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Using already-solved cases of a 
mass disaster event for prioritizing 
the search among remaining 
victims: a Bayesian approach
Inés Caridi   1*, Enrique E. Alvarez2, Carlos Somigliana3 & Mercedes Salado Puerto3

This work presents a new method for assisting in the identification process of missing persons in 
several contexts, such as enforced disappearances. We apply a Bayesian technique to incorporate 
non-genetic variables in the construction of prior information. In that way, we can learn from the 
already-solved cases of a particular mass event of death, and use that information to guide the search 
among remaining victims. This paper describes a particular application to the proposed method to the 
identification of human remains of the so-called disappeared during the last dictatorship in Argentina, 
which lasted from 1976 until 1983. Potential applications of the techniques presented hereby, however, 
are much wider. The central idea of our work is to take advantage of the already-solved cases within 
a certain event to use the gathered knowledge to assist in the investigation process, enabling the 
construction of prioritized rankings of victims that could correspond to each certain unidentified human 
remains.

The process of identification that guides searches in contexts such as disaster victim identification (DVI), missing 
person identification (MPI), migration and other situations of violence (OSV) requires the collection of back-
ground information from different sources (e.g. legal courts documents, testimonies from survivors, witnesses 
and families of the missing)1. The identification process is essential not only for the sake of Justice and for human-
itarian reasons2 but also to offer answers to victims’ families and friends3–6. The process of identification usually 
includes both, (i) the construction of hypotheses of identity from the analysis of such background information 
that needs to be evaluated at a later stage through genetic evidence, and (ii) the validation of the information gath-
ered from a genetic DNA-led process through the comparison of the ante-mortem and post-mortem information. 
It is our aim in this paper to describe a general method which could contribute to the investigation process by 
taking advantage of the already-solved cases of a particular mass death event, to use that elicited knowledge for 
guiding new searches of related unidentified human remains (UHR). Whenever a pattern does exist within the 
already-solved cases, the method presented here allows us to make predictions in the identification process of the 
cases still unsolved, and it also makes it possible to minimize any bias from the researcher. Predictions are under-
stood as the act of prioritizing some individuals over others to be more likely related to certain UHR within the 
same event. The available information is: (i) information regarding the context of the mass death event, such as 
date and place in which the event has occurred and the total number of victims, (ii) a database with information 
of reported victims who are potential candidates to correspond with a set of UHR. That database also includes 
non-genetic variables amenable to be modeled mathematically in the search for patterns, and (iii) information 
of the set of already-solved cases within the same mass event (i.e. cases already identified). Thus, in essence, we 
have two lists: the set of potential victims whose human remains have not been found yet (which we denote in the 
sequel List 1) and the set of UHR which have not yet been identified (which we denote by List 2 in the sequel). The 
main idea of this work is to update an initial instance of knowledge, in which all possible victims are equally likely 
to correspond with certain UHR within the same mass death event, into a new instance of knowledge, in which 
some victims are more likely to match certain UHR, in the light of the data resulting from the already-solved 
cases. We accomplish that updating process mathematically with the aid of Bayesian techniques. Those are used in 
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two ways: i) to elicit background information about the probabilities of matches from UHRs to potential victims 
in the form of a prior distribution, and ii) to update that prior into a posterior distribution. In this work, we opt 
to evaluate the results of our method by using cross-validation techniques, for which we introduce two measures 
of goodness of fit, that we call Discriminating Power (DP), and Efficacy Rate (E), as defined in Section Validation 
techniques below. Basically, the DP measures the ability of a model fitted only from a training sample to update the 
probabilities of matches using a validation sample (e.g., fresh cases). In turn, the E measures how informative the 
model, based on the training sample, results for the validation sample. As outputs, the model firstly identifies the 
best set of informative non-genetic variables to learn from the already-solved cases of a mass event and provides 
the optimal way of partitioning those variables. Each of those partitions entails a candidate model that will be 
evaluated through cross-validation. Secondly, the model gives an analytical expression that, when applied to the 
best partition of the set of non-genetic variables, which implies a partition of the victims (List 1) in subsets, gen-
erates probabilistic scores of victims for unidentified human remains of related cases. It is noteworthy that scores 
are a function of the data and then, each new piece of information (from both the victims database or the set of 
already-solved cases) could generate new results.

