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Abstract.  Motivated by the time behavior of the functional arising in the 
variational approach to the KPZ equation, we have adapted a path-integral 
scheme to deal with unstable systems. In a simple mesoscopic model and under 
two scenarios, we define a suitable mean value of (the exponential of) the 
entropy production between arbitrary initial and final states. This definition 
leads naturally to an integral fluctuation theorem (FT)—and on the way, to 
detailed and Crooks’ FT. We also find the general form of a large-deviation 
function, as well as its particular form for a particle submitted to a constant 
force.
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1. Introduction

It is well known that standard thermodynamics relies on two hypotheses: thermody-
namic equilibrium and the thermodynamic limit. When both hold, a few collective vari-
ables (or their Legendre transforms for non-isolated systems) suce for astonishingly 
fruitful reasoning. As the first hypothesis is relaxed, the key concept of entropy produc-
tion (EP) emerges. Characterized by minimum EP, nonequilibrium steady states enjoy 
the privileged status that equilibrium states hold in standard thermodynamics and in 
fact, include the latter as the zero EP case. Within this context, standard thermody-
namics’ ‘second law’ has been rephrased into a handful of fluctuation theorems.

The mesoscopic approach initiated by Langevin, enabled a safe route to relax the 
second hypothesis: one still considers collective variables, but fluctuating ones. Here, 
nonequilibrium steady states have divergenceless probability current (which becomes 
zero for equilibrium states, so fulfilling the detailed-balance condition). This fruitful 
approach, exploited intensively for more than three decades, has given rise to the so-
called ‘stochastic thermodynamics’ [1–5]. In the ‘trajectory version’ of this increasingly 
employed framework, the thermodynamic quantities pick up the fluctuations of the 
collective variables along their phase-space trajectories.

Besides processes beginning and ending at equilibrium, works on stochastic ther-
modynamics and fluctuation theorems focus (either explicitly or by assuming diver-
genceless probability current) on nonequilibrium steady states [6–8]. What seems to be 
missing is the study of fluctuation theorems in systems not featuring a steady state, and 
initial (final) states drawn from arbitrary probability distribution functions. Our inter-
est arose from our drive to undertake a stochastic thermodynamics of the KPZ system, 
starting from its variational approach [9, 10]. As shown in [11], the functional from 
which the KPZ equation stems decreases linearly with time, once the EW–KPZ cross-
over is overcome. The latter is interpreted as an activation or escape process toward an 
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unstable state, for which a particle in a constant gravitational field has been considered 
as a metaphor [11].

Here we show that with a slight adaptation—we define a mean value of the expo-
nential of the EP between arbitrary initial and final states—the usual Onsager–Machlup 
path-integral representation [12] (as developed e.g. in [6–8, 13]) yields meaningful 
results for unstable mesoscopic systems such as the toy model of [11], at least in the 
absence of an external protocol. We consider two scenarios: in section 2 the driving 
noise is white and in section 3, it is Ornstein–Uhlenbeck (OU)4. In each we state the 
formalism and derive detailed and integral fluctuation theorems. In section 4 we write 
out the general form of a large-deviation function for total entropy production, and its 
particular form in the case of a particle in a constant gravitational field. Conclusions 
are drawn in section 5.

2. White driving noise

In the following, we denote functionals as f[x]. We start from

ẋ = −V ′(x) + ξ(t) (1)
and throughout this section, 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2 ε δ(t− t′). Our immediate focus is 
the conditional probability density functionals (pdf’l) p̂ of following a given trajectory 
between the fixed ends (xa, ta) and (xb, tb).

