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Abstract. We describe equivalence classes of exact indecomposable
module categories over a finite graded tensor category. When applied
to a pointed fusion category, our results coincide with the ones obtained
in [11].

1. Introduction

Let C be a finite tensor category. A C-module category consists of an
abelian category M equipped with an action functor C ×M→M, satisfy-
ing certain associativity and unit axioms. The theory of representations of
tensor categories has proven to be a powerful tool. In [5], the authors intro-
duce the notion of exact module category, and as an intereseting problem,
the classification of indecomposable exact module categories over a fixed
finite tensor category.

Let G be a finite group, and D = ⊕g∈GCg be a G-graded tensor category.
This family of tensor categories has been studied in [4]. In [10] and [7] the
authors classify semisimple indecomposable modules over a semisimple G-
graded tensor category D in terms of semisimple indecomposable modules
over C1 and certain cohomological data. This paper is devoted to explain
this classification, in the non-semisimple setting, using a different approach,
inspired on results of [10, Section 8]. Our classification, when applied to a
pointed fusion category, recovers the results obtained in [11]. Although very
few results in this paper are new, we believe that the presentation of the
results is our main contribution. We tried to be as self-contained as possible.

The contents of the paper are the following. In Section 2 we give an
account of all the necessary preliminaries on finite tensor categories and
their representations. We recall the notion of internal Hom as an important
tool in the study of module categories. In Section 3 we recall the definition
of graded tensor category, and some results concerning the restriction and
induction of module categories. In Section 4 we start with the classification
of exact indecomposable module categories over a fixed G-graded tensor
category D = ⊕g∈GCg.
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We aim to recover results from [10, Section 8]. We show that indecom-
posable exact module categories over D = ⊕g∈GCg are parametrized by
collections (H, {Ag}g∈H , β) where

• H ⊆ G is a subgroup;
• A1 = A is an algebra in C = C1 such that CA is exact indecomposable;
• Ah is an invertible A-bimodule in Ch, for any h ∈ H;
• for any f, h ∈ H there are bimodule isomorphisms Af⊗AAh ' Afh;

• β : H ×H → k× is a normalized 2-cochain such that 1 = dβ ωA.

Here ωA is a 3-cocycle for H associated to the module category CA. We also
prove that two collections (H, {Ag}g∈H , β), (F, {Bf}f∈F , γ) give equivalent
module categories if and only if there exists g ∈ G, and an invertible (B,A)-
bimodule C ∈ B(Cg)A such that

• F = gHg−1;
• Bghg−1⊗BC ' C⊗AAh, for all h ∈ H;

• the class of β−1ΩA
g γ

g is trivial in H2(H,k×).

Here ΩA
g : G × G → k× is a certain 2-cochain associated to the module

category CA. The 2-cochain ΩA
g does not appear in the results of [10, Section

6] when the authors study equivalence classes of certain cohomological data
classifying module categories.

When D is a pointed fusion category, the classification coincide with the
results obtained in [11, Theorem 1.1]. This is explained in Section 4.3.

Finally, we briefly explain results from [10, Section 8], reconciling our
approach with the results presented in [10, Theorem 2].

1.1. Preliminaries and Notation. We shall work over an algebraically
closed field k of characteristic 0. All vector spaces are assumed to be over
k. If C,D,A, E are categories, F,G : C → D, H : D → A, J : E → C are
functors, and η : F → G is a natural transformation, we shall denote by
Hη : H ◦ F → H ◦G, and ηJ : F ◦ J → G ◦ J , the natural transformations
defined by

(Hη)X = H(ηX), (ηJ)Y = ηJ(Y ), for any X ∈ C, Y ∈ E .

2. Representations of tensor categories

For basic notions on finite tensor categories we refer to [3], [5]. Let C be a
finite tensor category over k. A (left) module over C is a finite k-linear abelian
category M together with a k-bilinear bifunctor ⊗ : C ×M→M, exact in
each variable, endowed with natural associativity and unit isomorphisms

mX,Y,M : (X ⊗ Y )⊗M → X⊗(Y⊗M), `M : 1⊗M →M.

These isomorphisms are subject to the following conditions:

(2.1) mX,Y,Z⊗M mX⊗Y,Z,M = (idX ⊗mY,Z,M ) mX,Y⊗Z,M (αX,Y,Z⊗idM ),

(2.2) (idX⊗lM )mX,1,M = idX⊗M ,
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for any X,Y, Z ∈ C,M ∈ M. Here α is the associativity constraint of C.
Sometimes we shall also say that M is a C-module or a C-module category.
In a similar way, one can define right modules and bimodules. See for
example [9].

Let M and M′ be a pair of C-modules. We say that a functor F :M→
M′ is a module functor if it is equipped with natural isomorphisms

cX,M : F (X⊗M)→ X⊗F (M),

X ∈ C, M ∈M, such that for any X,Y ∈ C, M ∈M:

(idX⊗cY,M )cX,Y⊗MF (mX,Y,M ) = mX,Y,F (M) cX⊗Y,M(2.3)

`F (M) c1,M = F (`M ).(2.4)

There is a composition of module functors: if M′′ is another C-module
and (G, d) :M′ →M′′ is another module functor then the composition

(2.5) (G ◦ F, e) :M→M′′, eX,M = dX,F (M) ◦G(cX,M ),

is also a module functor.