In the statistical analysis of genetic matched data, the probability of the event “the DNA sample is related to the 
victim" is usually compared to the alternative “the DNA sample is not related to the victim" by calculating odds 
ratios. The Bayesian approach updates the quotient of this prior odds (built on non-genetic evidence) to obtain 
the posterior quotient (posterior odds) by multiplying the prior odds by the likelihood ratio (built on genetic 
evidence)7–10. Very low prior odds and/or low quality and quantity of DNA, both of the material extracted from 
bones and DNA samples from victims’ relatives are some of the causes which could hinder reaching the required 
threshold of identification that could be reached by improving biological reference samples. For this reason, it is 
important to prioritize the possible victims of the event in order to allocate efforts to obtain certain DNA samples 
from close family donors. A good guide on how to prioritize the research of unsolved-cases would, in principle, 
allow substantial savings in time and resources. As an example of the use of non-genetic information to prioritize 
or highlight the searches, the collaborative online platform called “Reuniting Families" uses non-genetic informa-
tion to flag samples of interest that are manually examined by experts using other available data11.

During the last Argentine dictatorship, several circuits of Illegal Detention Centers (IDC) were set up in dif-
ferent locations throughout the country. There, thousands of persons were illegally held without any sort of legal 
guarantees, tortured and most of them killed. Their unidentified bodies were buried in individual or common 
graves either within official cemeteries or in clandestine mass graves at military or police compounds. Even today, 
the fate of most of those disappeared people’s remains is still unknown1. Missing people have come to be known 
as “The Disappeared”. Since 1984 the Argentine Forensic Anthropology Team (EAAF) has been working on the 
identification of the disappeared using a multidisciplinary approach12–14. The identification process related to 
these events which occurred over 35 years ago presents important challenges. First, the information from reports 
is incomplete; second, even though there are reference samples available from only approximately half of the 
victims’ families, in some cases the samples belong to distant relatives with a weaker DNA connection. This is 
because in many cases, relatives who are very informative from a genetic point of view (e.g., mothers and fathers) 
have already died or are now very old. Moreover, in some cases, several members of the same family were disap-
peared, for example, the “missing grandchildren”5.

The need to generate hypotheses of identity for the recovered human remains and the fact that in some mass 
events there are sets of already-solved cases, triggered an interest in developing a model that mathematically 
systematizes information obtained by already-solved identifications, in such a way that it could be used in the 
search and generation of new hypotheses of identity for related unsolved cases. A Bayesian model is proposed 
to learn from already-identified cases and to generate a probabilistic ranking of victims for unidentified related 
cases. This ranking is, by nature, dynamic, as it can be sequentially updated every time new information from 
sets is appended (List 1 of victims, List 2 of unidentified remains and the set of solved-cases). In that way, the 
model allows the identification of the most informative subset of non-genetic variables to detect patterns, which 
beside achieves results that are significantly better than those obtained just by chance. In other words, once the 
updating has been formalized, a ranking of suitable victims for the recovered skeletal remains is produced. An 
important advantage of this method is that it minimizes any bias in the investigation of related cases.

Results
The methodology presented here was applied to events within the context of the last dictatorship in Argentina, 
such as the so-called Massacre of Fátima. On August 20th, 1976, ten women and twenty men were killed in the 
township of Fátima, Province of Buenos Aires, Argentina. Hence, it was a well-delimited event, both geographi-
cally and temporally, and it involved a well-known number of people. Until now, 24 out of 30 of them have been 
identified at different stages. Within all the victims of the dictatorship in Argentina, it is possible to select a subset 
List 1 of individuals to form the set of candidate victims that could correspond to the unidentified remains List 2 
associated with the particular event, such as Fátima.

The first challenge to build scores within the set of eligible victims is to select the non-genetic informative var-
iable or variables to learn from the already-solved cases. With this in mind, a partition within the complete range 
of non-genetic variables was defined on a grid, which entails a grouping of List 1 into some subsets. Every cell on 
the grid is associated with a combination of values of those variables.

