, protein integrity may be said to be
contingent on the structure, by itself or within a complex, being
capable of preventing backbone hydration. This leads us to
propose a descriptor of the degree of autonomy of the protein
fold (or its degree of reliance on binding partnerships), which we
named “wrapping”.12,13 An underwrapped BHB constitutes a
structural defect, known as dehydron,13 possessing an
insufficient number of side-chain nonpolar groups clustered
around the BHB, so that dehydrons are exposed to structure-
disruptive hydration.6,7,12,13 An extended underwrapped region
(dehydron cluster) has a high propensity to be disordered7 in
the apo form, since backbone hydration is likely to prevail over
structure formation. Thus, induced folding may be interpreted
as the optimal structural adaptation to a binding ligand to ensure

Figure 1. Conformational diversity of “holo forms” for cancer target Hsp90 induced by different drug ligands resulting from the intrinsic disorder
propensity of a region in the protein, as the region is reliant on binding partnerships to maintain structural integrity. The 100−120 helix in Hsp90 gets
distorted, developing a kink as the ligand in the complex PDB.5LNY gets replaced for that in PDB.2XAB. The helical region has a disorder propensity,
which translates into susceptibility to fold into a binding-induced conformation that varies according to the ligand. The ligand in PDB.2XAB has a
protruding isopropyl group capable of exogenously contributing to the wrapping of the dehydron-rich helix kink, specifically wrapping the dehydrons
T109-A111 and N106-T109. In this way, the ligand determines or selects the binding-competent-induced folding. The protein chain is shown
simplified as a polygonal of virtual bonds (purple) joining the α-carbons of contiguous residues along the chain. BHBs are indicated as lines joining the
α-carbons of paired residues, with well-wrapped bonds marked in gray and dehydrons in green. For the computation of BHB wrapping and
identification of dehydrons, the reader may consult other work.12−14
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the maximum shielding of underwrapped regions, thereby
contributing to the stabilization of a specific holo form.
Dehydrons and wrapping may be computed from structural

coordinates of proteins,6,7,12,13 and the computation may be
incorporated in the feature-extraction workflow of the DL
platform.14 To that end, we introduce the extent of hydrogen-
bond wrapping, w, indicative of the number of side-chain
nonpolar groups contained within a “desolvation domain” that
defines the BHB microenvironment in a training reported
structure. Being marginally wrapped, dehydrons are located in
the tail of the distribution of w-values across BHBs in the
structural database. The dehydrons in the protein structure
compromise its integrity and promote protein associations as a
means to exclude surrounding water. In this way, dehydrons
become determinants for protein association because, by
decreasing charge screening, exogenous removal of water from
the dehydron microenvironment strengthens and stabilizes the
electrostatic interaction that underlies the BHB. Ample
bioinformatics evidence on the distribution of dehydrons at
interfaces of protein complexes supports this picture,13 pointing
to dehydrons as key factors driving complex formation, with
dehydron-rich regions being flexible and hence susceptible of
undergoing binding-induced folding.9 To illustrate this picture,
the Hsp90 helical 101−128 region in the complex reported in
PDB entry 5LNY becomes disrupted when Hsp90 forms a
different complex (PDB.2XAB), as shown in Figure 1. The
structural difference arises as a kink forms with dehydronsN106-
T109 and T109-A111, which in turn get exogenously wrapped
by the protruding isopropyl group in the drug inhibitor that
binds Hsp90 in the complex reported in PDB.2XAB. As the
example suggests, the a priori inference of induced folding states
would be essential for a rational drug designer, seeking to control
drug affinity and specificity through lead optimization to select
the holo form from within the IFE.
The previous discussion suggests that leveraging a DL

platform to predict induced conformations hinges on a wrapping
representation of the protein chain in the feature extraction
phase. The structure wrapping must lend itself to a tensor
representation wherein information is describable and processed
on a multidimensional array (tensor) of digital entries within a
layered architecture. Thus, the steering of the drug design
process to target a binding-competent-induced fold involves the
inference of the IFE using the primary sequence of the target
protein as an input. This task requires an adaptation of the
AlphaFold platform to incorporate the following elements:

