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Highlights (for review)

HIGHLIGHTS (for review)

e Motivated by the quantum harmonic oscillator states, the He mit >-Gaussian model
is proposed as a generalization of the standard Gaussian ore.

e Mixture and real (or imaginary) superpositions of eigenst .te: have a diagonal Fisher
metric.

e Hermite-Gaussian model can be used for geometrice = char. ~terizations of unknown
parameters in scenarios that employ quantum harmcic os illators.

e Fisher metric of a general state of the quantun hs . mcnic oscillator only depends
on the variance.
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Abstract

In order to characterize quantum states within the context of informati n ge- .. ~try, we propose a generalization of
the Gaussian model, which we called the Hermite—Gaussian model. We " ain t .e Fisher—Rao metric and the scalar
curvature for this model, and we show its relation with the one-dimens. ~nal | _.antum harmonic oscillator. Using this
model we characterize some families of states of the quantum harmonic osc lator. We find that for eigenstates of the
Hamiltonian, mixtures of eigenstates and even or odd superpositions . * eiger states, the associated Fisher—Rao metrics
—which are relevant in the context of quantum parameter estimau. ~ theory— are diagonal. Finally, we consider the
action of the amplitude damping channel and discuss the relatinnehi~  >tween the quantum decay and the different
geometric indicators.

Keywords: Fisher—Rao metric, statistical models, Gaussia. . . "lermite—Gaussian model

1. Introduction

The information geometry approach [1-10] studies the differential geometric structure of statistical models. A sta-
tistical model consists of a family of probabil’ .y disu hution functions (PDFs) parameterized by continuous variables.
In order to endow these models with a geon.. *ric stru ture, it is necessary to define the Fisher—-Rao metric [4], which
in turn, is linked with the concepts of ent” ,py anc. = sher information. Once we have a statistical manifold, the main
goal of the information geometry appro’ ch ic to characterize the family of PDFs using geometric quantities, like the
geodesic equations, the Riemann curvatu.. 2nsc , the Ricci tensor or the scalar curvature.

The geometrization of thermody .amics au. statistical mechanics are some of the most important achievements
in this field, expressed mainly by t".e to. ~dational works of Gibbs [11], Hermann [12], Weinhold [6], Mrugata [13],
Ruppeiner [14], and Caratheddor - "15]. These investigations lead to the Weinhold and Ruppeiner geometries, where
a Riemann metric tensor in thr spar > of thermodynamic parameters is provided and a notion of distance between
macroscopic states is obtained. ."~ vever, the utility of information geometry is not only limited to those areas. For
instance, it has been applie . in quau. :im mechanics leading to a quantum generalization of the Fisher—Rao metric
[16], and also in nuclear 1 asmr s [17, 18]. Moreover, generalized extensions of the information geometry approach
to the non-extensive formula.. ~n ¢, statistical mechanics [19] have been also considered [20-23]. Applications of
information geometry * » chaos can also be performed by considering complexity on curved manifolds [24-28], leading
to a criterion for chai 'cterizin global chaos on statistical manifolds, from which some consequences concerning
dynamical systems have ~=er cxplored [29]. More generally, the curvature has been proved to be a quantifier which
measures interact ons in ‘hermodynamical systems, where the positive or negative sign corresponds to repulsive or
attractive correlai ons, res ectively [7].

Motivated by pic “~ s works of some of us [29, 30], we propose a generalization of the Gaussian model which we
call the Hern. 7e—  ~sian model, and we show its relation with the one-dimensional quantum harmonic oscillator.
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The use of information geometry techniques in the description of quantum harmonic oscill? ors can be useful, for
example, in the study of the translational modes in a quantum ion trap. These modes can } ¢ [ ~<cribed as quantum
harmonic oscillators (see discussion in [31]), that need to be characterized and controlled in order to _.void coherence
losses. Given the close connection between the Fisher metric and the Cramer—Rao ineo .alit , our contribution may
serve as a tool for the characterization of unknown parameters in those scenarios. The pi. “en* work can be also useful
for characterizing global dynamics on a new family of curved statistical manifolds [24 ?78].