We denote by FunC(M,M′) the category whose objects are module func-
tors (F, c) fromM toM′. A morphism between module functors (F, c) and
(G, d) ∈ FunC(M,M′) is a natural module transformation, that is, a natural
transformation α : F → G such that for any X ∈ C, M ∈M:

dX,MαX⊗M = (idX⊗αM )cX,M .(2.6)

Two module functors F,G are equivalent if there exists a natural module
isomorphism α : F → G.

Two C-modules M and M′ are equivalent if there exist module functors
F : M → M′, G : M′ → M, and natural module isomorphisms IdM →
F ◦G, IdM′ → G ◦ F .

A module is indecomposable if it is not equivalent to a direct sum of two
non trivial modules. Recall from [5], that a moduleM is exact ifM for any
projective object P ∈ C the object P⊗M is projective inM, for all M ∈M.
Right module categories and bimodule categories are defined similarly. See
for example [9]. If M,N are C-bimodule categories, we denote by M�C N
the balanced tensor product over C. See [8].

The next result seems to be well-known.

Lemma 2.1. Let M be a C-module category. If X ∈ C,M ∈ M are non
zero objects, then X⊗M 6= 0.

Proof. Let us assume that X⊗M = 0. The map

M
lM−−→ 1⊗M coevX⊗idM−−−−−−−−→ (∗X⊗X)⊗M

m∗X,X,M−−−−−−→ ∗X⊗(X⊗M) = 0,

is the zero morphism. Since the coevaluation coevX is a monomorphism,
and ⊗ is bi-exact, then coevX⊗idM is a monomorphism. Thus, the above
composition is also a monomorphism. Hence M = 0. �
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2.1. The internal Hom. Let C be a finite tensor category and M be a C-
module. For any pair of objects N,M ∈ M, the internal Hom is an object
HomC(N,M) ∈ C representing the functor HomM(−⊗N,M) : C → vect k.
That is, there are natural isomorphisms

(2.7) HomC(X,HomC(N,M)) ' HomM(X⊗N,M), for all X ∈ C.

Proposition 2.2. [5, Thm. 3.17] For each object 0 6= M ∈ M the internal
Hom A = HomC(M,M) is an algebra in C. If N is a subobject of M then
HomC(M,N) is a right ideal of A. Moreover HomC(M,−) : M → CA is a
C-module functor. If M is exact indecomposable, the functor

HomC(M,−) :M→ CA
is an equivalence of C-module categories. �

Using the above Proposition, when dealing with exact indecomposable
module categories, we can restricts ourself only with those of the form CA,
for some algebra A ∈ C. The next result was given in [5].

Proposition 2.3. Let A,B ∈ C algebras such that the module categories
CA, CB are exact indecomposable. There exists an equivalence of categories

FunC(CA, CB) ' ACop
B .

�

3. Graded tensor categories

An important family of examples of tensor categories come from group
extensions. Given a finite group G, a (faithful) G-grading on a finite tensor
category D is a decomposition D = ⊕g∈GCg, where Cg are non-zero full
abelian subcategories of D such that

⊗ : Cg × Ch → Cgh, for all g, h ∈ G.

In this case, we say that D is a G-extension of C := C1. These extensions
were studied and classified in [4] in terms of the Brauer-Picard group of the
category C and certain cohomological data.

Example 3.1. Let G be a finite group and ω ∈ H3(G, k×) 3-cocycle. The
category C(G,ω) has objects finite dimensional G-graded vector spaces, with
associativity constraint defined by

aX,Y,Z((x⊗y)⊗z) = ω(g, h, f)x⊗(y⊗z),

for any X,Y, Z ∈ C(G,ω), and any homogeneous elements x ∈ Xg, y ∈
Yh, z ∈ Zf . The tensor category C(G,ω) is an example of a G-extension
of the category of finite dimensional vector spaces vect k. More precisely,
C(G,ω) = ⊕g∈Gvect g, where vect g denotes the category of finite dimen-
sional vector spaces supported in the component g.

We list some important properties of these categories.
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Proposition 3.2. Assume D = ⊕g∈GCg is a G-graded extension of C. The
following statements hold.

1. For any g, h ∈ G, the tensor product of D induces an equivalence of
C-bimodule categories

Mg,h : Cg�CCh → Cgh, Mg,h(X � Y ) = X⊗Y.
2. The associativity constraints of D induce natural C-bimodule isomor-

phisms

αf,g,h : Mfg,h(Mf,g �C IdCh)→Mf,gh(IdCf �C Mg,h),

for any f, g, h ∈ G, such that

(3.1)
Mf,ghk(Id Cf�Cαg,h,k)◦αf,gh,k(IdCf�CMg,h�C IdCk)◦Mfgh,k(αf,g,h�C Id Ck)

= αf,g,hk(IdCf �C IdCg �C Mh,k) ◦ αfg,h,k(Mf,g �C IdCh �C IdCk).

Proof. It follows, mutatis mutandis, from the proof of [4, Theorem 6.1], in
the non-semisimple case. See also Equation (51) of [4]. �

For any f, g ∈ G, we can choose C-bimodule equivalences

(3.2) Mf,g : Cfg → Cf�CCg
such that Mf,g ◦Mf,g = Id Cfg .

If D̃ = ⊕g∈GC̃g is another G-graded tensor category, a graded tensor

functor (F, ξ) : D → D̃ is a tensor functor such that F (Cg) ⊆ C̃g, for any g ∈
G. This means that there are natural isomorphisms ξX,Y : F (X)⊗F (Y ) →
F (X⊗Y ) such that
(3.3)
ξX,Y⊗Z(id F (X)⊗ξY,Z)α̃F (X),F (Y ),F (Z) = F (αX,Y,Z)ξX⊗Y,Z(ξX,Y⊗id F (Z)).

