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Abstract 

Background:  The human head louse, Pediculus humanus capitis, is a cosmopolitan blood-sucking ectoparasite affect‑
ing mostly schoolchildren in both developed and developing countries. In Honduras, chemical pediculicides are the 
first line of treatment, with permethrin as their main active ingredient. Despite the extended use of these products, 
there is currently no research investigating insecticide resistance in Honduran head lice. In head lice, the most com‑
mon mechanism is knockdown resistance (kdr), which is the result of two point mutations and the associated amino 
acid substitutions, T917I and L920F, within the voltage-sensitive sodium channel (VSSC).

Methods:  Genomic DNA was extracted from 83 head lice collected in the localities of San Buenaventura and La 
Hicaca, Honduras. Polymerase chain reaction (PCR) was used to amplify a 332-bp fragment of the VSSC gene that 
contains a site affected by C/T mutation which results in a T917I amino acid substitution on each human head louse 
genomic DNA fragments.

Results:  The C/T non-synonymous mutation which results in the T917I kdr amino acid substitution was detected in 
both head lice populations at frequencies ranging between 0.45–0.5. Globally, the frequency of this substitution was 
0.47. Of these, 5 (6.1%) were homozygous susceptible and 78 (93.9%) were heterozygotes. The kdr-resistant homozy‑
gote (RR) was not detected in the studied populations. Thus, 93.9% of the head lice collected in Honduras harbored 
only one T917I allele. Exact test for the Hardy-Weinberg equilibrium for both localities showed that genotype frequen‑
cies differed significantly from expectation. In addition, San Buenaventura and La Hicaca populations had an inbreed‑
ing coefficient (Fis) < 0, suggesting an excess of heterozygotes.

Conclusions:  To our knowledge, this is the first study showing the presence of the C/T mutation responsible of 
the T917I kdr allele associated with pyrethroid resistance in P. h. capitis from Honduras. The PCR-restriction fragment 
length polymorphism (RFLP) employed here has demonstrated to be a reliable, economic, and reproducible assay 
that can be used to accurately genotype individual head lice for the mutation encoding the resistance-conferring 
T917I amino acid substitution. This highlights the necessity of proactive resistance management programmes 
designed to detect pyrethroid mutations before they become established within populations of head lice.
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Background
Pediculus humanus capitis De Geer, commonly known 
as the human head louse, is a cosmopolitan and obligate 
ectoparasite found both in developed and developing 
countries. Head lice infestation is known as pediculosis 
capitis which can result in pruritus, loss of sleep, atten-
tion deficit, and is associated with secondary skin infec-
tions due to scratching of an irritated scalp [1]. Head lice 
are transmitted by direct host-to-host contact, and are 
heavily influenced by both social and behavioral trans-
mission factors in children 4–13 years-old [2]. Despite 
the fact that head lice do not possess a disease vector 
status, they have been found to carry bacteria associated 
with typhus (only under controlled experimental con-
ditions), trench-fever, and hospital acquired infections 
[3–6].

The control of pediculosis among populations com-
prises both individual and collective approaches. The for-
mer includes the use of mechanical or chemical methods, 
while the latter is based on limiting exposure through 
behavioral modifications. Specific treatment for this 
infestation relies heavily on the topical use of pediculi-
cides, compounds with toxic or otherwise deleterious 
effects to lice. Traditionally, pediculicides containing a 
wide variety of insecticides such as DDT, lindane, carba-
ryl, malathion, d-phenothrin, and permethrin have been 
employed to treat head lice infestations worldwide [7]. 
Chemical pediculicides are still recommended as first line 
of treatment worldwide and consist of over-the-counter 
(OTC) products, as well as products only available under 
medical prescription.

With sales over 200 million USD per year in the USA 
market alone, the global industry for topical OTC prod-
ucts play a significant role in the control of this infesta-
tion [8]. The most frequently used pediculicides are 
topical formulations, notably those containing pyre-
throids and organophosphates as their main active ingre-
dients. Of these, pyrethroids are the most widely used 
due to the shorter exposure time, less odor, lower mam-
malian toxicity, and relatively safe environmental persis-
tence. However, the intensive and continuous use of this 
class of insecticide has led to the development of resist-
ance, ultimately hindering control strategies in several 
countries like Denmark, UK, France, Israel, Argentina, 
USA, México, Russia and Chile [4, 9–16].