The paper is organized as follows. In Section II, we review the main features ~f the . ~formation geometry ap-
proach. In Section III, we present the Hermite—Gaussian model, we obtain the fist - Rao metric and the scalar
curvature for this model, and we show its relation with the one-dimensional quan.. m ' armonic oscillator. We employ
the Hermite-Gaussian model to characterize some families of states of the qi~~tum . ~rmonic oscillator. We focus
on three different families: Hamiltonian eigenstates, mixtures of eigenstates and sup tposition of eigenstates. Then,
in Section IV, we illustrate with the exampled of the amplitude damping cha nel. W . show that the geometrical ef-
fect of the channel is expressed in a decrease of the scalar curvature tow~ '3 an ., mptotical value associated to the
decohered state. Finally, in Section V, we present the conclusions and sc me f ..u. * research directions.

2. Information geometry

The information geometry approach studies the differential ~2omc. <~ structure possessed by families of proba-
bility distribution functions (PDFs). In this section we introduce the . ~neral features of this approach, which will be
used in the next sections. The presentation is based on the bo. - o1 >. Amari and H. Nagaoka [9].

2.1. Statistical models

Information geometry applies techniques of differential , :ometry to study properties of families of probability
distribution functions parameterized by continuous va. a.'=s. These families are called statistical models. More
specifically, a statistical model is defined as follows. We ~onsider the probability distribution functions defined on
X c R", i.e., the functions p : X — R which satisfy

p(x) -0, an' fp(x)dx =1. (D)
X

When X is a discrete set the integral aust be replaced by a sum. A statistical model is a family S of probability
distribution function over X, whose elei. »nt can se parameterized by appealing to a set of m real variables, i.e.,

S = {pex) ~p(xie) |0 =(0",....0" €O CR"}, 2)

with 6 — py an injective mapr «ng. (he dimension of the statistical model is given by the number of real variables
used to parameterized the family .

When statistical models are - pplied to physical systems, the interpretation of X and @ is the following. X repre-
sents the microscopic vari. “les of tF : system, which are typically difficult to determine, for instance the positions of
the particles of a gas. ® renresc ¢< he macroscopic variables of the system, which can be easily measured. The set X
is called the microspa e and t e variables x € X are the microvariables. The set ® is called the macrospace and the
variables 6!, ..., 6" ar. the mar -ovariables.

Given a physic~' ~ysw.._, we can define many statistical models. First, we have to choose the microvariables to be
considered, and t' en we 1. ‘ve to choose the macrovariables which parameterized the PDFs defined on the microspace.
All statistical mo. =Is are ~ qually valid, but no all of them are equally useful. In general, the choice of the statistical
model would be bascu i pragmatic considerations.



2.2. Geometric structure of statistical models

In order to apply differential geometry to statistical models, it is necessary to endow ther . wi.” 4 metric structure.
This is accomplished by means of the Fisher—Rao metric

dlog p(x|6) dlog p(xl6) o
1=1; =fdxp(x|0) ga’;i %gj , ij=1,....m 3)
X

The metric tensor I gives to the macrospace a geometrical structure. Therefore, thr rai ilv S 1s a statistical manifold,
i.e., a differential manifold whose elements are probability distribution functions
From the Fisher—-Rao metric, we can obtain the line element between two nearb, ®DFs with parameters ¢' + d6'

and @'
dS = 1[Ii‘/‘d9id9j, i,j = 1,...,””

Using the metric tensor we can obtain the geodesic equations for th - .acrov ariables 6; along with relevant geo-
metrical quantities, like the Riemann curvature tensor, the Ricci tenso. v the _alar curvature.