The conditional pdf’l of tracing the trajectory [xF]:  =  x(t) from (xa, ta) to (xb, tb) is

p̂F [xF ] := p̂F ([xF ]|xa, ta, xb, tb) = [P F (xb|xa)]
−1 exp(−S+[xF ])

namely, the (normalized) integrand in the Onsager–Machlup path-integral representa-
tion of the solution to the Fokker–Planck equation (FPE) [12]. The functional

S+[xF ] =

∫ tb

ta

dt L+(x, ẋ)

is known as ‘the stochastic action’ and

P F (xb|xa) =

∫ xb

xa

D[xF ] p̂F [xF ],

as ‘the forward propagator’ [12, 14] (D[xF ] is the integration measure over the forward 
trajectory between the fixed values xa at ta, and xb at tb). The Onsager–Machlup func-
tion or ‘stochastic Lagrangian’ 

L+(x, ẋ) =
1

4ε
[ẋ+ V ′(x)]2 (2)

is evaluated at x(t), ẋ(t).

4 This choice is motivated by the memory eects arising in the variational approach to the KPZ problem [11].

https://doi.org/10.1088/1742-5468/ab7126
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The conditional pdf’l of tracing the same trajectory back is

p̂B[xB] := p̂B([xB]|xa, ta, xb, tb) = [PB(xa|xb)]
−1 exp(−S−[xB]),

with [xB] := x(ta + tb − t), and the backward stochastic action and propagator are

S−[xB] =

∫ tb

ta

dsL−(x(t), ẋ(t)), PB(xa|xb) =

∫ xa

xb

D[xB] p̂B[xB].

L−(x, ẋ) has the functional form (2) but it is evaluated at x(s), ẋ(s), s = ta + tb − t. It 
is immediate to verify that L−(x(t), ẋ(t)) = L+(x(t),−ẋ(t)).

2.1. Detailed fluctuation theorem and Crooks’ theorem

It is also immediate to prove the so-called detailed fluctuation theorem

p̂F [xF ]

p̂B[xB]
= exp

[
−1

ε

∫ tb

ta

dt V̇

]
= exp

(
−∆V

ε

)

 (3)
(here ∆V := V (xb)− V (xa)), analogous to T∆S = ∆U .

Following [8], we introduce the EP functional

RF [xF ] := ln

(
pF [xF ]

pB[xB]

)
, (4)

corresponding to the exchange entropy. For a single trajectory R̂F = ln(p̂F/p̂B) is purely 
reversible and

R̂F [xF ] = −R̂B[xB]. (5)

Now if xa is drawn at ta from a fixed (arbitrary, not necessarily stationary) distribu-
tion pa(xa, ta), we must consider the joint-conditional pdf

pF [xF ] := pF ([xF ]; xa, ta|xb, tb) = pa(xa, ta) p̂
F ([xF ]|xa, ta, xb, tb), (6)

and now RF  depends also on xa. Similarly, if xb is drawn from a fixed distribution 
pb(xb, tb), we must consider

pB[xB] := pB([xB]; xb, tb|xa, ta) = pb(xb, tb) p̂
B([xB]|xa, ta, xb, tb), (7)

and RB depends also on xb. For notational compactness, hereafter we omit the condi-
tional dependence of the p̂’s and the joint-conditional dependence of the p’s.

It is worth to remark that p b is not the one resulting from time evolution starting 
from p a, and vice versa. For instance, if the support Ωa of pa(xa, ta) were finite, its 
image under [xF] (a function of xa) would not necessarily be so. Similarly, if the support 
Ωb of pb(xb, tb) were finite, its image under [xB] would not necessarily be so. In other 
words, and at variance with previous works, they are completely arbitrary. Since the 
integration of bounded-support distributions can be extended to the real axis at no 
cost, hereafter we omit the limits of integrals over xa and xb, understanding that they 
go from −∞ to +∞. For a given trajectory

R̂F [xF ] = RF [xF ] +R0, R̂B[xB] = RB[xB]−R0, (8)

https://doi.org/10.1088/1742-5468/ab7126
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R0 being the ratio between the formation entropies of the final and initial states

R0 := − ln

[
pb(xb, tb)

pa(xa, ta)

]
.