Pyrethroid resistance is perhaps the single most impor-
tant factor for the increased prevalence of head lice infes-
tations worldwide [17, 18]. Lice resistant to pyrethroids 
possess “knockdown” resistance (kdr), caused by single 
nucleotide point mutations (SNPs) in the para-orthol-
ogous voltage-sensitive sodium channel (VSSC) gene, 
which result in reducing nerve sensitivity to the insects. 
It has been clearly established that the primary amino 

acid substitution, T917I and L920F, located in domain 
II, are responsible for resistance [19]. A number of other 
mutations have been reported, but they are not good can-
didates as molecular markers of resistance. The muta-
tion D11E is unlikely to be involved in insensitivity of the 
sodium channel, as it is conservative, located in an N-ter-
minal inner membrane segment, and found in suscep-
tible body lice [20]. Mutations T929I and L932F, which 
have been reported as associated with permethrin resist-
ance were in fact expressed in the amino acid sequence 
positions of the house fly VSSC (rather than in the head 
louse amino acid sequence). Moreover, it has been dem-
onstrated that these mutations coexist en bloc as a resist-
ant haplotype, and when T197I was expressed in Xenopus 
oocytes either alone or in combination, virtually sup-
pressed permethrin sensitivity. A body of evidence points 
to the relevance of T917I amino acid substitution in 
pyrethroid resistance via the kdr-type nerve insensitiv-
ity mechanism, and therefore can be used as a molecular 
marker for resistance detection [21].

In Honduras, a few authors have reported that pedicu-
losis is a neglected and serious health problem affecting 
10–83% of school-aged children from several regions 
[22–24]. Chemical lice control in Honduras is ubiquitous, 
with an abundance of pyrethrin and pyrethroid-based 
products in the market (e.g. pyrethrin 1%, permethrin 
1–4%, and cypermethrin 0.2%). Notwithstanding, there 
is a paucity of research on head lice, and no data about 
head lice insecticide resistance are available for Hondu-
ras. With the exception of anecdotal reports about the 
inefficacy of OTC pediculicides [24], whether insecticide 
resistance is emerging among head lice populations in 
the country remains unknown. The present study aimed 
to investigate the presence and distribution of the non-
synonymous mutation responsible of the T917I kdr sub-
stitution in head lice from two localities of Honduras.

Methods
Lice samples
A total of 83 human head lice (adults and stage III 
nymphs) were collected from children residing in two 
Honduran rural communities (La Hicaca and San Bue-
naventura) (Fig.  1). Lice were collected from heads of 
infested children using a dry-combing technique with the 
aid of an electric V-comb (ToLife Technologies, Welsh-
pool, Australia), a stainless-steel metal comb that utilizes 
suction power to trap head lice and nits into single-use 
filters [24]. An adjustable headset with magnifying lenses 
(MG81001-G-2 led Headband illuminating Magnifier 
2; ToLife Technologies) to inspect the head in order to 
identify the different insect stages was used. Stainless 
steel tweezers were used to collect live lice that were 
trapped in the head of the V-comb. Overall inspection 
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of the whole head was around 20–30 min, depending on 
hair length and thickness. Between inspections, the head 
of the V-comb, hair clips, and tweezers were sanitized in 
10% bleach solution and rinsed with clean water. Then, 
lice were transferred from the filters into vials containing 
70% ethanol. Once in the laboratory, insects were stored 
at 4 °C until studied

Extraction of genomic DNA and PCR amplification 
of the kdr‑fragment
Genomic DNA was isolated from individual adults and 
nymphal stage III head lice following the methodology 
of Ascunce et  al. [25]. In short, each louse was cut in 
half using a scalpel, placed in a 1.5 ml Eppendorf tube 
containing cell lysis solution and proteinase K, then 
homogenized using a sterile plastic pestle. DNA was 
extracted from each individual louse using the Wizard 
genomic DNA purification kit (Promega, Madison, WI, 
USA) following the manufacturer’s protocol for insect 
tissues. After extracting the DNA, a dilution from the 
original concentration to ≈5–10 ng/µl was made.

The RFLP method employed here uses genomic DNA 
to discriminate between resistant and susceptible VSSC 
gene alleles in head lice and as described by Kristensen 
et  al. [9]. This method allows for easy discrimination 
of three genotypes (homozygous susceptible, heterozy-
gous and homozygous resistant) by the number and 
size of electrophoretic bands detected in an agarose gel. 
Other advantages of this method include cost-effective-
ness, efficiency and reliability. Most importantly, this 
method allows zygosity detection, which is particularly 
relevant in epidemiological studies [11].