&2 0

Geodesic equations: 7= Uha d—T’ =0, “)
Christoffel symbols: Ff-(j = s+ Ltk = Tam) s 5
Riemman curvature tensor:  Rigm = % Tkt + Tetim = tu, m — Tomit) + Inp (FZ‘IF; - Fszﬁ) , (6)
Ricci tensor: Rix = I" Ry )

Scalar curvature: R = I'*Ry. ()

The comma in the subindex denotes the partial _=ati\ ~> operation (of first and second orders), I* is the inverse
of I;;, and 7 is a parameter that characterizes the geode. ~ curves.

Moreover, the Fisher—Rao metric gives information about the estimators of the macrovariables. Given an unbiased
estimator T = (T, ..., T,,,) of the parameters (£, ...,.. ), i.e., E(T) = (84, ..., 8,,), the Cramér—Rao bound gives a lower
bound for the covariance matrix of T,

cov(T) > T, 9

where the matrix inequality A > B i .ans . 2t * . matrix A — B is positive semi-definite. In particular, this relation
gives bounds for the variance of the . ~biased estimators 77,

var (T)) > {I' Y, (10)

This bound is important when . >0l .ng for optimal estimators. In what follows, we present an important statistical
model used in the informatir .1 geom. ~y approach, the Gaussian model.

2.3. Gaussian model

One of the most re! .vant stntistical models used in the information geometry approach is the Gaussian model. This
model is useful due tc its vers: ility for describing multiple phenomena: linear diffusion in Brownian motion, error
statistical distribution in =~ _(ments, Central Limit Theorem in probability theory, wave-packet function modelling
a free particle, G assian “oise in master equations, among others. The Gaussian model is obtained by choosing the
family S as the sc¢ - of mult variate Gaussian distributions. For instance, if (x1, ..., x,) € R" are the microvariables and
there are no correla... = oetween them, then (ui,...,u,,01,...,0,) € R" X R" are the set of macrovariables, where
pi and 0'1.2 coL. >spu . ' the mean value and the variance of the microvariable x; .

If we consic > only one microvariable x, the Gaussian model is given by the following probability distribution
function



_Gew?

e, an

pxlp, o) =
o

which is parameterized by the mean value y and the standard deviation o~. From equatio.. " “3) to (8), one can obtain
the Fisher—Rao metric and the scalar curvature of this model,

1
L =(%2 2) with  @f =0 (12)

o2

R=-1. (13)

The Gaussian model is a curved manifold with constant curvature. In som contey s, the sign of the curvature is
interpreted as modeling interactions, like in the 3D Bose gas, the 3D Ferm’ _.s anu i ideal gas, where their respective
curvatures are negative, positive and zero [8].

In the next section, we introduce a generalization of the Gaussian mouct, bas .d on the eigenstates of the quantum
harmonic oscillator Hamiltonian.

3. Hermite—Gaussian model

We propose a generalization of the Gaussian model, calle - tne Hermite-Gaussian model, which is motivated by
the quantum harmonic oscillator. Given the microspace X = R anu "“e macrospace ® = {(u, o)}, we define for each n
the Hermite—Gaussian model as the family of probability « su.. .. =1 functions given by (see Appendix B)

() = —=— 5 a2h, | _H) o (14)
pn(xlu, o) = e 2 a,H, ——|, a, = .
\2nro \ V20 2"'n!
10
})n('\‘lls l) n=3
0.8}
06}
0.4}
et n=0
2;% n:]
oL 05 1.0 15 20 X

Figure 1: Some plots >f the PD} s of the Hermite-Gaussian model for n = 0, 1,2, 3. The curves correspond to the expression of p,(x|u, o) of Eq.
(14)foru=0=1.

