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Abstract 

 Rhipicephalus microplus is a cattle ectoparasite found in tropical and subtropical 

regions around the world with great impact on livestock production. R. microplus can also 

harbor pathogens, such as Babesia sp. and Anaplasma sp. which further compromise 

cattle production. Blood meal acquisition and digestion are key steps for tick 

development. In ticks, digestion takes place inside midgut cells and is mediated by 

aspartic and cysteine peptidases and, therefore, regulated by their inhibitors. Cystatins 

are a family of cysteine peptidases inhibitors found in several organisms and have been 

associated in ticks with blood acquisition, blood digestion, modulation of host immune 

response and tick immunity. In this work, we characterized a novel R. microplus type 1 

cystatin, named Rmcystatin-1b. The inhibitor transcripts were found to be highly 

expressed in the midgut of partially and fully engorged females and they appear to be 

modulated at different days post-detachment. Purified recombinant Rmcystatin-1b 

displayed inhibitory activity towards typical cysteine peptidases with high affinity. 

Moreover, rRmcystatin-1b was able to inhibit native R. microplus cysteine peptidases and 

RNAi-mediated knockdown of the cystatin transcripts resulted in increased proteolytic 

activity. Moreover, rRmcystatin-1b was able to interfere with B. bovis growth in vitro. 

Taken together our data strongly suggest that Rmcystatin-1b is a regulator of blood 

digestion in R. microplus midgut. 

 

 

1. Introduction 

 The R. microplus is one of the most relevant ectoparasites in the tropical and 

subtropical regions of the globe due to its impact on livestock production (Grisi et al., 

2014; Jongejan et al., 2004). Moreover, R. microplus also acts as a vector of the etiologic 

agents of anaplasmosis and babesiosis (de Castro et al., 1997), which can further impair 

cattle production. Tick control relies mainly on acaricides, substances with several 

drawbacks, such as environmental contamination and selection of resistant tick 
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populations (Angus, 1996; Uilenberg, 1996), urging the need for the development of 

alternative control methods. 

 Blood meal acquisition and digestion are key steps in the tick life cycle and, in 

ticks, digestion begins when red blood cells are disrupted in the midgut lumen by a yet-

to-be-discovered proteolytic event (Soneshine, 2013). Then, proteins are transported to 

or taken up by midgut cells (Lara et al., 2005) where they are processed by a multi-

enzymatic cascade composed of aspartic and cysteine peptidases (Horn et al., 2009; 

Sojka et al., 2013; Sojka et al., 2016). Therefore, it has been proposed that aspartic and 

cysteine peptidase inhibitors can act as regulators of the digestion process. Not 

surprisingly, in R. microplus, cysteine and aspartic peptidases have been previously 

identified and implicated in blood digestion (Clara et al., 2011; Cruz et al., 2010) as well 

as cystatins (Cardoso et al., 2017). 

Cysteine peptidase inhibitors are classified into the cystatin superfamily based on 

their primary features (Barret et al., 1985; Rawlings et al., 2018). In the past years, several 

type 2 cystatins from ticks were identified and associated with different physiological 

processes, such as blood feeding (Karim et al., 2005; Yamaji et al., 2009), parasite-host 

relantionship (Kotsyfakis et al., 2006; Salat et al., 2010), blood digestion (Cardoso et al., 

2017; Yamaji et al., 2010) and immune response (Lu et al., 2014; Zhou et al., 2006). On 

the other hand, only a handful of type 1 cystatins have been characterized. Bmcystatin 

was the first type 1 cystatin described in R. microplus and was shown to be located in 

different tick tissues. Since the recombinant Bmcystatin was able to inhibit VTDCE (vitellin 

degrading cysteine endopeptidase), it was proposed that Bmcystatin plays a role during 

tick embryogenesis (Lima et al., 2006). In Haemaphysalis longicornis tick, a type-1 

cystatin (Hlcys-1) identified in midgut cells was able to inhibit H. longicornis cathepsin L-

like A (HlCPL-A) (Yamaji et al., 2010), indicating a possible role in protein digestion 

control. 