Here α, α̃ denote the associativity constraint of the tensor categories D, D̃.

If we denote by Fg : Cg → C̃g the restriction of the functor F and by

Nf,g : C̃f � C̃g → C̃fg the restriction of the tensor product of D̃, then the
tensoriality of the functor F implies that there are natural isomorphisms
ξf,g : Nf,g(Ff � Fg) → FfgMf,g (these are the restrictions of the natural
isomorphisms ξ to the category Cf × Cg), and equation (3.3) implies that

(
ξfg,h ◦ id Id f�Mg,h

)(
idNf,gh ◦ (id f � ξg,h)

)
α̃f,g,h(Ff � Fg � Fh) =

=
(
Ffghαf,g,h

)(
ξfg,h ◦ idMf,g�Id h

)(
idNfg,h ◦ (ξf,g � id h)

)
.

(3.4)

Here, for any g ∈ G, we denote Id g : Cg → Cg the identity functor, and
id g : Fg → Fg the identity natural transformation.

Remark 3.3. For any G-graded tensor category D there exists a skeletal G-

graded tensor category D̃ and a graded tensor equivalence (F, ξ) : D → D̃.
Hence, we can always work over a skeletal graded tensor category.
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3.1. Induction and restriction of module categories. Let D be a ten-
sor category, and let C be a tensor subcategory of D. Assume that N is a
C-module. We shall denote by IndDC (N ) := D�CN the induced D-module,
where the D-action is induced by the tensor product of D [6, Proposition
2.13]. Let M be a D-module, we shall denote by ResDCM the restricted
C-module.

The following result seems to be well-known. We include the proof for
completeness’ sake. Part of it is contained in [10, Corollary 9], see also [6,
Proposition 3.7].

Lemma 3.4. Assume that we have a decomposition D = C ⊕ C′ as abelian
categories, such that C is a tensor subcategory. Let M be an exact inde-
composable D-module category such that it decomposes as M = ⊕ni=1Mi,
where Mi are exact indecomposable C-modules. Assume also that every
time we choose non zero objects X ∈ C′, N ∈M1, then X⊗N /∈M1. Take
0 6= M ∈ M1, and A = HomD(M,M). Then A ∈ C, M1 ' CA, and there
is an equivalence of D-modules

M' IndDC (CA).

Proof. Take arbitrary V ∈ C′. Then by (2.7)

HomD(V,A) ' HomM(V⊗M,M).

Since V⊗M /∈ M1, then HomD(V,A) = 0, and A ∈ C. If X ∈ C, there are
isomorphisms

HomC(X,HomC(M,M)) ' HomM1(X⊗M,M),

HomD(X,HomD(M,M)) ' HomM(X⊗M,M).

Since HomM1(X⊗M,M) = HomM(X⊗M,M), then

HomC(X,HomC(M,M)) ' HomD(X,A) ' HomC(X,A).

Whence, A = HomC(M,M), and M1 ' CA as C-modules. Since M is
indecomposable, the actionD�CM1 →M, X�V 7→ X⊗V is an equivalence
of D-modules. �

In the following Lemma we include some properties of the induced and
restricted modules categories.

Lemma 3.5. Assume D = ⊕g∈GCg is a G-graded extension of C = C1. Let
N be a C-module and M a D-module. The following statements hold.

1. M is an exact D-module, if and only if, ResDCM is an exact C-
module.

2. If N is exact (indecomposable) then IndDC (N ) is exact (indecompos-
able).

Proof. 1. Since C ⊂ D is a tensor subcategory, then it follows from [2,
Corollary 2.5], that if ResDCM is exact C-module, then M is exact as a D-
module. Now, assume that M is exact. Let be P ∈ C a projective object
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and X ∈ ResDCM. Since P ∈ D is projective, then P⊗X is projective in
ResDCM, hence ResDCM is exact.

2. To prove the exactness of IndDC N we follow the argument of [1, Prop.
2.10]. Since IndDC N = ⊕g∈GCg �C N , then IndDC N is an exact D-module
if and only if Cg �C N is an exact C-module category for any g ∈ G. It
follows from [5, Lemma 3.30] that Cg �C N is an exact EndC(Cg)-module
category. Using [4, Prop. 4.2], since Cg is an invertible C-bimodule category,
EndC(Cg) ' C. Hence Cg �C N is an exact C-module category.

Assume that N is an indecomposable C-module category, and we can
decompose IndDC N =M1⊕M2 as D-modules. By restriction N ' 1�CN =
N1 ⊕ N2 as C-modules, then N1 = 0 or N2 = 0. Suppose N2 = 0, thus
N ⊂ M1. Take a non-zero object 0 6= M ∈ M2. We can assume that
M ∈ Cg�CN , for some g ∈ G. Take 0 6= Y ∈ Cg−1 , then, by Lemma 2.1
0 6= Y⊗M ∈ N is a non-zero object. Since the restriction of the tensor
product maps Cg−1 × Cg → C, then Y⊗M ∈ N2, which contradicts our
assumption. �

4. Module categories over G-graded tensor categories

Let G be a finite group and D = ⊕g∈GCg be a G-graded extension of
C = C1. In [10], [6], [7] the authors, independently, classify semisimple
indecomposable modules over D in terms of exact C-modules and certain
cohomological data. We shall recall these results dropping the semisimplicity
condition and using instead the exactness hypothesis.

We shall assume that D is a skeletal graded tensor category. See remark
3.3.