In particular, 1 "n = v, «ie Gaussian model is recovered. The Fisher—Rao metric of the Hermite—Gaussian model takes
the form

n 1
If,,;) = fx maap(xlu, 0)0p(x|u, o)dx, a,B=p,0. (15)
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and its explicit formula is the following (see Appendix B)

- 2n§1 0
I :( 7 same ) (16)
o2

Taking into account that the scalar curvature is given by

1
m -~
k" = n+n+1’ an
we can express the Fisher—Rao metric in terms of R™
2n+1

0

1" = ( o2 ) (18)
o# 0~k

From the Fisher—Rao metric, we can compute the Cramér—Rao bound fo, nbiased estimators of the parameters u and
0. This bound is of fundamental importance for the theory of par-meter est mation. The lower covariance matrix of
any pair of unbiased estimators 7', T, of the parameters u, o, is Ziven .

v

cov(Tl,Tg)Z( P ) (19)

For the covariance of the estimators we obtain

2

var(T)) > ——, (20)
PR Y
o2 o2R™
T,) > = — 21
varl) 2 S+ 2 @D

In what follows, we show the connection be. =en the {ermite—Gaussian model and the quantum harmonic oscillator.
We use these model to characterize the ~'DFs y .1 by quantum states of the harmonic oscillator. We focus on
Hamiltonian eigenstates, mixtures of eig .nst7 .es and superposition of eigenstates.

3.1. Hamiltonian Eigenstates

The relation between the Hern ite—G. “ssian model and the quantum harmonic oscillator is straightforward. We
start considering the Hamiltoniar . the harmonic oscillator
52
y_ P 1 24 2
H="—+ —mw (X - x0)", 22
m 2 0( O) ( )
where m is the mass, wy is .. ~ (req’ ency, xy is the equilibrium position of the oscillator, and X and p are the position
and momentum operatr . This .. .odel is relevant for the study of quantum ion traps [31]. Its eigenstates |n) satisfy
the time-independent ichrddin er equation, Hln) = E,|n), with E,, = hwy(n + %). Moreover, the eigenstates satisfy
orthogonality and com, 'etenes , relations

(nlm) = Oy (orthogonality)
Z nXn| =T (completeness)
n=0

where [ is the iden. 'ty operator.



The wave function of the eigenstate |n), in the coordinate representation, is given by

1 _(x—u)z —M
on(x) = {xn) = ——=e€ &? ( ) (23)
\/EO' \/_0'

A
2mawy °

Then, the PDF of the position operator for .~e eigenstate |n) is P,(x) =

with yu = xo, o? =
lpn ().

Therefore, if we consider the eigenstate |[n) of an harmonic oscillator with ; rran cters ¢ and o, the PDF of the
position operator P,(x) is equal to the probability distribution function p,(x[u. o) o." the Hermite—Gaussian model,
given in equation (14). Moreover, the Fisher—Rao metric and the scalar ¢ .vature associated with the probability
distribution function P,(x) are given in equations (16) and (17), respectively.

It is important to remark that the Fisher—Rao metric is diagonal, and the sc. '~ _arvature is always negative and
decreases with the quantum number rn, tending to zero in the limit of ' igh ~ .. "tum numbers. Moreover, from the
Cramér-Rao bound we obtain that the minimal variance of the estima ~ » of t ie parameter u grows with o and
decreases with the eigenstate number, and the minimal variance of esu. ~ator. _: the parameter o~ also grows with o
but decreases with the square of the eigenstate number. Equivalently, the 1. ‘nimal variance of the estimators of o is
proportional to the scalar curvature.

_ 1
T N2l

3.2. General states

We are going to consider the PDF of the position operator ob.. ‘ned from general states of the harmonic oscillator.
Let us consider the basis of the Hamiltonian eigenstates {| and a state represented by a density matrix p of the
form

O,

o= r Lo, ‘ml. (24)

nm

The probability distribution function of the positioi. ve. *~ is given by

P@=WM=ZMMw”ﬂ_Zm$?um K{V«?Q’ (25)

nm n,m

where ¢, (x) is the wave function of the ei- enstaw ', given in equation (23).
For practical reasons, we define the f.unct’ yn f(y),

"Anmnm —y?
mpL—é%wmwm@. (26)

Then, we have P(x) = {&& 0 (X)) ,Wwny( )= \f(r
In order to calculate the Fishe. ".ao metric associated with P(x), we need the partial derivatives 8, P(x) and 0, P(x),
which are given by