Taking into account the lack of knowledge about type-1 cystatins and their role in 

tick physiological processes, in this work, we describe and characterize the second type 

1 cystatin from R. microplus, that we have named Rmcystatin-1b. 
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2. Materials and methods 

2.1. Bioinformatics analysis: A R. microplus transcriptome (SRA accession numbers: 

SRX484287, SRX484284, SRX484280 and SRX484277) was assembled and annotated 

as described (Karim et al., 2011). The putative Rmcystatin-1b DNA sequence was 

submitted to a domain analysis with PFAM (https://pfam.xfam.org/) and detection of a 

putative signal peptide was carried out with SignalP 4.1 

(http://www.cbs.dtu.dk/services/SignalP/) (Cruz et al., 2017). The theoretical molecular 

weight and isoelectric point were estimated using the Compute pI/MW tool 

(https://web.expasy.org/compute_pi/) (Wilkins et al., 1999). An amino acid alignment was 

performed with Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 

2011) and edited with BioEdit software (Hall 1999). An unrooted phylogenetic tree was 

constructed with MEGA X (Kumar et al., 2018) using the cystatins sequences from Ixodes 

scapularis (AAY66685.1, AAM93646.1, AAY66864.1, EEC02341.1, EEC07265.1, 

EEC07262.1, KX513947, KX513948 and XP_029841129.1), H. longicornis (ABZ89553.1, 

ABC94582.1, ABZ89554.1 and BAI59105.1), R. microplus (ABG36931.1, AIX97454.1, 

KC816580.1 and KC816581), Dermacentor variabilis (ACF35512.1) and Rmcystatin-1b. 

The phylogenetic tree was constructed using the Neighbor-joining method based on the 

alignment of 155 residues (gaps included) from the cystatin sequences with 500 bootstrap 

replicates. 

2.2. Total RNA and protein extraction from tick tissues: Partially and fully fed R. 

microplus females obtained from a laboratory colony (Porto Alegre strain, Porto Alegre, 

Brazil) were reared on Hereford cattle (Bos taurus taurus) brought from a naturally tick-

free area and maintained in insulated pens (Reck et al., 2009). Ticks were washed with 

70% ethanol and ultrapure water and dissected. Midgut, ovary, salivary glands and 

hemocytes were collected and suspended in 0.5 mL of Trizol reagent (Invitrogen, CA, 

USA). Total RNA extraction was performed using manufacturer’s instructions and cDNA 

was prepared using the Improm-II Reverse Transcription System (Promega, WI, USA). A 

segment of tick midgut was also suspended in 0.5 mL of PBS, disrupted and centrifuged 

(10 min, 12000 x g at 4°C); the supernatant was filtered through 0.22 µm and stored at -

20°C. 
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2.3. DNA amplification and cloning: Rmcystatin-1b full-length ORF was amplified by 

PCR using 100 μM dNTPs, 1.5 mM MgCl2, 5 U Taq DNA polymerase (Sinapse, SP, BR), 

25 pmol of each primer (Rmcystatin-1b.Nco.FW and Rmcystatin-1b.BamHI.RV - Suppl. 

Table 1) and 1 µL of a midgut cDNA preparation from fully engorged R. microplus females. 

The forward and reverse primers contained terminal NcoI and BamHI restriction sites, 

respectively. Reactions were submitted to 94C – 10 min, followed by 25 cycles of 94C 

– 30 s, 55C – 60 s, 72C – 60 s and a final extension at 72C for 10 min. PCR products 

were observed in a 1% agarose gel and purified with QIAEXII extraction kit (QIAGEN, 

Hilden, DE). A purified Rmcystatin-1b amplicon and pET14b were digested with NcoI 

(Fermentas, Vilnius, LT) and BamHI (Fermentas, Vilnius, LT) overnight at 37°C, purified 

with QIAEXII kit (QIAGEN, Hilden, DE) and subjected to ligation with T4 ligase (Promega, 

WI, USA) overnight at 16°C. Finally, the ligation product was used in the transformation 

of Escherichia coli DH5α and the positive clones were confirmed by colony PCR using T7 

promoter and terminator primers and sequenced using a Big Dye Terminator cycle 

sequencing kit (Applied Biosystems, Warrington, UK) in an ABI Prism 3130 automated 

sequencer (Applied Biosystems, Warrington, UK).  

