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a  b  s  t  r  a  c  t

In this  paper,  an  improved  adaptive  predictive  control  with  robust  filter  is developed  to  be applied  in an
artificial  pancreas.  Several  problems  inherent  to endocrine  systems  for diabetic  persons  have  to be  tackled
such  as  nonlinearities,  long  time  delays  or daily variations  of  parameters.  Three  Finite  Impulse  Response
models  for  insulin  input  and  the  same  for meal  intake  (perturbations)  corresponding  to  normal,  hyper-
hypoglycaemia  levels  to implement  three  zones  control  are  taken  into  account.  The  glycaemia  reference
trajectory  is  shaped  from  a healthy  person  response.  A  variable  weighting  factor  in the  cost  function  is
included  to  prevent  dangerous  glycaemia  excursions  out  of  the  allowed  limits.  Additionally,  a  noisy  blood
glucose subcutaneous  sensor  model  is  used.  This  control  strategy  is tested  on  30  virtual  subjects  from
the  UVa  – Padova  Simulator.  Simultaneous  meals  and  physiological  disturbances  are  taken  into  account
and  the  main  conclusions  are  drawn  from  Control  Variability  Grid  Analysis.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In type I diabetes Mellitus, the body’s immune system attacks
and destroys beta cells of the pancreas. These cells produce insulin,
a hormone that regulates the blood glucose concentration in the
body. Whereas insulin lowers the glucose content of the blood
(when hyperglycaemia occurs), glucagon (other hormone) frees the
glucose in the liver when plasma glucose concentration reaches a
hazardous low value (a hypoglycaemic episode can lead a subject
to death). The importance of giving an alternative solution through
the artificial pancreas seems to be relevant since the prevalence
of diabetes for all age-groups worldwide was estimated to be 9.9%
in 2030 by the International Diabetes Federation. (2011). The total
number of people with diabetes is projected to rise from 366 million
in 2011 to 552 million in 2030.

An artificial pancreas is a device that nowadays is being widely
studied by scientists worldwide because there are great econom-
ical interests in its completion (O’Grady, John, & Winn, 2011).
It is composed of a blood glucose sensor, an automatic control
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algorithm and an insulin pump (Fig. 1). There are several
approaches in the application of each of these three elements.
For example, glucose sensing could be non-invasive (Campetelli,
Zumoffen, & Basualdo, 2011) or minimally invasive and the route
for insulin infusion or glucose measure could be either intravenous
or subcutaneous. From the control point of view, PID (proportional
integral derivative) (Ramprasad, Rangaiah, & Lakshminarayanan,
2004) and MPC  (model predictive control) (Campetelli, Zumoffen,
Basualdo, & Rigalli, 2010; Hovorka et al., 2004) control laws are
among the most well-known methodologies proposed in the litera-
ture. However, model-based control strategies have been used with
more encouraging outcomes in tighter regulation of blood glucose
levels. The knowledge incorporated by the models in these types
of controllers is what makes them more appealing.

It is well known that glucose homeostasis of diabetic subjects
is affected by many factors. For example, insulin sensitivity can
be acutely modified by independent variables such as physical
exercise, dietary factors, alcohol intake or harmless drugs. Even
psychological conditions like stress can produce daily variations on
the glucose regulation capacity of a type I diabetic subject. In this
context, model based control algorithms using models with con-
stant coefficients could be inaccurate. Daily variations of the system
take away the credibility of model predictions. Up to now, very few
researchers addressed this issue. The most remarkable work on this
subject is that of Hovorka et al. (2004). They applied a nonlinear
model predictive controller that uses a Bayesian parameter estima-
tion to determine time-varying model parameters. El-Khatib, Jiang,

0098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
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Fig. 1. Artificial pancreas:  here the work is done in silico. By means of computer
simulation a virtual subject, a simulated sensor and insulin pump are commanded
by  the controller proposed herein so that its performance could be safely tested.

and Damiano (2007) used a Generalized Predictive Control (GPC)
algorithm with an ARMAX internal model of the system which is
recursively adapted online and in the case of Eren-Oruklu, Cinar,
Quinn, and Smith (2009), ARIMAX models were used.