2 i = g (FOGD) _ =/ 0
P(x) = (9“( ) = T 27
6UPQ)=aU(ﬂ§;»):—J§§w>+—ﬂxggﬂx», o8

with /() = £ £ .
Replacing the PL.™ 25) and the partial derivatives (27) and (28) in the integral of equation (15), and making the



change of variable y = y(x), we obtain the Fisher—Rao metric

Lo [T 0PI P e Y Ly o)
br=tou= [ g r= o | (f(” o) ) =0 oY

2
+ (8,P(v)) L (o)
L, = dx = dy,
h L P T Va2 Lo o 7

(@@ N2 (O ), N2 [ 4 . YO
IW—IOC TP dx = =) T 7o dy—;ﬁm ( fO) +2yf(Q)) +—f(y) )dy—
_ V2 YO Yoy, L
-

—~ SO o2’
where in the first equation we used that f_ :o f'()dy = 0, and in the last ¢ ation we used that f_ :o fdy = % and
Jo Gfo)ydy =0.

Therefore, we can write the Fisher—Rao metric as follows:

1 (L, .-
Ly=—| # =7\, (29)
0'2 ( I,uo' Irm' )

where I, I, and I, are independent of y and o, and they . ~ given by

+00 o \2
ilw_ — f y(‘/;((‘.y/ dy,
_ b f e,
o
oo D 2
L TP,
o O)

From the Fisher—Rao metric and using  waf ons /'5) to (8), we can obtain the scalar curvature

R=—"# (30)

The Cramér—Rao bound gives t' ¢ lov er covariance matrix of any pair of unbiased estimators 7', T, of the parameters
Mo

) _
COV(TI,TZ)Z%( Lo iI ) (3D

wptoo = Iﬁa I/“’

Finally, we can express ‘... varia. e of T, in terms of the scalar curvature,

2
var (Ty) > -‘TTR. (32)

Corollary 1: Th. Fisher— ao metric for a general state of the harmonic oscillator is independent of the parameter u
and it only depends ~» t+_ parameter o by a general factor 1/072.

Corollary 2: 'y ¢ scalar curvature for a general state of the harmonic oscillator is independent of the parameters u
and o, and it only ‘mvolves integrals of the dimensionless function f(y) and its derivative f’(y).

Corollary 3: The lower variance of unbiased estimators of the parameter o is proportional to o*R.
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3.3. Mixtures of Hamiltonian eigenstates

We consider quantum states which are mixtures of the Hamiltonian eigenstates. Mixtur .s 0. ~igenstates are par-
ticular cases of the states given in equation (24), with A, = Oumd, 1.€., p = X, Au|n){n|. Therefore, the probability
distribution function of the position operator, the Fisher—Rao metric and the scalar curvar .re ¢ n be obtained from the
general expressions (25), (29) and (30), considering A, = Oumdn-

In this case, the PDF of the position operator takes the form

P(X) = )" a0 = )" Aupalil, ).

The diagonal elements of the Fisher—-Rao metric are zero, and the element 1., = I, are given in equation (29),

! f*“’ Yo
Ly=1,,=— —— 33)
SV N ()
with f(y) = 2, %e’yzHﬁ (y). Since Hermite polynomials H, () arc =ven cr c .d functions of the variable y, H> (y)
are even functions. Then, f(y) is also an even function and its derivative f*(, " is an odd function. Finally, the integrand
of equation (33) is an odd function of y. Therefore, I, = I, = 0,

Finally, the scalar curvature is obtained from equation (30),

2
R=—~—.

I(T(T

As an example, we consider the mixture state py; = %|O, Il %Il)(ll. The Fisher—Rao metric is given by

L 2+ VZen(Erf(%)— 3 0

o 1

o = 0 2 Vaer (1 - Erf( ) oy

where Erf(x) is the Gauss error function, with .rf| — \ ~ 0.317. The scalar curvature is approximately RO ~ —0.604.
v pp y