2.4. Expression and purification: Rmcystatin-1b expression was carried out in E. coli 

BL21 pLysS strain induced with 1 mM IPTG at 37°C. After 16 h of induction, cells were 

collected by centrifugation (10 min, 3000 x g at 4°C) and suspended in 100 mL of 50 mM 

Tris-HCl pH 8.0. Bacterial lysis was carried out using a French pressure cell press system 

(Thermo, MA, USA); the bacterial suspension was submitted three times to a 2000 psi 

pressure. After lysis the sample was centrifuged (10 min, 12000 x g at 4°C) and the 

supernatant collected and submitted to ionic exchange chromatography with a HiPrep Q 

resin. The resin was previously equilibrated with 50 mM Tris-HCl pH 8.0 and protein 

elution was carried out with a linear gradient of NaCl (0 to 1 M) in 50 mM Tris-HCl pH 8.0. 

Eluted fractions that presented inhibitory activity towards human cathepsin L (item 2.7) 

were pooled, dialyzed against 50 mM Tris-HCl pH 8.0 and submitted to size exclusion 

chromatography using a Superdex 75 resin. The purified protein was observed by 15% 

SDS-PAGE. 
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2.5. Rmcystatin-1b primary structure analysis by mass spectrometry: Approximately 

40 µg of rRmcystatin-1b were precipitated with chloroform/methanol (Wessel and Flugge, 

1984). The pellet was resuspended in 100 mM Tris HCl pH 7.0 containing 8 M urea, 

disulfide bonds were reduced in 5 mM dithiothreitol (DTT) for 20 min at 37 C and then 

cysteines were alkylated in 25 mM iodoacetamide (IAM) for 20 min at room temperature 

in the dark. Urea was diluted to 2 M with 100 mM Tris HCl pH 7.0, trypsin was added at 

a mass ratio of 1:100 (trypsin/protein) and the sample was incubated overnight at 37°C. 

Formic acid was added to finish the reaction (5% v/v, final concentration). Peptides were 

separated on an in-house made 20 cm reverse-phase (5 µm ODSAQ C18, Yamamura 

Chemical Lab, Japan) using a nanoUPLC (nanoLC Ultra 1D plus, Eksigent, USA) 

connected to a LTQ-XL Orbitrap Discovery hybrid instrument (Thermo Fisher Scientific) 

through a nanoelectrospray ion source (Thermo Fisher Scientific). The flow rate was set 

to 300 nL min-1 in a 60 minutes reverse-phase gradient. The mass spectrometer was 

operated in a data-dependent mode, with full MS1 scan collected in the Orbitrap, with m/z 

range of 400-1600 at 30,000 resolution. The eight most abundant ions per scan were 

selected to CID MS2 in the ion trap. Raw data were searched against a non-redundant 

database containing forward and reverse E. coli BL21 pLysS proteome and Rmcystatin-

1b sequence using Comet (Eng et al., 2013) through PatternLab for Proteomics platform 

(Carvalho et al., 2016). The validity of the peptide-spectra matches (PSMs) generated 

was assessed using Patternlab´s module SEPro (Carvalho et al., 2016) with a false 

discovery rate of 1% based on the number of decoys. 

2.6. RT-qPCR: Rmcystatin-1b mRNA levels were quantified in different tissues of partially 

and fully engorged R. microplus females by RT-qPCR. Reactions were prepared with 6 

µL of SYBR Green PCR Master Mix (Applied Biosystems, Warrington, UK), 1 µL of the 

cDNA preparation diluted 5 times and 200 nM of each primer (Suppl. Table 1) in a final 

volume of 12 µL. Reactions were carried out in a Step-One Plus equipment (Applied 

Biosystems, Warrington, UK), with 40 cycles (95°C - 1 min, 60°C - 1 min and 72°C - 1 

min). The relative quantification was determined by the 2-ΔΔCt method (Livak and 

Schimttgen, 2011) and the elongation factor 1α gene was used as endogenous control 

(Nijhof et al., 2009). Relative quantification of Rmcystatin-1b transcripts in cDNA from 

partially engorged ticks was performed in relation to the salivary glands preparations, 
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while in fully engorged, in relation to hemocytes. Rmcystatin-1b transcripts in the midgut 

at different time points were compared to partially engorged ticks (PF). 