Hence, the main contribution of this work is the use of online
adaptation of the model parameters. However, due to the nonlinear
nature of the daily dynamic variations suffered by the diabetic sub-
ject, the use of three internal nominal models is proposed. Three
Finite Impulse Response (FIR) models for predictions are used.
They are switched according to the subject’s glycaemia levels as
starting point for doing the adaptation. Good results using FIR mod-
els for diabetic subjects were reported by Ståhl, Johansson, and
Renard (2010). These models are implemented in the context of the
Adaptive Predictive Control with Robust Filter (APCWRF) approach
(Zumoffen & Basualdo, 2012). The novelty is the use of the infor-
mation given by three FIR models of the perturbation depending on
the level of glucose content in blood as meal announcement. The
reference trajectory adopted is based on the dynamic response of
a healthy person model with the same meal intake. Additionally,
a variable weighting factor is included in the control algorithm to
prevent the glycaemia excursions outside the healthy range. This
set of improvements allowed us to consider several typical issues
for diabetes care, leading to better predictions of the internal mod-
els and driving to more accuracy in the insulin dosage calculations.
Several experiments are performed with data from 30 subjects and
the obtained results are rigorously compared through Control Vari-
ability Grid Analysis (CVGA) (Magni et al., 2008).

2. The simulation platform

The mathematical model used in this work to synthesize and test
the controller is the one developed by (Dalla Man, Rizza, & Cobelli,
2007; Kovatchev, Breton, Cobelli, & Dalla Man, 2008) (UVa/Padova
Simulator). It considers the human endocrine system of normal,
prediabetic, type II and I diabetic subjects. Because it is one of the
only ones that has been validated against clinical and experimen-
tal data, the type I diabetic subject version has been approved by
the Food and Drugs Administration (FDA) as a substitute to animal
trials in the pre-clinical testing of closed-loop control algorithms
Kovatchev, Breton, Dalla Man, and Cobelli (2009). This model allows
simulating the dynamic effect of exogenous glucose and insulin
dosage under different specific tests and it is summarized in the
following subsections.

2.1. Glucose intestinal absorption

It is modeled by a recently developed three-compartment
model:

˙Qsto1(t) = −kgriQsto1(t) + d(t) (1)

˙Qsto2(t) = −kempt(t, Qsto(t))Qsto2(t) . . . + kgriQsto1(t) (2)

˙Qgut(t) = −kabs + kempt(t, Qsto(t))Qsto2(t) (3)

Qsto(t) = Qsto1(t) + Qsto2(t) (4)

Ra(t) = fkabsQgut(t)/BW (5)

where Qsto (mg) is the amount of glucose in the stomach (solid,
Qsto1, and liquid phase, Qsto2), Qgut (mg) is the glucose mass in the
intestine, kgri is the rate of grinding, kabs is the rate constant of
intestinal absorption, f is the fraction of intestinal absorption which
actually appears in plasma, d(t) (mg/min) is the amount of ingested
glucose, BW (kg) is the body weight, Ra (mg/kg/min) is the glucose
rate of appearance in plasma and kempt is the rate constant of gastric
emptying which is a time-varying nonlinear function of Qsto:

kempt(t, Qsto(t)) = kmax + kmax − kmin
2

[A(t)]; (6)

where

A(t) = tanh[˛(Qsto(t) − bD(t))] . . . − tanh[ˇ(Qsto(t) − dD(t))] (7)

 ̨ = 5
2D(t)(1 − b)

(8)

ˇ = 5
2D(t)d

(9)

D(t) =
∫ tf

ti

.(t) dt (10)

where  ̨ and  ̌ are rate constants of gastric emptying, ti and tf,
respectively, start time and end time of the last meal, b, d, kmax and
kmin model parameters.