For any subset F ⊂ G, we define CF = ⊕g∈FCg. In case F is a subgroup,
CF is a tensor subcategory of D. If N is a C-module, we say that N is
F -equivariant if Cf�CN ' N as left C-module categories, for any f ∈ F .

Lemma 4.1. Assume A ∈ C be an algebra such that CA is an exact inde-
composable C-module category. The following holds:

1. For any g ∈ G, Cg �C CA is an exact indecomposable C-module.
2. The tensor product of D induces an equivalence of left D-module

categories (Cg)A ' Cg �C CA.
3. The natural module isomorphism

Mfg,h(Mf,g �C IdCh) � Id CA
αf,g,h�id
−−−−−−→Mf,gh(IdCf �C Mg,h) � Id CA ,

are determined by scalars ωAf,g,h ∈ k×, for any f, g, h ∈ G.

4. ωA ∈ Z3(G, k×) is a 3-cocycle. Its cohomology class does not change
if we change the monoidal equivalence class of D. If CB ' CA are
equivalent as C-modules, then ωA = ωB.
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Proof. 1. This statement was proved in (the proof of) Lemma 3.5 (2).
2. The proof follows, mutatis mutandis, from the proof of [10, Lemma 24]

in the non-semisimple case.
3. For any finite tensor category D, and any exact indecomposable D-

moduleM, the identity functor IdM is a simple object in EndD(M). Since
the C-module category Cf �C Cg �C Ch �C CA is equivalent to (Cfgh)A, then
there is an equivalence of categories

(4.1) FunC((Cfgh)A, (Cfgh)A) ' A(Cfgh)op
A

The later category being skeletal, since D is skeletal. The module functors
Mfg,h(Mf,g �C IdCh) � Id CA ,Mf,gh(IdCf �CMg,h) � Id CA correspond, under
equivalence (4.1), to invertible objects. Since (Cfgh)A is indecomposable,
the identity functor is simple, then any invertible object is simple. Thus,
natural transformations αf,g,h � id correspond to ωAf,g,hid .

4. It follows from (3.1) that ωA is a 3-cocycle and from (3.4) that the

cohomology class of ωA does not change if we replace D̃ by another skeletal
graded tensor category monoidally equivalent to D.

Assume that Φ : CA → CB,Ψ : CB → CA are C-module equivalences, and
let be η : Φ ◦Ψ→ Id CB a natural module isomorphism. For any f, g, h ∈ G,
let us denote

Ff,g,h = Mfg,h(Mf,g �C IdCh), and Gf,g,h = Mf,gh(IdCf �C Mg,h).

The commutativity of diagram

(4.2) Ff,g,h � Φ ◦Ψ

id �η
��

(Id �Φ◦Ψ)(α�id )// Gf,g,h � Φ ◦Ψ

id �η
��

Ff,g,h � Id CB
α�id // Gf,g,h � Id CB

implies that ωA = ωB.
�

Remark 4.2. Let G be a finite group, ω ∈ H3(G,k×) be a 3-cocycle, and
C(G,ω) be the fusion category described in Example 3.1. For any algebra
A ∈ C(G,ω) such that the module category C(G,ω)A is exact indecompos-
able, one can verify that ωA = ω.

Definition 4.3. Assume A ∈ C be an algebra such that CA is an exact in-
decomposable C-module category. A type-A datum for the module category
CA is a collection (H, {Ah}h∈H , β) where

• H ⊆ G is a subgroup;
• A1 = A;
• Ah is an invertible A-bimodule in Ch, that is Ah ∈ A(Ch)A, for any
h ∈ H;
• there are A-bimodule isomorphisms Af⊗AAh ' Afh, for any f, h ∈
H;
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• β : H ×H → k× is a 2-cochain such that for any f, g, h ∈ H
(4.3) βf,1 = 1 = β1,f , βf,gβfg,h = βg,hβf,ghω

A
f,g,h.

Let B ∈ C be another algebra, such that CB is an exact indecomposable C-
module category. A type-A datum (F, {Bf}f∈F , γ) for the module category
CB, is equivalent to the type-A datum (H, {Ah}h∈H , β) for CA if

• F = H;
• there exists an invertible (B,A)-bimodule C ∈ BCA together with

(B,A)-bimodule isomorphisms

Bh⊗BC ' C⊗AAh, for any h ∈ H;

• there are scalars τh ∈ k× such that

τlτhτ
−1
hl γh,l = βh,l, for l, h ∈ G.

Remark 4.4. If (H, {Ag}g∈H , β) and (H, {Bf}f∈F , γ) are equivalent, then
the functor −⊗B C : CB → CA is a C-module equivalence, and using Lemma
4.1 (4), we get that the class of βγ−1 is trivial in H2(H,k×).

Remark 4.5. The idea of the definition of the type-A datum is taken from
[10, Section 8].

Lemma 4.6. The existence of a type-A datum (H, {Ag}g∈H , β) for a C-
module category CA implies that CA is H-equivariant.

Proof. Indeed, for any h ∈ H, the functors

Ψh : Ch �C CA → CA, Ψh(X � V ) = (X⊗V )⊗AAh−1 ,

are well-defined C-module equivalences. �

Now, we shall explain the classification of indecomposable exactD-module
categories obtained in [7] and [10]. This classification will be done in two
steps. In the first step will associate to any indecomposable exact D-module
category a pair (H,N ), where H ⊆ G is a subgroup, and N is an exact inde-

composable CH -module category such that the restriction ResCHC N remains
indecomposable as a C-module. In the second step, using Proprosition 4.11,

we shall associate, to any such pair (H,N ) a type-A datum for ResCHC N .