Our next concern are the distributions [8]

�F (R) := NF

∫ x(tb)=xb

x(ta)=xa

D[xF ] pF [xF ] δ(RF [xF ]−R +R0),

�B(R) := NB

∫ x(ta)=xa

x(tb)=xb

D[xB] pB[xB] δ(RB[xB]−R +R0),

of the total EP value R in ensembles of trajectories
—�F (R) from (xa, ta) to (xb, tb), with xa drawn from pa(xa, ta) and xb fixed,
—�B(R) from (xb, tb) to (xa, ta), with xb drawn from pb(xb, tb) and xa fixed,

with

NF =

[∫
dxa pa P

F

]−1

, NB =

[∫
dxb pb P

B

]−1

.

From equations (6) and (8),

�F (R) = pa(xa, ta)NF

∫ xb

xa

D[xF ] p̂F [xF ] δ(RF [xF ] +R0 −R).

Using equation (3),

�F (R) = pa(xa, ta)NF

∫ xb

xa

D[xF ] p̂B[xB] exp(R̂F [xF ]) δ(RF [xF ]− (R−R0)).

Using the property f(x) δ(x) = f(0) δ(x) and recalling that p a, p b and R are fixed,

�F (R) = pa(xa, ta) exp(R−R0)NF

∫ xb

xa

D[xF ] p̂B[xB] δ(R̂F [xF ]− (R−R0))

= pb(xb, tb) exp(R)NF

∫ xb

xa

D[xF ] p̂B[xB] δ(R̂F [xF ]− (R−R0)).

Using equation (5),

�F (R) = pb(xb, tb) exp(R)NF

∫ xb

xa

D[xF ] p̂B[xB] δ(R̂B[xB] + (R−R0)).

Finally, using equations (7) and (8), and recalling that D[xF ] ≡ D[xB],

�F (R) =
NF

NB
exp(R) �B(−R).

https://doi.org/10.1088/1742-5468/ab7126
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Hence for any initial condition and any pair of times ta and tb,

�F (R)

�B(−R)
=

NF

NB
exp(R). (9)

Let pF (R) :=
∫
dxb �

F (R) and pB(R) :=
∫
dxa �

B(R) be respectively the pdfs of EP R 
in the forward and backward evolutions. If we denote • :=

∫
dx •, then pF (R) = �F (R) 

and pB(R) = �B(R). Using equation (9),

pF (R) = NF

∫
dxb

∫
dxa pa(xa, ta)

∫ xb

xa

D[xF ] p̂F [xF ] δ(RF [xF ]−R +R0)

=
NF

NB
NB

∫
dxa

∫
dxb pb(xb, tb)

∫ xb

xa

D[xF ] p̂B[xB] exp(RF [xF ]) δ(RF [xF ]−R +R0)

= exp(R)NB

∫
dxa

∫
dxb pb(xb, tb)

∫ xb

xa

D[xB] p̂B[xB] δ(RB[xB] +R−R0).

Since pB(−R) := �B(−R) = NB
∫
dxa �

B(−R), we obtain an out-of-equilibrium analog 
of the Crooks’ theorem [15],

pF (R) = exp(R) pB(−R), (10)

related in turn with the ‘Gallavotti–Cohen’ theorem [16, 17]. As tb can be taken 
arbitrarily large, we can make a connection with the large-deviation function [13, 18] 
through the relation

ζ(R) = − lim
tb→∞

t−1
b ln pF (R). (11)

We will come back to this point later.

2.2. Integral fluctuation theorem

Denoting the usual ensemble average by 〈•〉 :=
∫
dx p(x) •, we define the following 

mean value

〈exp(−R̂F )〉 :=

NF

∫
dxa pa(xa, ta)

∫
dxb

∫ xb

xa

D[xF ] p̂F [xF ] exp(−R̂F [xF ])

=

∫
dxa pa(xa, ta)

∫
dxb

pb(xb, tb)

pa(xa, ta)

NF

NB
NB

∫ xb

xa

D[xB] p̂B[xB]

= NB

∫
dxa

∫
dxb pb(xb, tb)

∫ xb

xa

D[xB] pB[xB].