2.2. Glucose subsystem

A two-compartment model is used to describe glucose kinetics:

Ġp(t) = EGP(t) + Ra(t) − Uii(t) . . . − E(t) − k1Gp(t) + k2Gt(t); (11)

Ġt(t) = k1Gp(t) − Uid(t) − k2Gt(t) (12)

G(t) = Gp(t)
VG

(13)

with Gp(0) = Gpb, Gt(0) = Gtb, G(0) = Gb. Here Gp and Gt (mg/kg) are
glucose masses in plasma and rapidly-equilibrating tissues, and in
slowly-equilibrating tissues, respectively, G (mg/dl) is plasma glu-
cose concentration, suffix b denotes basal state. EGP is endogenous
glucose production, Ra is glucose rate of appearance in plasma, E is
renal excretion, Uii and Uid are insulin-independent and dependent
glucose utilizations, respectively (mg/kg/min), VG is the distribu-
tion volume of glucose (dl/kg), and k1 and k2 (min−1) are rate
parameters.

2.3. Glucose renal excretion

Renal excretion represents the glucose flow which is eliminated
by the kidney, when glycaemia exceeds a certain threshold ke2:

E(t) = max(0,  ke1(Gp(t) − ke2)); (14)

The parameter ke1 (1/min) represents renal glomerular filtration
rate.
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2.4. Endogenous glucose production

EGP comes from the liver, where a glucose reserve exists (glyco-
gen). EGP is inhibited by high levels of glucose and insulin:

EGP(t) = max(0,  EGPb − kp2(Gp(t) . . . − Gpb) − kp3(Id(t) − Ib)); (15)

where kp2 and kp3 are model parameters and Id (pmol/l) is a delayed
insulin signal, coming from the following dynamic system:

˙I1(t) = kiI(t) − kiI1(t) (16)

˙Id(t) = kiI1(t) − kiId(t) (17)

where I (pmol/l) is plasma insulin concentration or insulinemia and
ki (1/min) is a model parameter.

2.5. Glucose utilization

Glucose utilization is made up of two components: the insulin-
independent one Uii, which represents the glucose uptake by the
brain and erythrocytes, and the insulin-dependent component Uid,
which depends non-linearly on glucose in the tissues:

Uid(t) = Vm(X(t))
Gt(t)

Km + Gt(t)
; (18)

where Vm (1/min) is a linear function of interstitial fluid insulin X
(pmol/l)

Vm(X(t)) = Vm0 + VmxX(t); (19)

which depends from insulinemia in the following way:

Ẋ(t) = p2u(I(t) − Ib) − p2uX(t); (20)

where Km, Vm0, Vmx are model parameters and Ib (pmol/l) is the
basal insulin level. Parameters p2U (rate of insulin action on periph-
eral glucose utilization) and Vmx (disposal of insulin sensitivity), will
be used in Section 6 to simulate physiological disturbances related
to insulin sensitivity.

2.6. Insulin subsystem

Insulin enters the bloodstream and is degraded in the liver and
in the periphery:

˙Ip(t) = m1Il(t) − (m2 + m4)Ip(t) + s(t) (21)

İl(t) = m2Ip(t) − (m1 + m3)Il(t) + S(t) (22)

I(t) = Ip(t)/VI (23)

where VI (l/kg) is the distribution volume of insulin and m1, m2,
m3, m4 (1/min) are model parameters. The model has exogenous
insulin flow s, coming from the subcutaneous compartments (from
a subcutaneous insulin pump), and enters directly to plasma. In the
case of a subject that do not receive exogenous insulin, i.e. a normal
subject or a type II diabetic, s = 0. S is the pancreatic insulin secretion
(pmol/kg/min) which is zero in the case of a type I diabetic subject.

2.7. Subcutaneous insulin subsystem

The subcutaneous insulin subsystem is modeled here with two
compartments, S1 and S2 (pmol/kg), which represent, respectively,
polymeric and monomeric insulin in the subcutaneous tissue:

˙S1(t) = −(ka1 + kd)S1(t) + u(t) (24)

˙S2(t) = kdS1(t) − ka2S2(t) (25)

s(t) = ka1S1(t) + ka2S2(t) (26)

Table 1
Zones definition: the models of the system and the perturbation are identified
using small steps as inputs in the insulin infusion and the meal intake respectively.
There are two  models in each zone: one for the insulin system and the other for the
perturbation effects.