2.7. Determination of the inhibitory constant (Ki): Human cathepsin L (EC 3.4.22.15), 

cathepsin B (EC 3.4.22.1) and BmCL1 previously prepared in our laboratory as described 

(Clara et al., 2011), papain (EC.3.4.22.1) (Calbiochem, USA) and recombinant B. bovis 

cysteine peptidase (XP_001612131) (Lu et al., unpublished data) were incubated in 50 

mM sodium acetate buffer pH 5.0 containing DTT (1 mM) for 10 min at 37°C and different 

concentrations of rRmcystatin-1b were added. Proteolytic activity was monitored by 

fluorescence (380 nm excitation/ 460 nm emission) after addition of fluorogenic substrate 

Z-FR-AMC (4 mM) for assays with cathepsin L, papain, BmCL1 and B. bovis cysteine 

peptidase or Z-RR-AMC (4 mM) for cathepsin B, for 30 min at 37°C. The inhibitory 

constants were determined by fitting the non-linear regression model according to the 

Morrison’s equation (Morrison, 1969) using the Grafit 5.0.11 software (Erithacus Software 

Limited). 

2.8. Proteolytic activity of R. microplus midgut: Crude protein extracts from midgut 

(10 µg) of R. microplus obtained at 24, 48, 72, 96, 120 and 144 h post detachment (hpd) 

were incubated in 50 mM sodium acetate buffer pH 5.0 containing DTT (1 mM) for 10 min 

at 37°C, following the addition of substrates Z-FR-AMC (4 mM) or Z-RR-AMC (4 mM). 

Proteolytic activity was monitored by fluorescence (380 nm excitation/ 460 nm emission) 

for 15 min at 37°C. The proteolytic activity of midguts from 48 and 120 hpd was also 

evaluated in the presence of different inhibitors  (E64, CA-074, rRmcystatin-1b, EDTA 

and APMSF). The initial rate was determined by linear regression of fluorescence (RFU) 

per time (min) and the residual activity by the ratio between the proteolytic activity in the 

presence of the inhibitor and the control reaction (without inhibitor). 

2.9. Rmcystatin-1b knock-down by RNA interference (RNAi): Rmcystatin-1b and GFP 

double strand RNA (dsRmcys1b and dsGFP) were synthesized with the T7 Ribomax 

RNAi System kit (Promega, WI, USA) following the manufacturer’s instructions and 10 µg 

of dsRNA were injected in the hemolymph of ticks 72 hpd. After 24 h of dsRNA injection, 

the midguts of 6 ticks were individually dissected and stored in Trizol reagent (Invitrogen, 

CA, USA) and PBS for RT-qPCR and enzyme activity test, respectively. Confirmation of 
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Rmcystatin-1b knock-down was carried out by RT-qPCR as described in item 2.6 and 

proteolytic activity from the midgut of dsRNA-injected ticks was measured as described 

in 2.8. 

2.10. Effect of rRmcystatin-1b on B. bovis growth in in vitro culture: B. bovis S2P 

strain in vitro cultures were maintained in microaerophilous stationary phase (MASP) as 

described (Levy and Ristic, 1980) with a 10% hematocrit. When the percentage of 

infected red blood cells (RBC) reached 2%, parasites were transferred to a 96 well-plate 

containing complete culture medium including 40% bovine serum, 5% RBC to a final 

percentage of parasitized RBC of 0.2% and supplemented with 15 µL of BSA or 

rRmcystatin-1b (25 µM) in 15 µL. Every 24 h the medium was replaced and 5 µL of packed 

erythrocytes were collected from the bottom of each well and smeared onto glass slides, 

which were then Giemsa-stained and observed by light microscopy. The percentage of 

infected RBC was determined 24, 48 and 72 h by counting 3000 cells per slide. The 

experiment was conducted in triplicate wells for each time point. 