For simplicity, let us assume for a moment that there were only two variables, of geographical and temporal 
nature, respectively, such as those related to the place and date of kidnapping of the victims. In that case, boxes 
on a grid represent GeoTemporal cells in the sequel. For data analysis, narrowing or enlarging the time window 
widths entails parameters to be calibrated later seeking a balance for an optimal division based on a combination 
of DP and E. Thus, every identified individual and every victim are placed in a GeoTemporal cell (subset) based 
on the date and place of their kidnapping. Then, the main idea is to update the importance of each GeoTemporal 
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cell (GeoTemporal probabilities), which represents the probability that the unidentified human remains of the 
same event may correspond to a victim belonging to this cell. In the initial instance of knowledge of the problem, 
GeoTemporal probabilities have to be consistent with what is known before the identifications of the event were 
made, that is, all the possible victims are equally probable, and therefore those cells with more victims will be 
more likely. This fact means that the prior probabilities of the cells (before having data from identifications) are 
proportional to the number of possible victims from every GeoTemporal cell. Moreover, within a given cell, we 
consider that there are a-priori equal probabilities for each of the individuals belonging to this cell. Updated prob-
abilities of GeoTemporal cells will result from a combination of the prior probabilities and the information of the 
set of GeoTemporal cells observed from the identified cases of that particular event. Then, for certain unidentified 
human remains from the same event, a probability score to every possible victim is assigned.

Thus, the first step to formulate the victims rankings scores consists of the construction of an informative 
probability distribution among possible victims learning about the already-solved cases of the same event, based 
on non-genetic variables. The second step consists of using those probabilities to prioritize some victims as more 
likely to correspond with UHR. The last step, left for evaluation by forensic experts, is to physically evaluate the 
rankings to assist the investigation and to build new hypotheses. The information they provide after this process 
could be incorporated in a new sequential step of prior elicitation. A tool to implement this feedback from foren-
sic researchers is under construction and will be available in a free and open interface15.

Bayesian framework.  In this Section, we introduce the notation to be used in the rest of the paper. Let S 
represent recovered skeletal or human remains of an individual, although still unidentified (unidentified human 
remains UHR) associated to a particular mass event of death (this is an element of what we have called List 2 in 
the Introduction). We also denote the set of possible victims that corresponds with S by V v v v{ , , , }N1 2= …  (this 
is what we call List 1 in the Introduction), and denote V N# =  (being # the total number of elements of the set). 
Then P v S( is )i  denotes the probability that the i-th possible victim (vi) corresponds to UHR S. Hence the expres-
sion P v S( is ) 0i =  means that with certainty vi is not the UHR S, while =P v S( is ) 1i  means that with certainty, 
vi corresponds with S.

As mentioned, the purpose of this paper is to update the probability P v S( is )i , as computed in an initial 
instance of knowledge, which ignores any information from the observations of the already-solved cases, into 
some updated probabilities using information from the already-solved cases. The initial and updated probabilities 
are called prior and posterior probabilities, respectively, in Bayesian Statistics. They are denoted mathematically by 
P v S( is )i  and |DP v S( isi ), where the latter is a conditional probability in which the set D denotes the data gath-
ered from the already-solved cases. In our presentation below, we consider that a priori there is ignorance con-
cerning the event, in the sense that =P v S( is ) 1i /n is the same value for each of the i-th possible victims (a fact 
modelled by a discrete uniform distribution). However, after the updating process, the posterior probabilities 

DP v S( is )i  differ and lead to a ranking of possible matches to be evaluated by forensic experts. The main idea is 
to use Bayesian Inference, which explains how to update some prior probabilities after appending new informa-
tion, to give rise to the posterior probabilities16.

In our case, a straightforward application of Bayes’ Theorem entails 
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Naturally, apart from the information elicited from the already-solved cases (D), there could be another type of 
background information. At this stage, it is worth it to mention that Bayesian inference is now recognized as the 
most useful model to understand how evidence may be presented logically and impartially in legal proceedings7, 
because the underlying assumptions are all explicit. In our treatment for this manuscript, those assumptions are 
enumerated as follows.

Assumptions of the identification problem.  The assumptions considered to build probabilities for every 
individual of set V  to correspond to UHR S of a particular mass event of deaths (or simply the event) are the 
following:

•	 (a) The event is well delimited geographically, temporally (the data of occurrence, called Te, is known) and in 
terms of the number of killed individuals (called ne).

•	 (b) There is a set of already-solved cases of the event, size ns, which is a subset of the complete set of deaths 
(n ns e≤ ).