The integrand in the last line is the transition pdf from xb to xa, still conditioned to 
the fixed distribution pb(xb, tb). Calling

p̃B(xb, tb|xa, ta) = NB

∫
dxa

∫
dxb pb(xb, tb)

∫ xb

xa

D[xB] pB[xB],

https://doi.org/10.1088/1742-5468/ab7126
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we have

〈exp(−R̂F )〉

= NF

∫
dxa pa(xa, ta)

∫
dxb

∫ xb

xa

D[xF ] pF [xF ] exp(−R̂F [xF ])

= NB

∫
dxa

∫
dxb pb(xb, tb)

∫ xb

xa

D[xB] pB[xB] = p̃B(xb, tb|xa, ta).

 

(12)

Since the last quantity is ≡ 1, equation (12) yields the usual form of the integral theorem

〈exp(−R̂F )〉 ≡ 1.

3. Ornstein–Uhlenbeck driving noise

With a little additional eort, we may extend our analysis to the case in which our toy 
model is submitted to an OU external noise with self-correlation time τ  [19],

ẋ = −V ′(x) + η(t), 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = ε

τ
exp

(
−|t− t′|

τ

)
. (13)

This can in turn be generated dynamically, driven by a white noise ξ(t),

η̇ = −1

τ
[η + ξ(t)], (14)

where as in (1), ξ(t) fulfills 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2 ε δ(t− t′). Qualitatively, for t � τ , 
one expects to recover the picture of section 2.

The FPE associated to the Langevin equations (13) and (14) is

∂tp = ∂x[V
′(x) p] +

1

τ
∂η(ηp) +

ε

τ 2
∂2
ηp,

where p ≡ p(x, η, t|x0, η0, t0)—x0, η0 being the initial conditions—is a Markov process 
in (x, η) space and admits a path-integral representation. The diculty of the diusion 
matrix being singular is overcome by performing the functional integral in the phase 
space of the variables x, η and their canonically conjugate momenta. Once functional 
integration over the latter and over η have been performed, we retrieve the analog of 
equation (2),

L+(x, ẋ, ẍ(t)) =
1

4ε
[τ ẍ+ ẋ+ V ′(x)]2.

Again since ẍ(t) does not change its sign, L−(x(t), ẋ(t), ẍ(t)) = L+(x(t),−ẋ(t), ẍ(t)).
Following the steps of section 2, we define

p̂F [xF , ηF ] = NB exp(−S+[xB, ẋB, ẍB]),

and similarly for p̂B[xF , ηB]. The analogs of equations (3) and (5) are now

https://doi.org/10.1088/1742-5468/ab7126
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p̂F [xF , ηF ]

p̂B[xB, ηB]
= exp[−(τ∆T +∆V )/ε], (15)

RF [xF , ηF ] = −RB[xB, ηB] = (τ∆T +∆V )/ε (16)

with ∆T := 1
2
[ẋ2(tb)− ẋ2(ta)]. Note that for tb − ta < τ  and τ � 1, the kinetic-like 

energy dierence dominates over the potential one. The extra terms come from memory 
eects related with the EP involved in the preparation of those states.

The forward and backward propagators are

P F (xb, ηb, tb|xa, ηa, ta) =

∫ xb,ηb

xa,ηa

D[xF , ηF ] p̂F [xF , ηF ],

PB(xa, ηa, ta|xb, ηb, tb) =

∫ xa,ηa

xb,ηb

D[xB, ηB] p̂B[xB, ηB],

with fixed (xa, ηa), (xb, ηb). Using a similar notation as before (recalling again that p b is 
not the one resulting from time evolution starting from p a) equation (9) becomes

�F (R)

�B(−R)
=

NF

NB

pa(xa, ηa, ta)

pb(xb, ηb, tb)
exp(R), (17)

with fixed R. The procedure leading to equation (17) parallels that of equation (9), but 
the functional integrations are performed over [x] and [η]. With the definitions

pF (R) :=

∫
dxb dηb �

F (R), pB(R) :=

∫
dxa dηa �

B(R),

equation (10)—the analog of the Crooks’ theorem—stays the same. Now the reversible 
entropy, equation (8), reads

R̂F [xF , ηF ] = RF [xF , ηF ] + ln

[
pb(xb, ηb, tb)

pa(xa, ηa, ta)

]
,

where pb(xb, ηb, tb) and pa(xa, ηa, ta) are arbitrary but fixed as in the previous case.