2.11. Statistical analysis: Rmcystatin-1b RT-qPCR results in different tick tissues, as 

well as the modulation of Rmcystatin-1b transcripts in the midgut at different time points, 

were analyzed with one-way ANOVA followed by Bonferroni’s multiple comparison test. 

All RT-qPCR tests were performed using the ΔCt data as described in (Yuan et al., 2006). 

Confirmation of Rmcystatin-1b knock-down by RT-qPCR and proteolytic activity of 

dsRmcystatin-1b and dsGFP injected ticks were tested with Mann-Whitney test. 

Percentages of B. bovis-infected RBC in in vitro culture at 72 h were tested with Mann-

Whitney test. The significant level for statistical differences was set at p < 0.05 and all 

statistical tests were performed using the R statistical computing tool (http://www.R-

project.org). 
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3. Results 

3.1. Primary structure analysis: The complete Rmcystatin-1b nucleotide sequence was 

identified in a R. microplus transcriptome (SRA SRX484287, SRX484284, SRX484280 

and SRX484277) and comprises an ORF of 303 nucleotides (Suppl. Fig. 1). Domain 

analysis of Rmcystatin-1b deduced amino acid sequence revealed the presence of a 

cystatin domain from G8 – Q87 and alignment with other type 1 cystatins showed the 

conserved motifs of the cystatin super-family, the Gly residue in the N-terminal portion 

and the QxVxG motif (Fig. 1A). Rmcystatin-1b did not present the C-terminal PW residues 

neither a putative signal peptide; rendering a mature protein with a molecular weight of 

11.1 kDa and a theoretical pI of 6.27. Phylogenetic analyses of tick cystatins clustered 

Rmcystatin-1b with other type 1 cystatins, closely related to the midgut cystatin 1 from H. 

longicornis (Hlcys-1) (Fig. 1B).  

3.2. Rmcystatin-1b transcription profile in R. microplus tissues: Rmcystatin-1b 

transcripts were mainly located in the midgut of partially and fully engorged females. In 

partially engorged ticks, Rmcystatin-1b transcription in the midgut was 65 times higher in 

relation to salivary glands (Fig. 2A), while in fully engorged ticks, 40 times higher in 

relation to hemocytes (Fig. 2B). Rmcystatin-1b transcripts were also modulated in the 

midgut at different hours post-detachment (hpd). Down-regulation was observed between 

24 and 72 hpd, followed by up-regulation between 96 and 144 hpd (Fig. 2C). No 

modulation was found in ovary or salivary glands (Suppl. Fig. 3). 

3.3. Expression, purification and characterization of rRmcystatin-1b: Recombinant 

Rmcystatin-1b was obtained in soluble form in E. coli BL21 pLysS strain (Fig. 3C – lane 

3). After two purification steps, ionic exchange (Fig. 3A) and size exclusion 

chromatography (Fig. 3B), a major 12 kDa protein band was observed (Fig. 3C – lane 5) 

and confirmed to be rRmcystatin-1b by mass spectrometry analysis (Suppl. Table 2 and 

Suppl. Fig. 2). Purified rRmcystatin-1b presented inhibitory activity towards different 

cysteine peptidases (table 1), including a recombinant B. bovis cysteine peptidase 

(XP_001612131) (Ki = 7.48 nM), although the highest affinity was observed for the 

Boophilus microplus cathepsin L-like protease (BmCL1) (Ki = 0.013 nM).  
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3.4. Effect of rRmcystatin-1b in R. microplus midgut proteolysis: Proteolytic activity 

of R. microplus midgut homogenates at different time points was measured with two 

substrates, and two proteolytic peaks, at 48 hpd and at 120 hpd, were observed (Fig. 4A). 

The proteolytic activities at 48 and 120 hpd were completely inhibited in the presence of 

E-64 (Fig. 4B). rRmcystatin-1b was able to induce a partial inhibition, similar to the 

selective cathepsin B inhibitor CA-074 (Fig. 4C and D), although the highest degree of 

inhibition was observed in the presence of rRmcystatin-1b at 48 hpd. No inhibition was 

observed in the presence of other peptidase inhibitors such as APMSF and EDTA (Fig. 