•	 (c) It is known with certainty that recovered UHR S corresponds to one of the set of ne individuals related to 
the event. Moreover, S correspond to just one of the victims, which excludes the possibility of mixed remains.

•	 (d) The set of possible victims that corresponds to recovered human remains related to the event under study 
is known.

•	 (e) The set of already-solved cases (ns) is a random sample from the complete set of deaths of this mass event 
(ne).

•	 (f) There is a known set of non-genetic variables associated with each victim (e.g., geographical, political, and 
time related variables).

From assumptions (a), (c) and (d) it is possible to define the set of victims that correspond to recovered human 
remains S related to the event, called = …V v v v{ , , }N1 2  (List 1, mentioned in the Introduction), as the subset of the 
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total set of victims who were kidnapped or missing before date Te. In this sense, V  is defined as the effective set of 
possible victims, because it does not include those victims whose probability is zero. This consideration takes into 
account only the assumptions enumerated above in this manuscript. In other words, it does not include either the 
sex or the age of the UHR S. Using assumption f), it is possible to associate each victim (both the possible victims 
and the identified ones in the event) with a non-genetic variable or a set of non-genetic variables, as for example 
the geographical area, and the period before the date of the event when the kidnapping took place. Given a varia-
ble, it is possible to define a partition of the set of values of this variable such as a division into blocks or cells of 
values of the variable. Every cell could be associated to a range of values of the variable, both for numeric or cate-
gorical variables. If two variables are considered, each cell could be associated with a pair of values; if three varia-
bles are considered, each cell could be associated with a third one, and so on. Once a partition is constructed in 
the form of cells, it implies a grouping of the set of possible victims in the given subsets.

GeoTemporal cells.  For the sake of simplicity, the following sections will describe the statistical calculations 
applied to a set of variables associated with the place and date of the kidnapping of the victims. For this reason, the 
cells are called “GeoTemporal”. The number of possible compatible victims for each cell is recorded. The time 
variable was partitioned by considering periods of length duration T , starting out from the date of the event Te and 
going backward in time. The geographical variable was partitioned by considering areas of interest, associated 
with the relevant areas in the context of the historical phenomena under study. Then, each cell of the GeoTemporal 
partition will be associated with both, a geographical area and a specific range date of T  days of length. To simplify 
notation, cells with index numbers from 1 to m are tagged. The referred cells look like Table 1.

Probabilities for every cell.  Let us call jN  the subset of possible victims within V  which has the combination of 
variables associated with cell j, and let Nj be the size of this set ( NN #j j= ). Thus, by ∈ NS j we mean that UHR 
S belongs to the set jN  (i.e., UHR S corresponds to one of the individuals of subset Nj). Let ∈( )P S jN  be the 
probability that S correspond to an individual who belongs to cell j. In this way, ∈ N( )P S j  is the prior probability 
that remains S correspond to an individual who belongs to cell j, where prior refers to the probabilities calculated 
in an instance of knowledge before the data of the already-identified cases were observed; while N D( )P S j∈  is 
the posterior probability that UHR S come from cell j, where posterior refers to the instance of knowledge 
updated after the data of the already-identified cases were observed. Posterior probabilities will be obtained from 
prior probabilities after learning from the experience of the dataset of identified cases of the particular mass event 
of death (D). In the Methods section, it is described how to update mathematically prior probabilities ∈ N( )P S j  
into posterior probabilities ( )P S j∈ N D  in a Bayesian treatment.

Updating probabilities for every possible victim.  Once the probability that remains S belong to some 
victim of cell j is updated (which in the sequel we denote by ( )P S :j j

post
N D θ∈ =  for simplicity of notation), 

it is assumed that within that particular cell all the victims that are still unidentified (Nj) have the same chance of 
corresponding with UHR S. For this reason, the probability that remains S correspond to the specific individual i 
whose non-genetic variable values are associated with cell j is: 
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 where vi is the i-th individual from cell j ∈ N( )vi j , and k is the cell in which there are more victims (see the  
section Methods below for details). The number of victims who are unidentified from cell j is Nj, and Ij is the total 
number of already-solved cases associated with cell j, such as ∑ =I nj s. The value of Pj

i will be the score associated 
with each individual i of set V  belonging to cell j to correspond with UHR S. The ranking of priorities for certain 

Nj (victims), Ij (identified) geo1 geo2 geo3 ...

temp1 35, 0 12, 2 3, 0 ...

temp2 54, 9 23, 3 1, 0 ...

temp3 56, 4 27, 4 6, 0 ...