Zone Glycaemia
range [mg/dl]

Nominal model
basal [mg/dl]

Health state

1 GM(t) < 84 i = 1: 70 Hypoglycaemia
2  84 ≤ GM(t) ≤ 140 i = 2: 95 Normal

(desirable)
3  GM(t) > 140 i = 3: 151.3 Hyperglycaemia

where u(t) (pmol/kg/min) represents injected insulin flow, kd is
called degradation constant, ka1 and ka2 are absorption constants.

2.8. Subcutaneous glucose subsystem

The delay of the sensor was modeled with a system of first order:

˙GM(t) = kscG(t) − kscGM(t); (27)

where GM is the subcutaneously measured glucose concentration.

3. Improved APC for diabetes care

Model Predictive Controllers need future process responses
to be specified a priori. According to Grosman, Dassau, Zisser,
Jovanoviè, and Doyle (2010), there are four ways of achieving this
goal: fixed set-point, zone, reference trajectory and funnel. For the
problem of diabetes, a fixed set-point is not as realistic as a spec-
ified zone. A normal subject is supposed to have higher or lower
glycaemia depending on the situation. Therefore a zone control
would be a more suitable solution in this case study. The followed
approach in this work uses a combination of two of the aforemen-
tioned strategies: a reference trajectory of a healthy subject and a
zone defined by upper and lower bounds.

The main control structure used here involves a commutation
between a linear time-varying robustness filter (RF) in the feed-
back path of the control loop and an adaptive predictive controller
(APC). The decision of which of both modes has to work is based on
specific indicators (zN and s1) that will be explained later. They are
closely related to the state of the subject which is checked every
sampling time. For further details as the convergence and stability
of the control system the reader should see Zumoffen and Basualdo
(2012).

According to the specific characteristics of the diabetes problem,
it was  necessary to introduce some important modifications to the
original algorithm cited above. The controller uses an FIR model
for the predictions which is adapted on-line. Because of the non-
linearity and variability of our system, three internal models are
used in different operating points instead of one: hypoglycaemic
state (70 mg/dl), normal state (95 mg/dl) and hyperglycaemic state
(151.3 mg/dl) (Table 1).

The set-point trajectory of the controller considered in this
work is the blood glucose evolution of a healthy subject and when
the diabetic subject’s blood glucose is in the hyper-hypoglycaemic
(hazardous) range, a higher weight (˛) is applied to the tracking
error between the desired trajectory and the predicted system out-
put. The controller is also improved with the information given
by 3 FIR models for the perturbation as Meal Announcement (60
minutes in advance). Finally, to prevent hypoglycaemic episodes
a pump shut-off algorithm is used (Lee, Buckingham, Wilson, &
Bequette, 2009). See the overall structure in Fig. 2. There, both the
type I diabetic subject whose blood glucose is desired to be con-
trolled and the model of the healthy subject whose blood glucose
is used as reference trajectory are shown. It can be seen that the
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Fig. 2. Improved adaptive predictive control with robustness filter structure.

supra-index i represents the different models 1, 2 or 3 that are
chosen according to the level of glucose in blood. Also important
to notice is the fact that the meal announcement is given to the
perturbation model 60 minutes in advance.

3.1. Adaptive predictive approach

Consider a single input, single output system with linearizable
dynamic for every operation point in the working region. Therefore
the predictive controller structure can be obtained by minimizing
the energy criterion in Eq. (28) applied at every step k.

J(k) =
Hp∑
j=Hw

˛2
j e

2(k + j) +
Hu−1∑
j=0

ˇ2
j û

2(k + j) (28)

where ˛j is a weighting coefficient of e(k) (the tracking error
between a desired trajectory yr(k) and the predicted system out-
put ŷ(k) evaluated on the so-called prediction horizon [Hw, Hp] via
model), y(k) corresponds to the past values of the system output
and û(k) is the control action; being û(k) the calculated future con-
trol action over the so-called control horizon [0, Hu − 1]. Eq. (28)
can consider the restrictions on y(k) and û(k). The future output
trajectory is originally calculated by means of an FIR model (ĝ(j),
j = 1, . . .,  N) of the system. The optimal control sequence û(k) can
be easily deduced for the unconstrained case by searching for the
global minimum of J(k) with respect to û(k) over Hu.