Again, suitable definitions of 〈exp(−R̂F )〉 and pB(xb, ηb, tb|xa, ηa, ta) lead to the int-

egral theorem

〈exp(−R̂F )〉 = p̂B(xb, ηb, tb|xa, ηa, ta) ≡ 1. (18)

4. Large-deviation function

From equation (4) we can write

〈RF 〉 = 〈ln pF [xF ]〉 − 〈ln pB[xB]〉,

resembling the Gallavotti–Cohen theorem [16, 17]. As shown by equation (10), the 
second term on the r.h.s. is exponentially small as compared to the first one, so for 
tb → ∞ and fixed ta,

https://doi.org/10.1088/1742-5468/ab7126
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ζ(R) = lim
tb→∞

t−1
b ∆V/ε = − lim

tb→∞
t−1
b 〈ln pF [xF ]〉. (19)

In order to proceed further, some information (or at least an assumption) is required on 
the time behavior of the solution to the FPE. In the scaling regime of a large enough KPZ 
system (between the Edwards–Wilkinson/KPZ crossover and satur ation) the interface 

evolves at constant speed v∞ and its roughness width scales as tβ. Hence p(h, t) → p(h̃), 

with h̃ = (h− v∞t)/tβ5. Mimicking this case, we have considered V (x) = −Fx, the solu-
tion to whose FPE is the self-similar, diusion-like expression

P (x, t|0, 0) = exp[−(x− Ft)2/4εt]√
4πεt

. (20)

The asymptotic speed is v∞ = F , the variance grows ∝ t, and the normalization changes 
from one instant to another!

Since as tb → ∞, the relative standard deviation of x around Ft decreases as t
−1/2
b , 

equation (19) reads

ζ(R) =
F 2

ε
. (21)

This LDF being constant, it has no singularities that could indicate a phase transition.
In the case of OU-noise driving, the condition tb � τ  is fulfilled and equation (23), 

analogously to (21), reads again

ζ(R) =
F 2

ε
. (22)

From equation (16), the analog of equation (19) turns out to be

ζ(R) = lim
tb→∞

t−1
b (τ∆T +∆V )/ε = − lim

tb→∞
t−1
b 〈ln pF [xF ]〉, (23)

for fixed ta.

5. Conclusions

Motivated by the time behavior of the functional from which the KPZ equation stems 
[9, 10] and intending to undertake a stochastic thermodynamics of such a system, we 
have focused on develop the ground for obtaining detailed and integral fluctuation 
theorems (as well as large-deviation functions) for systems not featuring a steady state 
(namely, unstable systems), and initial (final) states drawn from arbitrary probability 
distribution functions. As stated in [11], the interface evolution can be interpreted 
as an activation or escape process toward an unstable state, for which a particle in a 
constant gravitational field is a suitable metaphor. Here we have shown that by just 

5 Moreover, h fluctuations’ correlation length grows as t1/z, leading to a dependence of h̃ on the scaling variable 
|x|/t1/z.

https://doi.org/10.1088/1742-5468/ab7126
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slightly adapting the usual Onsager–Machlup path-integral representation [8, 12, 13], 
it is possible to get meaningful results for unstable mesoscopic systems like the toy 
model introduced in [11]. Among the next steps, we consider redoing the calculations 
under a time-varying protocol. A simple possibility would be to consider a force that 
depends linearly on time: F = Fo + (F1 − Fo)(t− ta)/(tb − ta).

The feasibility of our main objective, namely a direct thermodynamic analysis of the 
KPZ equation within the framework of the variational approach [9, 10], depends now 
only on adapting the present path-integral methodology to a spatially extended system 
(which, as a matter of fact, is straightforward). Such an analysis is underway, and will 
be the subject of a forthcoming work.
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