... ... ... ... ...

Table 1.  Example values of a table of Nj (number of victims belonging to cell j) and Ij (identified cases of cell j) 
for some m 9=  GeoTemporal cells which result from using a particular temporal parameter T 15=  days to 
define the length of the cells in temporal variable, and using the division of the region in areas of interest. Three 
areas are shown in this example. Column geo1 and row temp1 define the cell 1, column geo2 and row temp1 
define the cell 2, and so on until cell m. In this example, =N 217 and there are n 22s =  already-identified cases. 
In this example, listing the cells from 1 to 9 from left to right and from top to bottom, the prior probabilities for 
the cells are Nj/N  (0.161, 0.055, 0.014, 0.249, 0.106, 0.005, 0.258, 0.124, 0.028) and the posterior probabilities are 
the following values (0.013, 0.088, 0.001, 0.397, 0.134, 0.000, 0.188, 0.177, 0.002), which will be explained in the 
following subsection.
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remains S is built by listing the set of possible victims according to decreasing scores, which implies the existence 
of a ranking of blocks. Those victims, sharing the same score value (because they belong to the same cell), will be 
together in the same block.

Validation techniques.  The resulting scores are dependent on the particular partition of the subspace of 
non-genetic variables into cells. For each subset of non-genetic variables used, different partitions could be eval-
uated. The set of partitions will be used to group the victims into subsets of individuals. Each of these groupings 
will represent a “model”. Moreover, some variables, such as time, involve a way of partitioning that is in turn a 
function of a parameter that defines the length of the cell (parameter T ) (for example, Table 1 shows example 
values of Nj and Ij for a particular GeoTemporal cells involving parameter T 15=  days). Then, we propose the 
implementation of a sensitivity analysis of the results for the different partitions of the set of possible victims V  
through cross-validation techniques, which provides information to identify the best subset of non-genetic vari-
ables to define the cells partition. It is noteworthy that the general methodology we propose in this paper is, in 
some sense, “hybrid”. That is because while we opted for a fully Bayesian treatment to update the matching prob-
abilities, we chose a classical method for model selection via cross-validation. A fully Bayesian treatment would 
entail placing prior probabilities for different models (in this case partitions of the non-genetic variables) in the 
form of the so-called Bayes factors to combine the models in the final inference. Our choice of the hybrid method 
is due to two reasons: (i) there is no clear way to elicit priors for different models in our context; and (ii) using 
cross-validation for model selection is more amenable to be included automatically in computing code, without 
the need of interactive analysis by a statistical practitioner. This makes the method more attractive for applications 
by Forensic Scientists or professionals without specific statistical training. Broad applicability outside the specific 
statistical community is one of the main goals we seek in the dissemination of this work.

Cross-Validation divides the data of the already-solved cases randomly into two samples: (i) a learning sample 
DL, in which several model options are comparatively estimated, aiming at the best fit; and (ii) a validation sample 
DV , used to evaluate the models with the reserved data. The cross-validation strategy is accepted in the literature 
as a way to prevent overfitting (i.e., proposing a model that works very well for the learning sample but very 
poorly with fresh data), while providing good predictions with new data17. The main idea is to implement the 
calculations described (and detailed in Methods) by using DL instead of D, to generate the results and evaluate the 
scores of those individuals who belong to subset DV  to quantify the results. It is necessary to define adequate 
magnitudes to measure the goodness of fit. Following Hastie18, DL is selected from the original sample by taking 
a random statistical subset of 75 percent size of the original sample from D (with no replacement); and the 
remaining cases form subset VD . The key is to pretend that the reserved cases have not been identified yet and to 
track and observe them in the final results.