Polymerase chain reaction (PCR) was used to amplify 
a 332-bp fragment of the VSSC gene that contains a site 
affected by a C/T mutation corresponding to the T917I 
amino acid substitution on each human head louse 
genomic DNA fragments [11].

Reactions consisted of a total volume of 25 µl includ-
ing 12.5 µl MasterMix (Promega), 1 µl (0.25 µM) of 
each primer (sense: 5’-AAT CGT GGC CAA CGT TAA 
A-3’; antisense: 5’-TGA ATC CAT TCA CCG CAT 
AA-3’), 2 µl of total genomic DNA, and 8.5 µl of ddH2O 
[13]. The PCR reactions were programmed as follows: 
94 °C for 10 min; 40 cycles of 94 °C for 30 s, 56 °C for 
30 s, 65 °C for 1 min; and a final extension step at 65 
°C for 10 min. Then, 10 µl of each PCR amplicon was 
digested with 10 U of SspI restriction enzyme (Thermo 
Fisher Scientific, Waltham, USA) at 37 °C to determine 
the AAT​˄ATT restriction site. Digested fragments were 
separated using 2% agarose gel electrophoresis, visual-
ized by staining with ethidium bromide, and analyzed 
after being photographed under UV light.

Statistical analysis of genotype frequencies
Genotype frequencies were calculated by dividing the 
number of lice of each genotype (RR, RS and SS) by 
the total number of analyzed head lice. Then, geno-
type frequencies at the 917 locus were tested to fit the 
Hardy-Weinberg (H-W) expectations using the program 
Genepop (v. 4.2) [26], option 1 (Hardy-Weinberg exact 
tests), sub-option 3 (probability test; [26]). This software 
was also used to estimate Wright’s inbreeding coefficient 
(Fis) [26] and for populations out of the H-W equilibrium. 
These values were employed to test for heterozygote 

Fig. 1  Geographical location of the head louse populations from Honduras
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deficiency and excess (Genepop option 1, sub-options 1 
and 2, respectively) using the U test as described in Ray-
mond et al. [27].

Results
We identified and determined the presence of the T917I 
kdr substitution in all 83 head lice collected (Table  1). 
The diagnostic genetic marker linked to permethrin 
resistance consists of the presence of one or two frag-
ments after the digestion with SspI. The occurrence of 
the nucleotide substitution of the C→T that codes for 
the T917I substitution results in a unique cutting site of 
this restriction endonuclease in the kdr-fragment. Thus, 
three possible amplified fragments leading to three head 
louse genotypes were found: a homozygous suscepti-
ble or wild-type allele- (SS) identified by a fragment of 
332 bp; the heterozygote (RS) with three fragments of 
332, 261 and 71 bp; and a homozygous resistant mutant 
allele-identified by two bands of 261 and 71 bp. Glob-
ally, the frequency of the T917I substitution was 0.47 in 
the two head louse populations (La Hicaca and San Bue-
naventura) of Honduras. Both lice populations possessed 
kdr-like alleles with a medium frequency of 45.6 and 
50%, respectively. Of these, 5 (6.1%) were homozygous 
susceptible and 78 (93.9%) were heterozygotes. The kdr-
resistant homozygote (RR) was not detected in the stud-
ied populations. Thus, 93.9% of the head lice collected in 
Honduras harbored only one T917I mutant allele.

The exact test for the Hardy-Weinberg equilibrium for 
both localities showed that genotype frequencies differed 
significantly from expectation. In addition, San Bue-
naventura and La Hicaca populations had an inbreeding 
coefficient (Fis) < 0, suggesting an excess of heterozygotes 
(Table 1).

Discussion
Prevalence of head lice infestation varies considerably 
among populations, with factors such as gender, age, and 
sociocultural characteristics driving important differ-
ences within populations. Despite the label of “neglected 

tropical disease”, pediculosis is prevalent in both high-
income societies as well as resource-poor countries [18]. 
Control of pediculosis in schools and day care settings are 
based on health education, early diagnosis, and prompt 
treatment of infested children. Among the diversity of 
removal and treatment methods (fine-tooth combing, 
household products, heat application, oral treatment, and 
topical insecticides), permethrin remains as the popular 
chemical compound for the treatment of head lice infes-
tations worldwide. Since the launching of permethrin as 
an OTC product in the 1980s, its extensive and intensive 
use for over 30 years has exerted a strong selective pres-
sure on over exposed insect populations across the world 
[28].