4.1. First step. Let H be a subgroup of G, and letN be an indecomposable

exact CH -module category such thatM = ResCHC N is an exact indecompos-
able C-module category. Under these assumptions, we shall call (H,N ) a
type-1 pair.

Note that if (H,N ) is a type-1 pair, then, for any g ∈ G, the category
CgH �CH N has an action of CgHg−1 , such that

Res
CgHg−1

C
(
CgH �CH N

)
' Cg �CM.

By Lemma 4.1 (1) Cg �C CA is indecomposable, then (gHg−1, CgH �Ch N )
is again a type-1 pair.
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Definition 4.7. Two type-1 pairs (H,N ), (F,N ′) are equivalent if there
exists g ∈ G such that

• H = gFg−1, and
• there is an equivalence N ' CgF �CF N ′ of CH -module categories.

It follows from Lemma 3.5 (2), that if (H,N ) is a type-1 pair, then
IndDCHN is an exact indecomposable D-module category. We shall see that
this establishes a bijective correspondence between equivalence classes of ex-
act indecomposable D-module categories and equivalence classes of type-1
pairs.

Let’s start with an exact D-module category N . It follows from Lemma
3.5 (1) that ResDC N is exact. Then, we can decompose it as ResDC N =
⊕ni=1Ni, into a direct sum of exact indecomposable C-module categories.

Denoted by Ni the equivalence class of the C-module Ni, and by XN =
{Ni : i = 1 . . . n}.

The group G acts on the set XN . Namely, g · Ni = Nj , if Cg�CNi ' Nj
as C-modules. This action is transitive since N is indecomposable as a D-
module. The next result is well-known.

Lemma 4.8. If N ,M are equivalent D-module categories, then XM ' XN
as G-sets. If H = Stab(N1) := {f ∈ G|f · N1 = N1}, then XN ' G/H as
G-sets. �

Proposition 4.9. [7, Proposition 4.6] Let (H,N ) and (F,M) be two type-1
pairs. The following statements are equivalent.

1. There exists an equivalence of D-module categories

(4.4) IndDCHN ' IndDCFM.

2. The type-1 pairs (H,N ), (F,M) are equivalent.

Proof. (1)⇒ (2) If IndDCHN , IndDCFM are equivalent as C-modules, then, by
Lemma 4.8(1), XInd DCHN

' XInd DCFM
as G-sets.

Decompose ResDC (IndDCHN ) into a direct sum ⊕ni=1Ai of indecomposable

C-module categories. Since the module category ResCHC N is included in

ResDC (IndDCHN ), and it remains indecomposable as C-module, we can assume

that A1 ' ResCHC N . It is not difficult to see that Stab(ResCHC N ) = H. By
Lemma 4.8, G/H ' G/F , thus, there exist g ∈ G such that H = gFg−1.

The restriction of the equivalence (4.4), gives an equivalence of CH -modules

CgF�CFM' CH�CHN ' N ,

where the CH -action over CgF is induced by the tensor product of C, and is
well defined since Hg = gF .
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(2) ⇒ (1) Let g ∈ G such that H = gFg−1 and CgF�CFM ' N as
CH -modules. For any a ∈ G, there are equivalences of right CF -modules

CaH�CHCgF ' (Ca�CCH)�CHCgF ' Ca�C(CH�CHCgF ) ' Ca�CCgF ' CagF ,
(4.5)

where the right CF -module structrure is given by tensor product.
Let {t1, ..., tn} be a set of representative of the cosets of G/F , thus

{t1g−1, ..., tng
−1} is a set of representative of the cosets of G/H. Using

(4.5), we have D-module equivalences

D�CFM' ⊕
n
i=1CtiF�CFM' ⊕

n
i=1(Ctig−1H�CHCgF )�CFM

' ⊕ni=1Ctig−1H�CH (CgF�CFM)

' ⊕ni=1Ctig−1H�CHN ' D�CHN .
�

Now, we shall prove that the map

(H,N ) 7−→ IndDCHN
gives a first step to classify exact indecomposable D-module categories. The
proof of the following Theorem follows the same steps as the proof of [10,
Proposition 12] in the semisimple case.

Theorem 4.10. [10, Proposition 12] There exists a bijection between

• equivalence classes of exact indecomposable D-modules, and
• equivalence classes of type-1 pairs (H,N ).

Proof. Take a type-1 pair (H,N ). Then IndDCHN is an exact indecomposable
D-module. By Proposition 4.9, the equivalence class of this module category
does not depend on the equivalence class of the pair (H,N ). The type-1
pair associated to IndDCHN is (H,N ). This follow from the first part of the
proof of Proposition 4.9.

Let M be an exact indecomposable D-module. We shall construct a
type-1 pair (H,N ) such that M ' IndDCHN . Let ResDCM = ⊕ni=1Mi be a
decomposition, where Mi is an exact indecomposable C-module. Consider
the action of G over the XM as described before.

Let H := Stab(M1) = {f ∈ G : Cf�CM1 ' M1 as C-modules}. Set
N :=M1. The action ⊗ : D×M→M restricts to an action ⊗ : CH×N →
N , inducing a structure of CH -module over N . N is an exact CH -module
category sinceM is an exact C-module. N is an indecomposable CH -module
since N is indecomposable as a C-module. Hence, we obtain a type-1 pair
(H,N ). It follows from Lemma 3.4 that M' IndDCHN as D-modules. �

4.2. Second step. To any type-1 pair, we shall associate a type-A datum.
We shall introduce a new equivalence relation of type-A data, such that
there exists a bijection between equivalence classes of type-1 pairs and type-
A data.
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Proposition 4.11. Let A ∈ C be an algebra such that CA is an exact in-
decomposable C-module category, and H ⊆ G be a subgroup. The following
statements are equivalent.