The variation law of the weight ˛j is illustrated in Fig. 4. When-
ever the blood glucose concentration exceeds the healthy range
(Fig. 3, the value of ˛j reaches its maximum. Otherwise, it varies
linearly depending on the concentration of glucose and is centered
half way from the lower to the upper bound.

As the functional of Eq. (28) is quadratic, the minimum can be
analytically calculated as a linear optimization problem without
restrictions, so the energy criterion can be expressed as:

J(k) = eT (k)A2e(k) + ûT (k)B2û(k) (29)

Fig. 3. Illustration of zone APCWRF as applied herein.

Then, the control law can be obtained by means of ∂J/∂u = 0 and
considering that only the first component of the optimal future
control actions vector will be applied û(k) in this sampling time.

As it can be observed from Eq. (29) this structure is suitable for
the design of APC by making an on line adaptation of the linear FIR
models. Using, for example, recursive least-squares identification

Fig. 4. The variation range of ˛j .
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with forgetting factor and UD factorization a suitable APC algorithm
can be developed (Jordán, Basualdo, & Zumoffen, 2006).

3.2. Adaptive predictive robust filter approach

In the case of a process-model mismatch �Gi = G − Ĝi /= 0
(where i = 1, 2 or 3 depending on the active model), the parallel
compensation structure provides a direct way to achieve robust-
ness of the closed loop by including a filter in the feedback path.
The basic idea consists of making a correction of the predictions
given by 3 nominal FIR models Gi0(z−1) by means of an adaptive
modification. Consider that:

Ĝi(z−1, k) = �̂Gi(z−1, k) + Gi0(z−1), (30)

where

�̂G
i
(z−1, k) = �̂gi(1,  k)z−1 + . . . + �̂gi(N, k)z−N (31)

The 3 nominal FIR models Gi0(z−1) are available by an off-line
identification procedure, their coefficients are gi0(j) = [hi(j) − hi(j −
1)]/�u(k) and hi(k) are the endocrine system responses to step
changes in the control signal u(k). These nominal models gener-
ate stable controllers (Di0(z−1), Ri0(z), Kig). Hence, rewriting the FIR
model prediction as:

ŷ(k) =
N∑
j=1

�̂gi(j)u(k − j) +
N∑
j=1

gi0(j)u(k − j) . . . + yid(k) + cgli + �(k);

(32)

(cgl is the state of the blood glucose concentration) if it is repre-
sented as a linear regression, the same structure as the APC case
can be found with the same regressor �(k) (Jordán et al., 2006).
The values of yi

d
(k) were computed off-line by means of 3 nomi-

nal FIR models for the perturbation given by different meal intakes
which were 60 minutes anticipated.

Then, by applying any recursive algorithm for identification pur-
poses again, the models can be updated on-line to be used for the

robust filter �̂G
i
(z−1). Under these conditions the static compen-

sation are:

Kig(k) = 1

(�̂G
i
(1,  k) + Gi0(1))

(33)

This control strategy is initially based on stable nominal con-
trollers, obtained from the nominal stable FIR models Gi0(z−1)
identified off-line. Taking into account Eqs. (32)–(33) and recursive
identification the control structure shown at Fig. 2 can be imple-
mented. The final control law is:

Û(z) = D∗i(1)Kig
D∗i(z−1)

[zHw
Ri(z)
Ri(1)

(yr(z) − yid(z)) . . . − y(z) + ŷ(z) + yid(z)];

(34)

In accordance to Eq. (34), both the reference trajectory yr and
the meal announcement in advance signals yi

d
must be known a

priori, at least (Hp − Hw) samples into the future from the current
sample.