In the ranking of possible victims for a particular learning sample LD , it is desirable i) that those victims 
belonging to the validation sample (DV) obtain higher scores than those in the initial instance of knowledge and 
ii) that there are not many cases outside the validation sample that improve their scores. For those reasons, we 
focus on two magnitudes, i.e.:

•	 Discriminating Power, DP, which is defined as the fraction of the reserved cases which obtain greater scores 
than in the initial instance of knowledge (R+) with respect to the size of the reserved sample (R, thus the size 
of set DV): R R= +DP: . The idea here is that a useless model would have a low value of DP, similar to what 
would be obtained from setting a ranking of victims purely randomly. Such a model would not be useful at all 
for the validation sample, no matter how good it could have been for the learning sample.

•	 Efficacy Rate, E, which is defined as the ratio between the size of the reserved cases which improve their scores 
with respect to the initial instance of knowledge ( +R ), and the total number of cases which improve their 
scores ( +N ): E R= +/ +N . Hence, heuristically, E measures how informative the model, which is selected from 
the training sample, becomes for the validation sample.

Therefore, a good result achieves high values of both the Discriminating Power and Efficacy Rate. A 
cross-validation realization is defined as a particular division of sample D into two sub-samples: a so-called learn-
ing sample (denoted by DL) and an evaluating sample (denoted by VD ). Several independent realizations (typically 
50) are implemented for each partition of the non-genetic variables. Average of Discriminating Power and Efficacy 
Rate, <DP> and <E>, are calculated over all the realizations for each partition of the set of non-genetic 
variables.

Once the best set and partition of non-genetic variables to define cells has been chosen, the methodology is 
implemented to obtain Pj

i of Eq. (2) using the complete sample D as a learning sample, since it is desirable to take 
the maximum advantage of the information provided by all the already-solved cases of the event under 
consideration.

Figure 1 shows average values of Discriminating Power and Efficacy Rate for different divisions of the space of 
non genetic variables into cells, obtained for the Fátima event, averaging 50 independent cross-validation realiza-
tions, in each of which 25% of the cases were randomly selected as the validation sample VD . GeoTemporal par-
tition of the space (black circles) shows the best results, both, in terms of Discriminating Power and Efficacy Rate. 
Different dots (black circles) correspond to different temporal windows to define cells, from 1 day to 90 days (in 
steps of 3 days, although in the figure only some of them are labeled). By considering only Temporal variables 
(empty blue circles) the Discriminating Power is maximum, but Efficacy Rate does not exceed a threshold value 
around 0.018. TimePolitical partition of the space (violet stars) shows similar results to the GeoTemporal one, 
although always a little worse. However, at the moment of choosing the best temporal parameter, there are results 
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of GeoTemporal partition that are clearly better than the TimePolitical ones. The green diamond shows the results 
of using only Geographical variable; the blue square, only Political variable; and the brown triangle (which is 
approximately in the middle of Political and Geographical ones), using a partition into GeoPolitical cells. The 
Geographical partition achieves acceptable values of Discriminating Power, although very bad ones in terms of 
Efficacy Rate. Finally, orange circles represent results by considering the partition which combines the three types 
of variables, defining GeoTimePolitical cells. Clearly, by considering the three variables, the results are worse than 
considering only two (PoliticalTime, GeoPolitical and GeoTemporal ones). Red dots represent results when 
scores for individuals are randomly assigned; they make a well-separated cluster from the rest of the points. The 
fact that the GeoTemporal and TimePolitical variables lead to results much better than randomly assigned scores 
shows that there is a knowledge within identified cases of the Fátima event, and then it is possible to take advan-
tage of this knowledge by learning about these non-genetic variables.

From results of Fig. 1, a temporal window of =T 10 days using GeoTemporal variables was chosen to define 
the temporal length of Fátima event´s cells. Then, the methodology was implemented using the complete sample 
D as a learning sample, applying the expression (2) to obtain Pj

i values of probability scores for every individual of 
the set of possible victims V  for the selected partition of non-genetic variables (which defines the Ni and Ii values 
for all i cells, as the example of Table (1)). An example of ranking is shown in Fig. 2. In this Figure, the set of vic-
tims is represented on the x-axis; the chosen order in which individuals are represented is that of decreasing 
ranking scores. The continuous line (red) represents the value for the probability of corresponding with certain 
UHR from Fátima event at the initial instance of knowledge, before learning about the already-solved cases. Black 
points represent the probability for every victim in the updated instance of knowledge. In this piecewise-constant 
distribution, there are no possible victims with zero probability of corresponding with UHR from the Fátima 
event. This is a consequence of working within a Bayesian framework. The experience learned from the 
already-solved cases will not lead to establishing possible victims (with non-null probability) and not possible 
victims (with null probability), but will organize the possible ones hierarchically in terms of probability. Thus, all 
the possible victims remain in the complete set V  after updating the probabilities of the cells, until another type of 
assumption is made by which some of them are not possible anymore (as in the case of the sex of UHR is known).