1. There exists an exact indecomposable CH-module category N such

that ResCHC N ' CA.
2. There are C-module equivalences Ψg : Cg�CCA → CA, g ∈ H, together

with natural C-module transformations

(4.6) mf,g : Ψfg(Mf,g � Id CA)→ Ψf (Id Cf � Ψg)

f, g ∈ H, such that Ψ1 is the tensor product, and

(4.7)
(
mf,g(Id Cf � Id Cg � Ψh)

)
◦
(
mfg,h(Mf,g � Id Ch � Id CA)

)
=
(
Ψf (id Cf �mg,h)

)
◦
(
mf,gh(Id Cf �Mg,h�Id CA)

)
◦
(
Ψfgh(αf,g,h�id CA)

)
,

for any f, g, h ∈ H.
3. There exists a type-A datum (H, {Ag}g∈H , β) for the module CA.

Proof. 1)⇒ 2). For any g ∈ H, define Ψg the restriction to Cg of the action
of CH to CA, that is

Ψg : Cg �C CA → CA, Ψg(X � V ) = X⊗V,

for any X ∈ Cg, V ∈ CA. Ψg is a C-module functor since the action is
associative, and it is an equivalence since CA is indecomposable. If m denotes
the associativity of the CH -module N , then, for any f, g ∈ H, X ∈ Cf , Y ∈
Cg, V ∈ N define

(mf,g)X,Y,V = mX,Y,V .

The associativity axiom (2.1) implies (4.7).
2)⇒ 3). Using Lemma 4.1 (2), there are C-module functors Ψg : (Cg)A →

CA. Here, we are abusing of the notation denoting also by Ψg the composi-
tion of the functors Ψg with the equivalences (Cg)A ' Cg�CA of Lemma 4.1
(2). By [5, Prop. 3.11] any module functor between exact module categories
is exact, then there exists an object Ah ∈ A(Ch)A such that

Ψh = −⊗AAh−1 .

Bimodule Ag is invertible since Ψh is an equivalence, for any h ∈ H. As
the functors Ψfh(Mf,h� Id CA),Ψf (Id Cf �Ψh) are equivalent, then there are
bimodule isomorphisms Af⊗AAh ' Afh, for any f, h ∈ H.

Since Ψ1 is the identity functor, then A1 = A. As C-module ResCHC N is
indecomposable, then the identity functor IdN is a simple object. Arguing as
in Lemma 4.1 (3), we obtain that, for any f, g ∈ H the natural isomorphisms
mf,g are determined by scalars βf,g ∈ k×. Equation (4.7) implies (4.3).
Thus, (H, {Ag}g∈H , β) is a type-A datum for CA.

3)⇒ 1). We define an action of CH on CA as follows:

X⊗V = (X⊗V )⊗AAf−1 ∈ CA,
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for any f ∈ H, X ∈ Cf , V ∈ CA. The associativity is defined as follows. For
any f, h ∈ H, X ∈ Cf , Y ∈ Ch, V ∈ CA define

mX,Y,V = βf,h
(
idX⊗Y⊗V⊗φf−1,h−1

)
: (X⊗Y )⊗V → X⊗(Y⊗V ),

where φf,h : Afh → Af⊗AAh are the A-bimodule isomorphisms. Here, for
simplicity, we are omitting the associativity isomorphisms of D. �

In conditions of Proposition 4.11, shall say that (H, {Ag}g∈H , β) is the
associated type-A datum to the type-1 pair (H,N ). We have to explain
now, what happens with the type-A data, if we change the equivalence class
of the CH -module category N .

Proposition 4.12. Assume (H,N ), and (H,N ′) are two type-1 pairs. As-

sume that ResCHC N ' CA, and ResCHC N ′ ' CB, for some algebras A,B ∈
C. Then, the associated type-A data (H, {Ag}g∈H , β), (H, {Bf}f∈H , γ) are
equivalent if and only if N ' N ′ as CH-module categories.

Proof. Assume that (Φ, c) : CB → CA is an equivalence of CH -module cate-
gories. Then, there exists an object C ∈ BCA such that Φ = −⊗BC. Since
Φ is a CH -module functor, then the existence of natural isomorphisms

cX,V : ((X⊗V )⊗BBh−1)⊗BC → (X⊗(V⊗BC))⊗AAh−1 ,

for any h ∈ H, X ∈ Ch, implies that Bh⊗BC ' C⊗AAh, for any h ∈ H and
the isomorphisms cX,V are determined by scalars τh. Equation (2.3) implies
that the type-A data (H, {Ag}g∈H , β), (H, {Bf}f∈F , γ) are equivalent. �

Now, we will show how the type-A datum is modified if we change the
module category N by CgH �CH N . For this, we must understand how the
associativity isomorphisms mf,h, described in (4.6), are modified.

Let be (H,N ) a type-1 pair, and g ∈ G. Assume that ResCHC N ' CA,
for some algebra A ∈ C. For any h ∈ H, let Ψh : Ch �C CA → CA be the
restrictions of the action of CH on N . The category CgH�CHN has an action
of CgHg−1 , such that

Res
CgHg−1

C
(
CgH �CH N

)
' Cg �C CA.