The asymptotic performance of the adaptive control system is, in
general, better than that obtained by a robust filter system, mainly
if the particular tuning coefficients allow the adaptive control
to guarantee asymptotic steady state stability. Therefore, if sud-
den dynamic changes affect significantly the closed loop response
behavior, they may  be much more efficiently damped down by a
robust-filter system. Additionally, an asymptotic stable and good

performance behavior is achievable without extra tuning param-
eters. It must be noted that a suitable synchronization of both
approaches is useful in order to share the advantages of both modes
(Jordán et al., 2006).

3.3. Adaptive predictive control with robust filter

In order to improve the performance a proper synchronization
between both, the adaptive predictive control and the adaptive
robust filter approaches, has to be done. It is carried out by means
of an appropriate indicator function (mode) that enables the com-
mutation between both algorithms automatically. It is well known
that adaptive control systems may  suffer from long-term instabil-
ity when the manipulated variable u(k) is not rich enough in order
to ensure a good persistent excited regressor �(k) in the space RN .
In order to supervise if this condition is done, the use of proper
indicators is recommended in case it would be necessary to stop
the estimation at any time. For instance, the eigenvalues evolu-
tion of P(k) = U∗(k)D∗(k)UT∗ (k) or D*(k) is found suitable to detect
a future degradation of the estimates �̂(k); where P(k) is the pre-
diction error covariance matrix. Another useful indicator is the real
variable (Jordán et al., 2006):

zN = �

� +  T (k)U∗(k − 1)D∗(k − 1)UT∗ (k − 1) (k)
(35)

where 0 ≤ zN ≤ 1, indicating a well excited system when it is close
to 0, and a poorly excited one when it is next to 1. In addition the
second indicator defined as it is shown in Eq. (36) is very useful
(Jordán et al., 2006):

s1(k) =
0.7s1(k − 1) + 0.3z2

N(k), (a)

0.99s1(k − 1) + 0.01z2
N(k), (b)

(36)

The condition (a) is valid if s1(k − 1) ≤ 0.8zN(k) and (b) otherwise.
Finally a set of equations is available for screening if the excitation
quality was  good enough for deciding to update or not the vector of
parameters. In addition, a supervision of the control loop stability
in adaptive predictive control mode must be done. It can be made
by analyzing the roots of the polynomial D*(z−1, k) at each sam-
pling time. Thus, a complete set of conditions for developing the
synchronization rule is given.

In Fig. 5 a representative flow chart of how the synchroniza-
tion algorithm works is shown. The binary variable mode indicates
which control algorithm must be executed. For each step time, the
mode variable is analyzed, mode = 0 indicates that the APC approach
has been executed in the previous step time. Before going on with
this approach the stability of the controller D*(z−1, k) is evaluated.
If it is stable, then the excitation degree is checked through the con-
dition zN(k) < s1(k) and if it is true the APC approach is run again in
the next sampling time and the controller matrices are updated. On
the other hand, if the polynomial D*(z−1, k) is unstable or the exci-
tation degree is not enough, the APC algorithm is switched off and
the RF approach begins to work with mode = 1 indicating this situ-
ation. The RF algorithm runs during a specific period (N samples)
before returning to the APC approach and update the controller
matrices. The recursive estimation of the complete FIR model is
avoided in case of poor excitation degree, under this condition the
RF is switched on. In the adaptive predictive with RF method a nom-
inal stable controller is used together with the nominal FIR model
(both computed off-line). In this case, the recursive estimation of
the model residuals is always made without considering the exci-
tation degree, since slight modifications around the nominal FIR
model are performed. In Fig. 2 the block diagram corresponding to
the APCWRF can be seen. The interconnection of the two  methods
is carried out by the synchronization structure shown at Fig. 5.
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Fig. 5. APCWRF synchronization algorithm.

The commutation to the RF approach gives better robustness
characteristics specially when sudden changes occur (faults, impor-
tant blood glucose concentration modifications, large disturbance
magnitudes, etc). Meanwhile, the APC approach is mainly suitable
under small dynamic changes and normal operation conditions.
When the APCWRF algorithm commutes from the RF to APC the
controller matrices are updated (R and D*) and the stability is
checked. The need for running the RF during N iterations (the same
as the FIR model order) is performed so that the regressor vec-
tor could be entirely updated. Therefore, it is guaranteed that the
complete FIR model is updated.