(1) In contrast with AlphaFold and other structure predictors,
residues need to be profiled incorporating an additional
key signal: the sequence-based prediction of intrinsic
disorder, a descriptor of the propensity of a window along
the chain to be inherently unstructured as the protein is
taken in isolation, i.e., as an autonomous folder.15,16 The
disorder score ranges from 1 (certainty of disorder) to 0
(certainty of order). Regions predicted to be disordered
are expected to be reliant on binding partnerships to
improve the wrapping of BHBs to the point where they
can be sustainable.6,7 Thus, the disorder score signal
needs to be integrated into the residue profiling for a
sequence-based inference of the IFE. A clear illustration is
provided by the induced folding diversity in Hsp90: the
predicted helicity of the region 100−120 (Figure 1) is
partially overlapping with an overwriting signal of intrinsic
disorder for the region 80−114 (we follow the PDB

numbering 16−224 of the Hsp90 chain). This signal was
spotted in a sequence-based prediction of intrinsic
disorder for Hsp90 regarded as an autonomous folder.
The disorder plot was generated on January 30, 2020, at
19:31 by the Predictor of Native Disorder (PONDR) in
its version XL1-XT,15 freely accessible from http://www.
pondr.com/.
This is a clear indication that the helix would be

partially unsustainable if the protein is regarded as an
autonomous folder and can be partially disrupted or
distorted by induced folding depending on the ligand, as it
is indeed the case in the overlapping region 100−114
(Figure 1). Thus, a kink is induced in the predicted helical
region, whereby nonhelical dehydrons N106-T109 and
T109-A111 are formed and become sustainable as they
get wrapped exogenously by the isopropyl group in the
Hsp90-binding ligand reported in PDB.2XAB.

(2) Residues paired by BHBs are represented within a
triangular 2D-array (the information plotted is symmet-
ric) inputted with pairwise coevolutionary information.3,4

The underlying premise is that, of the evolution of two
residues correlates across a multiple sequence alignment,
it is likely that they are spatially related. The array is
concatenated with residue profiling in the same way as it is
done in AlphaFold, except for the incorporation of the
local disorder propensity as an overwriting signal.

(3) In contrast with AlphaFold, a third dimension is needed to
identify the residues wrapping the BHBs that will emerge
during the feature extraction phase of DL.13,14 Thus,
wrapping components are identified upon the structural
information within a 3D-tensor whereby a matrix Y,
evolving from the evolutionary coupling matrix (ECM), is
constructed to ultimately indicate residues (i,j) paired by
BHBs, while the wrapping of the BHB is represented
along Y-orthogonal vector zij for entry Yij. Thus, the DL
flow operates on the tetrahedralN×N×N tensor Y⊗Z =
[Yij⊗zij]ij (N = chain length).

(4) Feature extraction requires a dilated convolutional
layered architecture1,3 where, in a generic layer denoted
F, the convolutional kernel becomes a 3 × 3 × 3
tetrahedral tensor (F) that evolves during the parameter
optimization process turning into a filter. This filter
extracts a structural pattern drawn from the training set in
a curated PDB-derived database.14 The product of the
convolutional operation (Y⊗Z) ∗ F is thus a tensor with
entries indicating sums of entry-by-entry multiplication
(Frobenius inner product) of Y⊗Z by tensor F as the
latter slides along 3 × 3 × 3 tetrahedral sectors of Y⊗Z
with stride 2 to produce the (N-2)3 convolved tensor

Y Z FY Z ( )F[ ⊗ ] = ⊗ ∗̂ . Thus, large value entries in
the convolved tensor are indicative of regions where the
configuration more clearly resembles the kernel/filter.
Within the F-layer, the convolved tensor Y Z F[ ⊗ ] ̂ is
expanded into the “F-feature-discerning” N3-tensor
(Y⊗Z)F by spanning the F-pattern for the largest value
entries in Y Z F[ ⊗ ] ̂ while retaining the original entries
from Y⊗Z for those 3 × 3 × 3 tetrahedral sectors that do
not yield a significant inner product. The F-filter is then
dilated within an F-spanned multilayered architecture to
incorporate the surrounding context by enlarging the
receptive field size of the convolution kernel. In this way,
we incorporate features not just from pixel neighbors but
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from further afield by creating 3 × 3 × 3 tetrahedral filters
with the pixels further and further apart. Thus, each
neuron in a hidden layer only receives input from the local
region of what the input to the layer is, and with the
dilations, we enlarge the receptive field of the convolution
kernel. So the hidden layer for filter F is actually spanning
a bunch of hidden layers where the dilated filters F1 = F,
F2, F3, ... are successively applied, with the subindex giving
the value of the dilation coefficient.