Let Ψ̃h : Cghg−1 �C Cg �C CA → Cg �C CA be the restrictions of the action of
CgHg−1 on the category Cg �C CA. Explicitly, for any h ∈ H

(4.8) Ψ̃h = (Id g � Ψh)
(
Mg,h(Id gh �Mg−1,g)(Mgh,g−1 � Id g) � IdM

)
.

Here we denote M = CA, and for any f ∈ G, Id f = Id Cf . Recall the

definition given in (3.2) of functors Mg,h. For any f, h ∈ H let

m̃f,h : Ψ̃fh(Mgfg−1,ghg−1 � Id Cg�CM)→ Ψ̃f (Id Cgfg−1 � Ψ̃h),

be the natural isomorphisms obtained from the associativity of the module
category CgH �CH N as in (4.6). Since M is an indecomposable C-module
category, there exists a 2-cochain γ : gHg−1 × gHg−1 → k× such that
m̃f,h = γ(gfg−1, ghg−1)id , for any f, h ∈ H.
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From now on, for any f, g ∈ G we shall denote fg = gfg−1. If η : G×G→
k× is a 2-cochain, we denote ηg(f, h) = η(fg, hg).

Lemma 4.13. Under the above assumptions, there exists a 2-cochain ΩA
g :

G×G→ k×, that depends on the Morita class of A, such that

(4.9) γg ΩA
g = β.

Proof. We are going to abuse of the notation and use the monoidal equiva-
lence

FunC((Cf )A, (Cg)A) ' A(Cf−1g)
op
A .

So that composition of functors in the first category correspond to the
monoidal product in the second category. Note that, our assumption that
D is skeletal implies that A(Cf−1g)

op
A is skeletal.

If f, h ∈ H, then, using (4.8), we get that the functor Ψ̃fh(Mfg ,hg � IdM)
equals

= (Id g � Ψfh)
(
Mg,fh(Id gfh �Mg−1,g)(Mgfh,g−1 � Id g)Mfg ,hg � IdM

)
= β−1(f, h)

(
(Id g � Ψf )(Id g � Id f � Ψh)(Id g �Mf,h)

)(
Mg,fh(Id gfh �Mg−1,g)(Mgfh,g−1 � Id g)Mfg ,hg � IdM

)
.

Here, the second equality follows from Proposition 4.11, where the natural
isomorphisms mf,h are equal to β(f, h)id , hence

β(f, h) Ψfg(Mf,g � Id CA) = Ψf (Id Cf � Ψg).

On the other hand, the functor Ψ̃f (Id fg � Ψ̃h) equals

= (Id g � Ψf )
(
Mg,f (Id gf �Mg−1,g)(Mgf,g−1 � Id g)(Id fg � Id g � Ψh)

(Id fg �Mg,h)(Id fg � Id gh �Mg,g−1)(Id fg �Mgh,g−1) � IdM
)

= (Id g � Ψf )
(
(Id g � Id f � Ψh)(Mg,f � Id h)(Id gf �Mg−1,g � Id h)

(Mgf,g−1 � Id g � Id h)(Id fg �Mg,h)(Id fg � Id gh �Mg−1,g)

(Id fg �Mgh,g−1) � IdM
)
.

Since for any f, h ∈ H, we have that

Ψ̃f (Id fg � Ψ̃h) = γ(fg, hg) Ψ̃fh(Mfg ,hg � IdM),

we deduce that

(Mfg ,hg � Id g)(Id fg �Mgh,g−1 � Id g)(Id fg �Mg,h � Id g−1 � Id g)

(Mgf,g−1 � Id g � Id h � Id g−1 � Id g)(Mg,f � Id Cg−1�Cg�Ch�Cg−1�Cg)

(Id g � Id f �Mg−1,g � Id Ch�Cg−1�Cg)(Id g �Mf,h � Id Cg−1�Cg)

(Mg,fh � Id Cg−1�Cg)(Mgfh,g−1 � Id g) � IdM =
β(f, h)

γ(fg, hg)
Id Cgfhg−1�Cg�M.

(4.10)
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The left hand side of equality (4.10) is equal to a scalar multiple of the
identity. We denote this scalar by ΩA

g , hence we obtain the desired result. �

Remark 4.14. If G = C2 is the cyclic group of 2 elements, one can verify
that the functor on the left part of (4.10) equals the identity, thus ΩA

g = 1.

Definition 4.15. Two type-A data (H, {Ah}h∈H , β), (F, {Bf}f∈F , γ) are
G-equivalent if there exists g ∈ G, and an invertible (B,A)-bimodule C ∈
B(Cg)A such that

• F = gHg−1;
• Bghg−1⊗BC ' C⊗AAh, for all h ∈ H;

• the class of β−1ΩA
g γ

g is trivial in H2(H,k×).

Remark 4.16. If (H, {Ag}g∈H , β) and (H, {Bf}f∈F , γ) areG-equivalent, then
CA, CB are equivalent C-module categories.

Combining Theorem 4.10, Proposition 4.11 and Lemma 4.13 we get the
next result.

Theorem 4.17. There exists a bijection between

• equivalence classes of exact indecomposable D-modules,
• G-equivalence classes type-A datum, and
• equivalence classes of type-1 pairs. �

4.3. Pointed fusion categories. Let us show that our results, when ap-
plied to a pointed fusion category, agree with the results obtained in [11].

Assume G is a finite group, and ω ∈ H3(G,k×) is a 3-cocycle. If D =
C(G,ω), then D is a G-extension of the category vect k of finite-dimensional
vector spaces.

Theorem 4.17 implies, in this case, that exact indecomposable D-module
categories are parametrized by pairs (H,β), where H ⊆ G is a group, and
β ∈ C2(H,k×) is a 2-cochain such that dβ ω = 1. This parametrization
coincides with the one given in [5].