To the best of our knowledge, this is the first study ana-
lyzing the permethrin resistance status of kdr-type muta-
tions in head lice from Honduras. The frequency of the 
kdr molecular marker was at 0.4698, with an overall mean 
of 46.95% for the heterozygous lice (RS). These values are 
in accordance with those found in head lice collected in 
schoolchildren from Wales and Chile [10, 16]. In these 
studies, the global percentage of the T917I substitution 
was 0.43 and 0.50, with 77.2 and 88.8% of the lice char-
acterized as heterozygous; respectively. Despite the simi-
lar trend of the kdr mutant allele occurrence in the P. h. 
capitis from Wales, Chile and Honduras, the frequency 
of pyrethroid resistance gene is highly variable and 
widespread. A world kdr map of head louse populations 
from 14 countries, including North and South America, 
Asia, the European Union, Oceania, and Africa showed 
an overall resistance allele frequency ranging between 
29–100% [29]. This indicates that geographical variabil-
ity is highly fluctuating and is exclusively dependent on 
the selective pressure induced by the use of pyrethroids 
to treat pediculosis.

In Honduras, research on head lice infestation is scarce, 
with only three studies available in the literature [22–24]. 
In these investigations, reported prevalence of head lice 
varied from 10 to 83%, which is well above the overall 
5% epidemiological value considered to be of epidemic 

Table 1  Distribution of kdr-like alleles T917I in head lice populations from Honduras

a  S and R are susceptible and resistant alleles. Between brackets are the percentages of each genotype proportion
b  Populations were tested for the Hardy-Weinberg equilibrium by a chi-square test (χ2 = 3.84, df = 2, P < 0.05)
c  Values that are statistically significant at P < 0.05. Significance level indicates rejection of the null hypothesis Fis = 0 at P < 0.05
d  Fis values > 0 indicate heterozygote deficiency, whereas Fis values < 0 indicate heterozygote excess

Population No. of head lice analyzed (no. 
of infested subjects)

Genotypea Resistance allele 
frequency (%)

H-Wb (χ2) Fd
is

S/S R/S R/R

San Buenaventura 25 (8) 0 25 (100) 0 50 25c − 1c

La Hicaca 58 (12) 5 (8.6) 53 (91.4) 0 45.68 41.04c − 0.83c

Total 83 (20) 5 (6.1) 78 (93.9) 0 46.98 65.2c − 0.887c
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importance [30]. As in many countries, pediculosis is 
a neglected infestation in Honduras which is not prior-
itized in national or regional public health programmes. 
In fact, ectoparasitic diseases are included in the strategic 
plan for the prevention, attention, control, and elimina-
tion of neglected infectious diseases in Honduras [24]. 
Currently, permethrin and cypermethrin are the most 
commonly used OTC pediculicides in the country, with 
permethrin being the most available compound with 83% 
of the market share (CAR, personal communication). As 
a result, head lice remain exposed to pyrethroid-based 
pediculicides at a high selective pressure. An exact test 
for the Hardy-Weinberg equilibrium showed that geno-
type frequencies differed significantly from expectation 
in all the studied populations. The deficiency of both sus-
ceptible (5 per 83) and resistant homozygous (0 per 83), 
and the over-representation of heterozygotes (78 per 83), 
suggests that the head lice populations of Honduras are 
currently under active selective pressure.

Similarly, the pattern detected in Honduran specimens 
was also found in head lice from school children of Wales 
and Chile. For instance, the study performed in Wales 
showed that of the 316 analyzed lice, 55 were homozy-
gous susceptible, 17 were homozygous resistant and 244 
were heterozygotes [10]. In Chile, 5% and 6.1% were both 
homozygous susceptible and resistant, and 88.9% were 
heterozygotes [16]. Conversely, head lice collected from 
France, Argentina, USA and Russia harbored a high fre-
quency of homozygous kdr-type mutations suggesting 
that these alleles are strongly established and almost 
in fixation [4, 11, 13, 14, 31]. The evolutionary pattern 
found in the Honduran head lice suggests that if the 
selective pressure exerted by the pediculicides continue, 
it is highly probable that the kdr-type mutations might 
increase their frequency and reach fixation.