(5) The training of the CNN enables optimization of the set

of filters F , F , ..., F , F , ...(1)
2
(1) (2)

2
(2)= { } by minimizing

the sum of Frobenius norms (||·||, sum of squared entries)
for tensors Y⊗Z − Y Z⊗̂ , where Y Z⊗̂ indicates the

structure-based computed wrapping of each BHB in a
PDB-reported structure (ξ) picked from the training set
( ), and Y⊗Z is the DL-based inference of the structure
wrapping obtained from the protein sequence of the PDB-
reported structure. Thus, the loss function ( ) for the
DL network becomes

Y Z Y Z( ) ( )( )1 ∑ ξ= | | || ⊗ − ⊗ ||
ξ

−

∈

ˆ

where | | denotes the number of structures in the training set.
While the tensor representation of structure wrapping allows

suitable processing in a DL platform with Tensor Flow,17 the
tensor should get decoded into a 3D rendering specifying
relative spatial locations of wrapping residues vis-a-̀vis the BHBs

Figure 2.DL discovery platform and its inference of the IFE for Hsp90. (a)Workflow for the DL system. (b) Architecture of the dilated convolutional
network required to infer structural wrapping patterns. The dummy indices i, j, k indicate residues along the chain, and the 1D features, including
disorder propensity, are subsumed vectorially in xi, xj, xk, ...; for feature extraction, the network contains mxnx2 hidden layers labeled L(1)

1, ..., L
(m)

n (m =
number of filters/convolution kernels, n = number of dilations per filter). In the cases reported in this study, we usedm = 120 and n = 6, so the network
has 1440 hidden layers. (c) Component I of the Hsp90 IFE, specified by the tetrahedral wrapping tensor, the decoded 3D wrapping model, and the
threaded 3D backbone conformation in ribbon rendering. The X, Y, Z axes in the tensor indicate residue numbers 16−224 along the chain (we respect
PDB numbering for this contour variable). The inferred BHBs are represented in the triangle in the background of the tetrahedral tensor, while the
residues contributing to the wrapping of each BHB are identified along the axis orthogonal to the background triangle. Thus, the wrapping residues are
shown on the square on the right. The blue lines emanating from each BHB and orthogonal to the background triangle contain the residues (light blue
boxes) wrapping the BHB. In the 3D wrapping model of the chain, a residue contributing to the wrapping of a BHB is indicated by a thin blue line
between the α-carbon of the wrapper and the center of the wrapped BHB. For further clarification, the 106−109 BHB is identified on the tensor
(yellow arrow), wrapping 3D model, and structural rendering (yellow circles). This BHB is wrapped by residues 26, 104, 107, and 136, as depicted in
the zooming of the wrapping 3D representation. (d) Component II of the IFE for Hsp90, specified by wrapping tensor and ribbon rendering of the 3D
structure.
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to enable the threading of structural decoys onto it (Figure 2a−
c). The threading requires a separate inference of the torsional
(Φ,Ψ)-conformation of the protein backbone, as performed by
AlphaFold, and a fitting of the backbone torsional model onto
the decoded 3D model of structure wrapping to determine side-
chain locations to the level of resolution where it becomes
possible to decide whether they contribute to wrap-specific
BHBs (Figure 2c). The full workflow of the DL platform is
delineated in Figure 2a, while the network architecture is
depicted in Figure 2b.

■ DRUG DESIGN BY TEACHING TO INDUCE
TARGETABLE FOLDS

A DL prototype has been constructed as described in Figure 2a,
following the premises 1−5 given above. Details for a basic
precursor of this system were previously reported.14 The
precursor system has been modified (mutatis-mutandis) to
infer induced folding possibilities. The repurposing requires the
following: (a) The integration of a sequence-based prediction of
the disorder15,16 as a signal overwriting secondary structure
prediction in the residue profiling. This signal is essential to
identify regions reliant on binding partnerships to maintain
structural integrity,7,9 and hence susceptible to induced folding
in consonance with the ligand. (b) The incorporation of dilated
convolution in the layered architecture for feature extraction.
This is essential to add nonlocal context to the prediction of
induced folding, as the receptive field for each layer input gets
progressively magnified in accord with the value of the dilation
parameter for a given convolution kernel or filter during the
feature extraction phase of the DL processing.
The IFE for cancer target Hsp90, obviously excluded from the

training set and obtained by incorporating the prediction of
intrinsic disorder is made up of two components, I, II, displayed
in Figure 2b,c. The display includes the structure wrapping
tensor and ribbon rendering of the (Φ,Ψ)-threaded conforma-
tion. The RMSDs of backbone Cartesian coordinates for I and II

relative to the structural coordinates within the complexes
(PDB.2XAB and PDB.5LNY, respectively) are 1.9 and 1.2 Å.