4E and F) 

3.5. Effect of Rmcystatin-1b gene knock-down on the midgut proteolytic activity: 

RT-qPCR of dsRmcystatin-1b-injected R. microplus revealed a reduction of 50% in 

Rmcystatin-1b transcripts in relation to dsGFP injected ones (Fig. 5A). Moreover, 

dsRmcystatin-1b-injected ticks presented higher proteolytic activity towards Z-FR-AMC 

(Fig. 5B), while no difference was observed towards Z-RR-AMC (Fig. 5C), however this 

activity was already low in the 48 hpd midgut (Fig. 4A). 

3.6 Effect of rRmcystatin-1b in B. bovis culture: The relevance of apicomplexan 

cysteine peptidases for parasite survival and proliferation has already been demonstrated 

(Okubo et al. 2007; Carletti et al. 2016). Therefore, we decided to evaluate the possible 

inhibitory effect of different concentrations of rRmcystatin-1b on B. bovis growth, in which 

50% reduction in the percentage of infected RBC was observed when compared to 

control-treated cultures at 72 h (Fig. 6A). The effect of rRmcystatin-1b (25 µM) was then 

studied at different time points (24, 48 and 72 h), and significant reductions in infected 

RBC percentages were observed from 48 h onwards (Fig. 6B).  
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4. Discussion 

 Rmcystatin-1b primary structure presents typical features of the cystatin super 

family, such as an N-terminal Gly residue and a QxVxG motif (Fig. 1A) (Abrahamson et 

al., 1987; Bode et al., 1988; Stubbs et al., 1990). Since the inhibitor lacks both a signal 

peptide and disulfide bridges, it can be classified into the I25A group (Rawlings et al, 

2018). Like other type 1 cystatins, Rmcystatin-1b does not possess the C-terminal PW 

motif (Ibeli et al., 2013; Lima et al., 2006) and the Asn residue relevant for legumain 

inhibition (Suppl. Fig. 4) (Alvarez-Fernandes et al., 1999). Phylogenetic analysis clustered 

Rmcystatin-1b with other type 1 cystatins, closely related to the intracellular cystatin from 

H. longicornis (Hlcys-1) confirming their close molecular phylogenetic relationship (Fig. 

1B). Hlcys-1 was co-localized in midgut cells with the cysteine peptidase cathepsin L-like 

(HlCPL-A) and was able to inhibit the hemoglobinolytic activity of HlCPL-A in vitro. These 

data suggest that Hlcys-1 may act as an endogenous inhibitor of HlCPL-A, thus regulating 

blood digestion in H. longicornis (Yamaji et al., 2010; Zhou et al., 2009). (Yamaji et al., 

2010; Zhou et al., 2009). A similar biological function might be carried out by Rmcystatin-

1b. In addition, Rmcystatin-1b transcripts were found in higher concentrations in the 

midgut of partially and fully engorged females (Fig. 2A and B), substantiating its possible 

role during blood digestion. So far only a handful of type 1 cystatins were biochemically 

described in ticks (Wang et al., 2015; Yamaji et al., 2009; Zhou et al., 2009) and most of 

them were identified in salivary gland transcriptomes (Anderson et al., 2008; Karim et al., 

2015; de Castro et al., 2016; Esteves et al., 2017) suggesting a role in blood acquisition 

rather than in blood digestion. In R. microplus only another type 1 cystatin has been 

previously described and associated with embryogenesis (Lima et al., 2006). 

Although it is well accepted that cysteine peptidases and cystatin interplay can be relevant 

for tick digestion (Schwarz et al., 2012; Sojka et al., 2013) and several putative enzymes 

and inhibitors were identified in the tick midgut by transcriptome studies (Anderson et al., 

2008; Perner et al., 2016), little is known about the temporal dynamics of this interaction. 