3.4. Superposition of Hamiltonian eigens ates
We consider quantum states which re s .perr sitions of Hamiltonian eigenstates. Superpositions of eigenstates
of the form |) = }}, @,|n) are partic’ iar c.. »s f states given in equation (24), with 4, = a,a;,, i.e., p = [Y){Y| =

> m @n [n)(m|. Therefore, the PD” ~f the position operator, the Fisher—Rao metric and the scalar curvature can be
obtained from the general expressivns (2o, (29) and (30), considering A, = @},

3.4.1. Even or odd superpositi ns
In this section we focus o™ a fa.. v of superpositions that yield analytic expressions. If we consider a superposition
of eigenstates with only evr .1 or ,dd eigenstates, i.e.,

P, el or p= Y auain)ml

n,m n,m
even indices odd indices

we obtain that the diagc. ~1 »' _ments of the Fisher—Rao metric are zero. The proof is similar to the case of mixtures
of eigenstates. Tt > diagc ~al elements are given in equation (29),

1 +00 ’ 2
I/JO' = Io’p = OTZ j:oo %d)’, (35)

with

@, anay, 5
f= ), TR Hy () Ha ().
even or odd @

indices
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If the indices n, m can only take even or odd values, then the product H, (y) H,, () is always - a even function of the
variable y. Then, f(y) is also an even function and its derivative f’(y) is an odd function. " 1. 'ly, the integrand of
equation (35) is an odd function of y, and the result of the integral is zero.

Again, we obtain that the scalar curvature, given in equation (30), is

R=--—.

I(T(T

3.4.2. Real or imaginary superpositions
Analytic expressions can also be obtained for superpositions of eigenstates that 1.. lve only real coefficients, i.e.,

P = Zum @n@yln)m|. In order to compute the Fisher-Rao metric, we neer the fv-tion f(y), given in (26), and it
derivative f”(y),

o (36)
207 E ananH, (y) Za' a L - Hr1©)
\/E _ nAnliy Y - n n"k —11") > >

where in the last equation we have used the recurrence relatio.. " ot the Hermite polynomials (A.2). Replacing expres-
sions (36) in the Fisher—Rao metric (29), and taking into account rc”~tions (A.1) and (A.2), we obtain

)=

2

1 [ dye™ H,. I(y)\
IIlU' = 10'/1 = 0T2 - om Zanan nH, 1(y) - _L ~ | y =
1

=— ) a, (an_3 V=D =2) + ap_y. Vi g1+ D)V + 1+ apes J(n +3)n + 2)(n + 1)) ,

o2
n

0 9

2
1 H, 1(y)
L, = - VR {Zn: a,a, (nH,_l(y, - — 2—)] dy =

1
== ap (—a/n_z Van—1)- ~.2n r 1) =@y Vi +2)(n + 1)) ,

2
L[ 4™ [ ) Hy1(y) 1
Iw=072 N 7{&& an an71(y)—T dy_;:

= iz @ (—a 4V =D =2)(n—3) + @,(2n* + 21+ 3) — @pa \(n + B+ 3)(n + 2)(n + 1)) - lz
(oa - (oa

If we consider a s .perporition of eigenstates with only imaginary coefficients, we obtain a similar result, but
replacing the coefficie ts @, by its imaginary part, i.e., by Im(e,).

4. Example: an olitude . amping channel

In this se~tion we ulustrate how the scalar curvature changes in connection with the dynamics of a physical
processes. In art “wiar, we consider a dynamical evolution of a two-level system given by the amplitude damping
channel. This c1. 'nnel has several applications in the context of quantum information processing for modeling the
effects of quantum noise. It describes in a simplified way the spontaneous decay process of a two-level quantum
system due to the effect of the quantum noise of an environment.