For such pair (H,β), denote M0(H,β) the associated exact indecompos-
able D-module category. As abelian categories M0(H,β) = C(G,ω)kβH .

The equivalence classes of such module categories agrees with the one
described in [11]. In [11, Thm 1.1], the author proves the following result.

Theorem 4.18. Assume L,H ⊆ G are two groups, and β ∈ C2(H,k×),
ξ ∈ C2(L,k×) are 2-cochains such that dβ = ω−1 = dξ. There exists an
equivalence of module categories between M0(H,β),M0(L, ξ) if and only if
there exists g ∈ G such that H = gLg−1, and the class of ξ−1βgΩg |L×L is
trivial in H2(L,k×). �

In the above theorem Ωg : G×G→ k is defined by

Ωg(f, h) =
ω(fg, g, h)

ω(fg, hg, g)ω(g, f, h)
,
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for any f, h ∈ G. Note that there is a difference between this definition of
Ωg and the one presented in [11]. The difference comes from the fact that
in loc. cit the author uses ω−1 instead of ω.

To prove that our classification agrees with the one in [11], we shall prove
that the 2-cochain Ωk

g is cohomologous to Ωg, for any g ∈ G. Here k is
the algebra representing the unique (equivalence class) exact indecompos-
able module category over vect k. To this end, lets compute explicitly Ωk

g.
Calculating the functor of the left hand side of (4.10), we get that

Ωk
g(f, h) =

ω(fg, g, h)ω(fg, gh, g−1)

ω(g, f, h)ω(gf, g−1, g)
,

for any f, h ∈ G. Using the 3-cocycle condition, we obtain that

ω(fg, gh, g−1)ω(fg, hg, g)ω(gh, g−1, g) = ω(gfh, g−1, g).

Hence

Ωk
g(f, h) =

ω(fg, g, h)ω(gfh, g−1, g)

ω(g, f, h)ω(gf, g−1, g)ω(fg, hg, g)ω(gh, g−1, g)

= Ωg(f, h)
ω(gfh, g−1, g)

ω(gf, g−1, g)ω(gh, g−1, g)
.

This implies that Ωg and Ωk
g are cohomologous.

Remark 4.19. Assume D = T Y(A,χ, τ) is a Tambara-Yamagami tensor
category, see [12] for its definition. It follows easily that the functor of the
left hand side of (4.10) is the identity. Thus, the equivalence classes of
indecomposable exact module categories over T Y(A,χ, τ) obtained in [10]
remains the same as our case.

4.4. On the results obtained by Meir-Musicantov. In [10] the authors
classify indecomposable semisimple module categories over a G-graded fu-
sion category, in terms of certain cohomological data. In [10, Section 8] it
is explained how to obtain from a type-A datum these cohomological data.
We shall briefly recall this correspondence.

Let M be an exact indecomposable H-equivariant C-module category.
This means that, for any h ∈ H, we have C-module equivalences

ψh : Ch �CM→M.

Since M is exact, there exists an algebra A ∈ C, such that M ' CA as
module categories. Also, exactness ofM implies that functors ψh are exact.
Using the equivalence Ch �C CA ' (Ch)A, the functors ψh : (Ch)A → CA
are given by ψh = −⊗ADh−1 , where, for any h ∈ H, Dh ∈ A(Ch)A is an
invertible A-bimodule.

Let Γ be the group of isomorphism classes of invertible A-bimodules in
C, and let Λ be the group of isomorphism classes of invertible A-bimodules
in CH . Any invertible invertible A-bimodules in CH must be supported in a
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unique category Ch, for some h ∈ H. Thus, we have an exact sequence of
groups

(4.11) 1→ Γ
ι−→ Λ

π−→ H → 1.

Here, π is the map assigning an invertible bimodule the element h where
it is supported, and ι is the inclusion. Surjectivity of π follows from the
existence of the bimodules Dh.

Remark 4.20. The group Γ is isomorphic to the group of equivalence classes
of C-module autoequivalences of CA, and the group Λ is isomorphic to the
group of equivalence classes of C-module autoequivalences of (CH)A.

Associated to M there is a group morphism ρ : H → Out (Γ), given by

ρ(h)(a) = DhaD
−1
h ,

for any a ∈ Γ. Define also Y : H ×H → Γ,

Yh,f = DhfD
−1
f D−1

h .

Denote by p : Aut (Γ) → Out (Γ) the canonical projection. If there is a
lifting Φ : H → Aut (Γ) of ρ, that is, a morphism that satisfies ρ = pΦ, then
the element Yh,f belongs to the center of Γ and it is a 2-cocycle with action
given by Φ.

Definition 4.21. A MM-datum is a collection (M, H,Φ, v, β), where

• H ⊆ G is a subgroup;
• M is an exact indecomposable H-equivariant C-module category;
• Φ : H → Aut (Γ) is a lifting of ρ;
• v : H → Z(Γ) is a 1-cochain such that dv = Y ;
• β : H ×H → k× is a 2-cochain such that ωMdβ = 1.

The existence of the pair (Φ, v) is equivalent to the fact that the exact
sequence (4.11) splits. If (H, {Ag}g∈H , β) is a type-A datum for the module
category M' CA, then there is a splitting of (4.11) given by

s : H → Λ, s(h) = Ah, for any h ∈ H.
In [10, Thm. 2] the authors classify semisimple indecomposable module
categories over a fusion G-graded category in terms of MM-data.
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