In Ixodes ricinus different classes of enzymes responsible for blood digestion have been 

identified (Horn et al., 2009) and shown to be active at different days of feeding (Franta 

et al., 2010). Similarly, screening of R. microplus midgut proteolytic activity at different 
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days post-detachment revealed a distinct behavior towards different substrates (Fig. 4A), 

in which higher proteolytic activity towards Z-FR-AMC was observed at 48 hpd. 

Interestingly, Rmcystatin-1b transcripts were found to be down-regulated at 48 hpd and 

up-regulated later on (Fig. 2C). Together, these data suggest that enzymes with higher 

affinity for Z-FR-AMC are relevant in the early phase of blood digestion when Rmcystatin-

1b concentrations are low and as digestion progresses, Rmcystatin-1b concentration 

increases, thus regulating such enzymes in a later period.  

To test this hypothesis, we evaluated the proteolytic activity of tick midguts at 48 

and 120 hpd in the presence of different inhibitors (Fig. 4B - F). Notably, purified 

rRmcystatin-1b (Fig. 3) was able to inhibit 67% of the proteolytic activity at 48 hpd and 

56% at 120 hpd, indicating a higher affinity for enzymes present at the early steps post-

detachment. As expected, no inhibitory activity was observed in the presence of APMSF 

(Fig. 4E) or EDTA (Fig. 4E), confirming that the activity observed is from cysteine 

peptidases. Rmcystatin-1b gene knock-down at 96 hpd (Fig. 5A) resulted in an increase 

of proteolytic activity towards Z-FR-AMC (Fig. 5B) but not towards Z-RR-AMC (Fig. 5C), 

moreover rRmcystatin-1b presented higher inhibitory activity towards cathepsin L-Like 

peptidases, such as human cathepsin-L (Ki = 0.41 nM) and BmCL1 (Ki = 0.013 nM), 

rather than cathepsin B (Ki = 6.27 nM) (table 1). Taken together, these data strongly 

suggest that the Rmcystatin-1b target is, preferentially, cathepsin L-Like peptidases, 

which have been previously described in the early phases of digestion in I. Ricinus (Horn 

et al., 2009; Sojka et al., 2013). 

Previous studies have shown that inhibition of cysteine peptidases from 

apicomplexan parasites can interfere with parasite survival (Carletti et al., 2016; Okubo 

et al., 2007). Moreover a type 2 cystatin from H. longicornis (Hlcyst-2), found mainly in 

the midgut of this tick, was able to interfere with B. bovis growth in vitro (Zhou et al., 2006), 

demonstrating the possible interaction between cysteine peptidases from parasites with 

vector cystatins. Since R. microplus is a natural B. bovis vector, we decided to investigate 

the possible role of Rmcystatin-1b during parasite-vector interaction. Although 

rRmcystatin-1b was able to inhibit recombinant B. bovis cysteine peptidase 

(XP_001612131) with high affinity (Ki = 7.48 nM), rRmcystatin-1b was only able to impair 
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B. bovis growth in high concentrations (Fig. 6A and B), suggesting that XP_001612131 

may not be involved in parasite invasion or rRmcystatin-1b is inhibiting unspecifically 

other B. bovis cysteine peptidases. It is important to note that the B. bovis experiments 

performed in this study try to mimic the parasite-vertebrate host interaction, in which the 

importance of cysteine peptidases has already been shown (Carletti et al., 2016; Okubo 

et al., 2007). However, in P. falciparum, the importance of the cysteine protease falcipain-

1 for parasite development in the mosquito midgut was demonstrated (Eksi et al., 2004). 

Moreover, a cystatin from H. longicornis was found to be up-regulated in ticks fed on dogs 

infected with B. gibsoni compared to non-infected ones and the recombinant cystatin was 

also able to inhibit B. bovis growth in culture (Zhou et al., 2006). Taken together, these 

data suggest a potential role of cysteine peptidases during parasite-vector interaction, in 

which vector cystatins may play a role during parasite proliferation in order to avoid 

deleterious effects to the tick (Florin-Christensen and Schnittger, 2009).  