9



We consider an initial state p in a superposition of the ground state and the first excitec state of the harmonic
oscillator. In order to use the results of the subsection 3.4.2 we consider a superposition |y - ~10) + b|1) with real
coefficients (a, b € R). Its density matrix is given by

a® ab
W)l = ( P ) 37
Using the results of the section 3.4.2, we obtain the elements 1, I, and I, of thr 1. er madrix of the state [y){y]
1 ( &+ 3b? ab
Top) = ?( ab  3a?+7b -1 ) (38)
and its scalar curvature
2(a® + 3b%)
R, = — 39
Y7 (2ab)? = (a® + 3b1)(3a + TH: — ) (39
Since a? + b? = 1, the scalar curvature can be rewritten as
-3 +24%
Rp=—+-— , —-1~-<1. 40
Y7 9 14a? + 6a* (40)

Now, we consider the time evolution given by the amplitude dan., ‘ng channel. It is important to remark that, if the
system is in the ground state there is no emission, and it ‘u.... ~~< in the ground state. But, if the system is in the
excited state, after an interval of time 7, there is a probabih. 7 » that the state has decayed to the ground state due to
spontaneous emission. In terms of Kraus operators, the «. *nlitu ‘e damping channel can be expressed as

T ApAT 41)

with the Krauss operators given by

(1 0o « [0 VP
(i) a3 )

where p is the probability of decay duri ¢ tb . tim interval 7.

We restrict the initial state to the ‘ absp. ~= ¢ _nerated by the ground state and the first excited state. An arbitrary
state of the two-level system is of tb “orm p = poo|0)(0| + p01]0){1] + p10l1){0] + p11|1){1]. If we apply the amplitude
damping channel » times [32], we ubtain .= state ém(ﬁ)

¢ (PP == (TP ) “
o ( (VT= V"o (1= pY'ous “3)

which is the state of the sy *en at ti «e nt. For long times, when n — oo, the limit state & (p) becomes
Pes = E(p) = 10)(OL. (44)

Therefore, when time gc “< to * (inite, all initial states decay to the ground state as a consequence of the quantum noise
of the enviroment

As an examp e, we c nsider the amplitude damping channel with decay probability p = 0.1 during the time
interval 7, and an .. *»! .ate |y) = %. The evolved state at time n7 is given by p, = Snr(ﬁ). In Figure 2 shows the
values of the . ssue . * scalar curvature for each state p,. We can see that the amplitude damping channel transforms

the scalar curva. * e to the asymptotic value R, = —1, which corresponds to the decay state po, = [0)(0].
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Figure 2: Plot of the scalar curvature of the evolved states p, = &,-(p), + "*h an initial state i) = % and decay probability p = 0.1.

5. Conclusions

In this work we have proposed a generalization of L = C ~ussian model -namely, the Hermite-Gaussian model-
and we have studied its properties from the point [ -»w f the information geometry approach. We have shown
its relation with the probabilities associated to the one-.“mensional quantum harmonic oscillator model and analytic
expressions for some particular classes of states were provided. Specifically, we found that for finite mixtures of
eigenstates and finite superpositions of (eve' or o 1) eigenstates the Fisher metric is always diagonal. Real and
imaginary superpositions of eigenstates do . ~t imply a diagonal Fisher metric and the matrix elements are given in
terms of a series sum. The computation o’ the .. e metric results fundamental in the derivation of the Cramer-Rao
inequality, which plays a key role in par- metr . estimation theory. Our contribution could be useful for characterizing
the different parameters associated to a 4.~ cum “.armonic oscillator.

An analytic expression for the sc uar curv. are was obtained for the case of diagonal Fisher, being negative and
inversely proportional to the oo ele ne..  We have illustrated the dynamics of the model using the amplitude dumping
channel. We have showed that th= geomeuwuical effect of the channel is to decrease the initial value of the scalar
curvature of the Hermite-Gauss an r odel towards its asymptotic and minimum value R = —1 which corresponds to
the ground state.