■ AI INSTRUCTS ON REWORKING A DRUG TO
TARGET A PROTEIN

Drug-based targeted therapy, aimed at blocking specific
dysfunctional proteins, often faces a major obstacle due to
induced folding, a hard-to-predict phenomenon that often
generates unexpected and undesirable cross-reactivity, while
making the intended target elusive to molecular recognition.9

We advocate that DL can steer drug design to achieve
therapeutic impact by controlling the induced folding in the
target protein. The way DL may teach the drug to target the
protein is apparent as we focus on reworking the anticancer drug
imatinib18 into the prototype WBZ_49,13 (Figure 3). Exploiting
wrapping differences among proteins that share a common fold
as a filter for selectivity, a chemical modification of imatinib has
been introduced to steer the drug impact toward clinically
relevant imatinib targets (bcr-ABL, c-KIT, PDGFR kinases19),
while suppressing off-target cross-reactivity against kinases such
as LCK, whose inhibition may lead to harmful immunosup-
pressive effects.19 However, just like we may remove potentially
harmful cross-reactivity by chemically modifying the parental
scaffold guided by the wrapping filter,18 we could also
incorporate new and therapeutically desirable cross-reactivity
guided by a kinome-wide examination of IFEs.
By inputting the primary sequence, multiple sequence

alignment, intrinsic disorder and secondary structure prediction,
and pairwise residue coevolution, the IFEs for the 518 human
kinases become accessible when adopting the DL platform
described. As expected, the augmentation of the imatinib
scaffold by the addition of a methyl group (WBZ_4 in Figure 3)
would generally decrease cross-reactivity simply because fewer
targets are typically able to accommodate a larger ligand as a
result of steric hindrance. This is only partially true, however, as
some targets are floppy enough to circumvent steric hindrance,
especially those that may be susceptible to binding-induced

Figure 3. IFE inferred by the DL platform for JNK, a target ofWBZ_4 and not of the parental drug imatinib. The apo form is component I, and the holo
form is II. The BHB M111-N114 (actually a dehydron) is induced upon binding to WBZ_4 and absent in the apo form. The two components have
identical structure except for the region where induced folding occurs, indicated by the ribbon rendering. This example illustrates the application of AI
to steer drug design in order to target a specific protein by learning to induce a drug-binding-competent fold.
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folding. On the one hand, it was experimentally observed that
WBZ_4 is not reactive against the imatinib target ABL kinase or
against LCK, culprits of cardiotoxicity20 and immunosuppres-
sion,19 respectively. However, we found an exception to the
steric hindrance rule in JNK1/2, which has no detectable affinity
for imatinib but is a target for WBZ_4.9 JNK stands out in the
kinome-wide IFE inference because of its significant induced
folding diversity in the targeted region and its susceptibility to
getting wrapped by the extra methyl group not present in the
imatinib scaffold, as shown in Figure 3. In fact, the nanomolar
affinity of WBZ_4 against JNK1 has been experimentally
documented,9 making this compound potentially impactful on
ovarian cancer, where JNK inhibition has shown clinical
relevance, at a variance with imatinib, which is not active in
that therapeutic context.21

TheDL-inferred IFE for JNK1 has two components described
in Figure 3. An apo form (I), where the dehydron BHB M111-
N114 is not formed, and a holo form (II), which we reason must
be the conformation adopted in the complex with WBZ_4. We
arrived at that conclusion by docking WBZ_4 to JNK according
to the structural alignment of JNK with the cKIT/imatinib
complex reported in PDB.1T46 and noticing that WBZ_4
binding induces the BHB M111-N114 by contributing
exogenously to its wrapping with the extra methyl that is not
present in imatinib (Figure 3). Thus, the induced folding
enabling the exogenous protection and, hence, stabilization of
the induced M111-N114 BHB is responsible for the new cross-
reactivity that gets turned on by tuning the parental chemical
scaffold.
This example illustrates the use of the DL platform to steer the

reworking of a drug in order to redirect its impact toward a
different therapeutic context.21

■ DISCUSSION

Rational drug design faces difficulties, and it is felt it may not be
living up to the expectations. This is mostly because the target
proteins are usually not fixed targets: they structurally adapt to
the ligand in ways that have been very hard to predict. That
brings us to the drug-induced folding problem that is squarely
addressed in this work aimed at fueling pharmaceutical
discovery within an AI-empowered platform.
We proposed and delineated a deep learning (DL) platform to

teach drugs to target proteins. The DL system is geared at
steering drug design to induce targetable binding-competent
protein conformations. The control of induced folding by a drug
or ligand requires a DL platform that, at a variance with protein
folding predictors, integrates signals for the structural disorder
to predict conformations of floppy regions that rely on purposely
designed binding partnerships to maintain structural integrity.
The conformational diversity of such regions begets an induced
folding ensemble (IFE) from which the targetable conformation
gets selected by DL-instructed drug design, enabling a
therapeutically significant drug−target complexation.
In the preliminary testing presented of the AI-empowered

discovery platform, we have dealt with fairly localized drug-
induced folding. Cases with extensive windows of intrinsic
disorder susceptible to structural adaptation may prove more
challenging, given the limited size of PDB-drawn training sets.
Future work will assess the critical size of the induced folding
region beyond which AI-directed drug design may require
complementary training resources, possibly drawn from high-
level coevolution patterning.
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