There are two possible explanations that might help to 
understand the excess of heterozygotes (93.9%) reported 
in the present study. The first and the most conservative 
option is that kdr-mutations possess little or no effect on 
the overall fitness of the individuals, resulting in a slow 
return of the resistant population to the susceptible state. 
In other words, the resistant alleles might persist in high 
frequency within populations [32, 33]. Permethrin resist-
ance via kdr mutations was not associated with any fit-
ness disadvantage in head lice from the USA [34]. It 
could be speculated that head lice have developed means 
to minimize any fitness disadvantage associated with 
these resistance mutations. Because the two mutations 
exist en block as a resistant haplotype, the occurrence of 
the mutation (L920F) may function to compensate for 
any fitness disadvantage related with the (T917I) amino 
acid substitution in permethrin-resistant head lice [21]. 
This suggests that in an environment with no insecticide 

pressure, lice harboring the kdr-like alleles can compete 
equally with those who lack the mutations (wild type 
individuals) [35]. The second option to explain the excess 
of heterozygotes is that there may be a significant fitness 
cost associated with this genotype. Lice harboring only 
one copy of the kdr mutation may have higher chances to 
survive under a selective environment compared to lice 
carrying two copies of the mutation.

A study in Burkina Faso found that heterozygote 
Anopheles gambiae male mosquitoes had a fitness advan-
tage over the homozygote susceptible ones [36]. In that 
study, heterozygote males had higher mating success than 
either resistant or susceptible homozygotes, suggesting 
of a heterozygote advantage effect of the kdr mutation in 
An. gambiae. Specifically, this research showed that there 
is a fitness cost related to possessing double alleles of the 
1014F mutation rather than having just one allele. The 
swarms where the mosquitoes segregated to mate were 
predominantly composed of homozygote resistant males; 
however, the heterozygous males were more frequently 
selected by females for mating. This reduced mating 
success in homozygote RR kdr males, affecting the neu-
ral network of the VSSC, consequently impairing some 
physiological traits such as mobility, perception of stim-
uli, and detection of olfactory signals. Reduced fitness of 
homozygous RR kdr males would play a significant role in 
slowing down the expansion of resistance allele L1014F 
in the wild mosquito populations [37].

Considering that permethrin resistance is mainly medi-
ated by kdr mutations, and is determined by the inten-
sity and frequency of the control measures employed to 
control pediculosis, different strategies could be imple-
mented. In head lice populations where resistance is low 
or near zero, pyrethroids should continue to be used in 
conjunction (if possible) with resistance-monitoring 
programmes. On the contrary, in populations with high 
resistance levels, pyrethroids should be discontinued 
and replaced by products with different modes of action. 
Finally, in populations with intermediate allele frequency, 
as is the case in Honduras, it is imperative to implement 
insecticide-resistance programmes through the monitor-
ing and prevention of head lice infestations.

For the establishment of an adequate resistance man-
agement programme, it is essential to detect early levels 
of insecticide resistance while at the same time preven-
tive measures to avoid its spread are promoted. Early 
resistance detection by traditional toxicological bioas-
say-monitoring methods is highly recommended but 
impractical and difficult to operationalize. To overcome 
these limitations, the PCR-restriction fragment length 
polymorphism (RFLP) employed in the present work 
has demonstrated to be a reliable, economic, repro-
ducible assay that can be used to accurately genotype 
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individual head lice for the resistance-conferring T917I 
mutation.

The findings presented here support the need for more 
basic and implementation research in Honduras. Of cru-
cial importance is the creation of regional health sur-
veillance programmes focusing on head lice and their 
control.

Finally, there is an urgent need to increase aware-
ness among the population and health care providers 
of the dangers of using harmful products and products 
not labeled to treat human pediculosis. Implementing 
this recommendation would considerably eliminate the 
unnecessary overexposure of children to pesticides in 
order to reduce both acute and chronic intoxications.

Conclusions
To the best of our knowledge, the findings of this work 
show for the first time that the T917I kdr substitution 
was detected in two head lice populations from Hondu-
ras, with an overall frequency of 0.47. Distribution of kdr 
genotypes differed significantly from Hardy-Weinberg 
proportions. Thus, deficiency of susceptible (6.1%), lack 
of resistant (0%) homozygous, and the overrepresenta-
tion of heterozygotes (93.9%) suggests that the studied 
populations of head lice of Honduras are currently under 
active selective pressure of pyrethroids. This highlights 
the need for proactive resistance management pro-
grammes designed to detect pyrethroid mutations before 
they become established within populations of head lice.

Abbreviations
kdr: knockdown resistance; PCR: polymerase chain reaction; RFLP: restriction 
fragment length polymorphism; VSSC: voltage-sodium sensitive channel; OTC: 
over-the-counter; SNP: single nucleotide polymorphism.
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