3.4. Reference trajectory

For the reference trajectory of the controller yr(k), the blood
glucose evolution of a normal subject for the same meal intake
was used. To do so, a simulated normal subject using the model
described in Section 2 was submitted to the in silico Preclinical Trial
that will be explained in Section 4. The evolution of this subject
was recorded and then given to the control algorithm as reference
trajectory.

3.5. Pump shut-off for hypoglycaemia

To prevent hypoglycaemic episodes a shutting-off algorithm is
applied to the insulin infusion pump (Lee et al., 2009). In this case
the implementation can be written as:

if �GM(t) < 0 & GM(t) < 93 mg/dl
then u = 0 mU/h
where �GM(t) is the first order derivative and GM(t) is the subcu-

taneously measured glucose concentration. Whenever the glucose
concentration is below 93 mg/dL with a negative rate of change, the
insulin pump is turned off.

4. The in silico preclinical trial

The performance of the controller was tested on a 1-day virtual
protocol (Patek et al., 2009). First of all, the type I diabetic subject
received an insulin infusion so that his basal blood glucose reached
the basal blood glucose of the normal subject (95 mg/dl). Then, the

subject is submitted to the following perturbations (example for an
adult):

1. Subject’s blood glucose steady at 95 mg/dl at 18:00 Day 1.
2. Control loop is closed at 21:00 Day 1.
3. At 7:30 Day 2, the subject has breakfast lasting about 2 min  with

a carbohydrate (CHO) content of 50 g.
4. At approximately noon (12:00) Day 2, the subject takes a lunch

meal containing 65 g CHO. Meal duration is 15 min.
5. At 18:00 Day 2, the subject takes a dinner meal containing 80 g

CHO. Meal duration is 15 min.

This scenario changes for adolescents and children just in
the amount of CHO they eat (adolescents: 40/50/65 g; children:
25/30/40 g).

5. List of experiments

Different experiments were conducted as follows:

1. Experiment I: Adaptive Predictive Control with a step-like
changing of ˛j.

2. Experiment II: Adaptive Predictive Control with a linear chang-
ing of ˛j with Meal Announcement in advance.

3. Experiment III: Adaptive Predictive Control with a linear chang-
ing of ˛j without Meal Announcement.

4. Experiment IV: Adaptive Predictive Control with a linear chang-
ing of ˛j with a delayed Meal Announcement.

5. Experiment V: Adaptive Predictive Control with a linear chang-
ing of ˛j with Meal Announcement in advance adjusted with only
two  parameters: the maximum of ˛j and the permitted rate of
change of the pump.

6. Results

In this section, the performance of the system presented will be
tested mainly using the Control Variability Grid Analysis, (Magni
et al., 2008). It is a graphical representation of min/max glucose
values in a population of subjects either real or virtual. The CVGA
provides a simultaneous assessment of the quality of glycaemic
regulation in all subjects. As such, it has the potential to play an
important role in the tuning of closed-loop glucose control algo-
rithms and also in the comparison of their performances. So, it is a
method for visualization of the extreme glucose excursions caused
by a control algorithm in a group of subjects, with each subject rep-
resented by one data point for any given observation period. The
testing scenario is the in-silico preclinical trial of Section 4 on all the
type I diabetic subjects from the UVa/Padova Simulator of Section
2.

Everything was implemented in Matlab R2012b, version
8.0.0.783, under a Windows 7 64 bits interface on an Intel Core
i7-3770 CPU 3.40 GHz. The integration method was a variable-step
ode45 Dormand-Prince and the elapsed time for each simulation
was 8.747449 seconds.

Fig. 6 shows the performance and the evolution of some vari-
ables of the control strategy applied in an Adult subject from the
simulator submitted to Experiment II (Section 5). It is worth men-
tioning that this adult experiences a reduction in insulin sensitivity
by 10 % at 18:00 h(Eren-Oruklu et al., 2009). This has been done
by modifying parameters Vmx and p2u from the simulator (Eqs.
(19) and (20)). Both parameters were chosen because they are
related to the insulin sensitivity of the patient. In Fig. 6(a) the blood
glucose concentration of the adult type I diabetic subject using the
artificial pancreas can be seen. The erratic signal is the erroneous
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Fig. 6. Controller performance for the adult diabetic subject �1. (a) Blood glucose
concentration evolution. (b) Insulin infusion to the diabetic subject as a function
of  time. (c) Models changing during the trial using the proposed controller. (d)
Variation of ˛j during the trial. (e) Controlling mode selection.