Appendix A. Hermite p. 7 nr mia’,

The Hermite polyr smials 9, are given by the expression
2 dn 2
H,(y) = (-1)"¢ e ",
and their orthogon. ~lity re’ ition is

+00
f e_yan(y)Hm(y)dy = \/7_7'2” n! 6n,m- (A1)

00

An important feature of these polynomials is that if n is even, H,(y) is an even function; and if # is odd, H,(y) is an
odd function.
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Some relevant recurrence relations are the following:

H,(y) = 2nH,1 (), Hur1(y) = 2yHu(y) — 2nH,-y. (A2)

Appendix B. Hermite-Gaussian model

For parameters i and o, the probability distribution of the n—Hermite—Gaussian modc. ‘<

S . 1 -
e_)zasz(V), with q, = =T

1
2o e V2! V2o

In order to obtain the elements of the metric tensor, we need to calculate ' 1e parti. | derivatives of the probability
distribution. It easy to show that

pn(x) = (B.1)

Byupa(x) = —’%y), (B.2)
(on
B pu(x) = _ ) J; ANTy (B.3)
with
1
) = VZ_ ¢ H, m/ Ho)-5 n+1(Y)) (B.4)
o

where we have used the recurrence relatlons (A.2). It shov'd he notec that p,(y) is even an function of y, thus p) (y) is
an odd function of y.
Also, we will need to express yp, () in terms of He mite . ‘lynomials,

, 2a> ( ) 1
() = > eV H, (y‘\ SHo ) - EyHnH(y)) =
g
2a2 2 (
= \/2_" e H “n(n— DH,-2(y) - H n(y) — n+2(y)),
o \

where we have used expression (B.4) and the .. ~urre’ ce relations (A.2).
Off-diagonal elements

Since the metric tensor is symmetric it i’ eno’ gh to calculate the element 1;’;2, given by
oo
= () OuPn(X)0e pu(X)dx. (B.5)
Replacing expressions (B.2) anc (B.. ) in (B.5) and doing some easy manipulations, we obtain
L EACEN 2 A
= [ Slhow caw? av= [ 2o+ 0L oy (B.6)
= ) PTG e PO )

where in the last equatir=~ we . ~ .ged from variable x to the variable y = i‘é’; . Since p,(y) and p;,(y) are even and

odd functions of y, res rectively then the integrand of (B.6) is an odd function. Therefore, I’(w) =0.
Element [
The element / . 18 gi en by

. AR | 2
1 = I 5 [8upu)] dx. (B.7)

00

Replacing expre 1on (B.2) in (B.7), we obtain

o _ f*“’ L VACICO)) P i S V1))
—00 20-2 Pn(}’(x)) —00 \/_O' Pn(}’)
12
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In the last step, we have changed from variable x to the variable y. Then, if we replace express ons (B.1) and (B.4) in
(B.8) and we rearrange the expression, we obtain

(n) 2a3 2 e -2 172 e —y? 1 e -y 72
L= | | THLd = | O a0y g | e 00| 5
2 2" (n- D! + 1 V2 (n+ D)
o2 27 n! 4 A
In the last step we have used the orthogonality relation (A.1). Finally, we obtain #:‘ = 2("7—’21
Element I((T'?,
The element Il(l’;,) is given by
+00 1
15 = f o pa(x)]* d (B.9)
o . Pn(x)[ o P |

Replacing expression (B.3) in (B.9), we obtain

oo

w_ [T 1 (_m(y(x))+y<x>p;(y<x>>)2 o [ V210 +ym0F
! j:oo Pn(y(x)) o N f_  r ) dy. (B.10)

In the last equation we have changed from variable x to the variable y. "hen, if we replace expressions (B.1) and (B.5)
in (B.10) and we rearrange the expression, we obtain

+oo a% 2 ' .
1) = f Tro? e (Zn(n - DH, () - 5 z(y)) dy =
+ 2

00

a
o \MO?

_; 1 *n—1)* =2 (p -2 l n+2
_ﬁo_zznn!(éln (n—1" V2" (n _)!+4\/7_12 (n+2)!)_

e (4n2(n —1)*H,(y) - ;L:I,%ﬂ(y) - 2n(n - 1>Hn2<y>Hn+z(y>) dy =

In the last step, we have used the orthogonai. - relatic 1 (A.1). Finally, we obtain 1512 = w
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