In this study, we described the functional characterization of a novel type 1 cystatin from 

the tick R. microplus. Altogether our data suggested the involvement of Rmcystatin-1b in 

the regulation of cathepsin L-Like peptidases in the later phase of blood digestion, and a 

possible role in the interaction with the tick-borne hemoparasite B. bovis.  
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Table 1. Biochemical characterization of Rhipicephalus microplus Rmcystatin-1b 

inhibitory activity. 

 

Enzyme Ki (nM) 

BmCL1 0.013 

Papain 0.72 

Cathepsin L 0.41 

Cathepsin B 6.27 

B. bovis cysteine peptidase  7.48 
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FIGURES CAPTIONS 

 

Figure 1: Rmcystatin-1b primary structure analysis. (A) Alignment of amino acid 

sequence of Rhipicephalus microplus Rmcystatin-1b (MH378687) with other type 1 

cystatins from ticks; Dermacentor variabilis (ACF35512.1), Rhipicephalus 

haemaphysaloides (AIZ78005.1), Haemaphysalis longicornis (ABZ89553.1), R. 

haemaphysaloides (AIZ78005.1), R. microplus (ABG36931.1) and Ixodes scapularis 

(AAY66864.1). Identical residues are black boxed and the residues relevant for the 

inhibitory activity are indicated by arrows. (B) Phylogenetic analysis of type 1 and 2 

cystatins from the ticks H. longicornis, I. scapularis, D. variabilis and R. microplus. 

Rmcystatin-1b is indicated by an arrow. 

Figure 2: Localization of Rhipicephalus microplus Rmcystatin-1b transcripts in different 

tick tissues by RT-qPCR. Relative quantification or Rmcystatin-1b transcripts in the cDNA 

of (A) partially engorged ticks was determined in relation to the salivary glands and in (B) 

fully engorged ticks, in relation to hemocyte preparations. (C) Modulation of Rmcystatin-

1b transcripts in tick midgut at different hours post-detachment (hpd) in relation to partially 

engorged (PF) ticks. The averages ± SEM of four replicates are shown (* p < 0.05).  

Figure 3: Expression and purification of Rhipicephalus microplus rRmcystatin-1b. (A) Ion 

exchange chromatography with a HiPrep Q resin. Proteins were eluted using a linear 

gradient of 25 mM Tris-HCl buffer pH 8.0 containing 1.0 M NaCl (buffer B). (B) Size 

exclusion chromatography using a Superdex 75 columm. Arrows indicate the fractions in 

which inhibitory activity towards human cathepsin L was detected. (C) SDS-PAGE 15% 

of (1) non-induced bacteria, (2) IPTG-induced bacteria, (3) supernatant from bacterial 

lysate, (4) pooled protein from ion exchange and (5) pooled protein from size exclusion 

chromatography. 

Figure 4: Characterization of proteolytic activity of Rhipicephalus microplus midgut. (A) 

Proteolytic activity against typical cysteine peptidases substrates using midguts from 

different hpd. Proteolytic activity of midgut from 48 and 120 hpd were assayed in the 

presence of (B) E64, (C) CA-074, (D) rRmcystatin-1b¸ (E) APMSF and (F) EDTA. 

Jo
ur

na
l P

re
-p

ro
of



Figure 5: Rhipicephalus microplus Rmcystatin-1b gene knock-down by RNA 

interference. (A) Relative quantification of Rmcystatin-1b transcripts in the midgut of ticks 

at 96 hpd. (B) Proteolytic activity of the midguts towards Z-FR-AMC and (C) Z-RR-AMC. 

Mann-Whitney test revealed significant statistical difference with p = 0.0087. Bars 

represent the averages ± SEM from 6 independent samples.  

Figure 6: Rhipicephalus microplus Rmcystatin-1b and Babesia bovis growth (A): Effect 

of different concentrations of rRmcystatin-1b in B. bovis S2P strain growth in vitro after 

72 h of treatment and (B) parasite growth curve during treatment with rRmcystatin-1b (25 

µM), parasitemia was determined at 24, 48 and 72 h by microscopic observation of 

Giemsa-stained smears. Average ± SEM of three replicates are shown. * p < 0.05. 
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