Fig. 7. CVGA for Experiment I.

information given by the sensor to the controller. A non-white
Gaussian noise representative of commercially available blood
glucose monitoring systems was  added to the subcutaneous
signal as in Breton and Kovatchev (2008). The white zone would
be the healthiest one, like the A zone of the CVGA (Fig. 7). The
corresponding insulin infusion is in Fig. 6(b). Note that in two
occasions the pump shut-off algorithm has been activated. In this
case, the algorithm has used the three models during the trial
depending on the blood glucose level (Fig. 6(c)). The variation of
˛j during the trial can be seen in Fig. 6(d). In the case proposed
here, the upper bound when hyperglycaemia should be avoided
is fixed in 140 mg/dl, and the lower bound is 94 mg/dl (risk of
hypoglycaemia). The last, Fig. 6(e), shows the selected control
mode based on the synchronization algorithm of Fig. 5.

The next figures illustrate how the controller reacted against
the different scenarios proposed in Section 5. The first experiment
was done using a step-like change in the value of ˛j. So, it switches
between the upper bound and the lower bound which were deter-
mined for each subject. Seeing the CVGA from Fig. 7, it can be
concluded that the overall performance of the controller is fairly
good. Every subject distributed among zone A and B means that
the glycaemic excursions they underwent were acceptable for an
artificial pancreas of these characteristics. If we compare this result
to that of Fig. 8, a marked improvement can be seen. The use of
a linearly varying value of ˛j has let many subjects be in zone A
which is the safest one. Experiments III and IV, show what would
happen if the subject forgets to announce a meal in advance. See
that in both Figs. 9 and 10, many subjects reached dangerous zones,
meaning that their glycaemia was  either too low or too high. From

Fig. 8. CVGA for Experiment II.
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Table 2
APCWRF Parameters Adjustment for Experiment V

Variable Hw[samp] Hp[samp] Hu[samp] Ts[min] B � Upper [mg/dl] Lower [mg/dl] Min

Value 1 4 1 15 1.5 0.9836 140 94 1

Fig. 9. CVGA for Experiment III.

Fig. 10. CVGA for Experiment IV.

Fig. 11. CVGA for Experiment V.

both cases, evidently, the worst scenario is when the subject use a
delayed meal announcement.

Finally, experiment IV was intended to facilitate the tuning of
the controller to new subjects. For this purpose, the mean of all the
parameters were calculated. In Table 2, they can be seen. Leaving
these parameters fixed, every subject were re-adjusted by chang-
ing the maximum value of ˛j and the rate of change of the insulin
infusion from the pump alone. This resulted in a quite good perfor-
mance of the controller for all the subjects as shown in Fig. 11.

7. Conclusions

In accordance with the good results shown, it can be concluded
that the improved APCWRF, thinking specifically on the diabetic
subject requirements, can be considered as a good alternative for
the Artificial Pancreas. It could take into account the main diffi-
culties inherent to the system nonlinearities, long-term and daily
variations, risks of hyper and hypoglycaemic events, etc. In addi-
tion, the reference trajectory proposed of a healthy person, was
helpful as a guide to tune the controller to achieve an accept-
able glycaemia dynamic behaviour. These results were obtained
thanks to the inclusion of a perturbation model acting as meal
announcement. It is remarkable the importance of the subject
remembering to announce meals correctly. This is evident from the
results obtained with Experiments III and IV. From Experiment V it
can be concluded that an easy to tune controller was presented and
validated with the database of 30 subjects. Even though the results
from this experiment did not overcome the ones from Experiment
II, the simplicity reached when requiring only two  parameters to
adjust the control algorithm to a new subject made it worthwhile.
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