Figure 3 shows the results for four mass events of the same context together: Fátima, San Martín, Avellaneda and 
a Flight event (which was one of the mechanisms applied in Argentina by some IDCs to get rid of people once their 
death had been decided). In the Figure, each point represents the results of Discriminating Power vs. Efficacy for the 
selected best partition of variables (GeoTemporal in all cases although with different values of temporal windows to 
define cells). Fátima event shows the best results (possibly as a consequence of the event characteristics) not only in 
terms of Discriminating Power and Efficacy Rate, but also in terms of small variance values. However, the results of 
Fátima overlap with the results of Avellaneda and Flight events in terms of Discriminating Power and Efficacy. Only 
results of San Martín event have less Efficacy Rate than the rest of the events, but in terms of Discriminating Power, 
it overlaps with the others too. Another important fact is that the GeoTemporal partition of the space of non-genetic 
variables is always the best way to detect patterns, although the best temporal windows (the temporal length of the 
cells) have different values for each event. Values are similar (from 10 to 20 days) possibly because the same phenom-
enon (the dictatorship in Argentina) underlies all the events.

Figure 1.  Discriminating Power DP vs Efficacy Rate E by considering different partitions of the space of variables 
for the Fátima event. Red dots represent the results obtained when the scores for individuals are randomly assigned 
to the sample. Black circles represent GeoTemporal cells; violet stars, TimePolitical cells; blue circles, Temporal 
cells; brown triangle, GeoPolitical cells; cyan square, Political cells; green triangle, Geographical cells, and orange 
circles, GeoTimePolitical cells. In all the partitions involving time variable, each symbol is associated with one 
temporal window to define the temporal length of the cell (from =T 1 day to 90 days), in steps of 3 days.

https://doi.org/10.1038/s41598-020-59841-3


7Scientific Reports |         (2020) 10:5026  | https://doi.org/10.1038/s41598-020-59841-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
For the UHR of a woman from the Avellaneda event, the methodology proposed the fourth position of the score 
rankings of victims for an individual for whom the EAAF only had a biological reference sample of a distant rela-
tive. After these results, the family was contacted to increase the number of reference samples from close relatives. 
Nowadays she is identified. This reflects the objective of this work: to build a tool that contributes to the work of 
forensic anthropologists regarding background information, taking advantage of the already-solved cases of a 
particular event.

The key of this work is very simple: turning to the already-solved cases of a mass event is essential to con-
tribute to the knowledge regarding that event, knowledge that could be used in new searches of the same event, 
prioritizing the victims for certain UHR, and then, prioritizing the efforts to obtain new ante-mortem data and 
families’ blood samples within the identification process. Prioritization is essential in any investigation of a mas-
sive number of victims such as those involving crimes against humanity, conflicts, disaster victim identifications, 
among others.

Methods
To understand how to update prior probabilities ∈( )P S jN  into posterior probabilities ( )P S j∈ N D , it may be 
useful to think abstractly about a mathematically equivalent problem, which consists of throwing a die of m faces. 
It is not possible to assure before collecting any data whether the die is fair (i.e., equal probabilities for every face) 

Figure 2.  Example of a ranking score for UHR of a woman of (26,40) years old of Fátima event. Victims are 
represented on x-axes (as a sorted victim index), in decreasing order of the ranking scores. The continuous line 
(red) represents the value of the probability to correspond with certain UHR from Fátima at the initial instance 
of knowledge, before learning about the already-solved cases.
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Figure 3.  Discriminating Power DP vs Efficacy Rate E for the selected set of non-genetic variables for the 
different events under study (Fátima, San Martín, Avellaneda, and Flight events). In all the cases, the best 
partition is GeoTemporal cells (GT), although with a different temporal parameter to define the length of the 
cell, depending on the event.
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or loaded. The outcomes of a certain number of throws form the data D. Then, the probabilities of each face will 
be inferred after the observation of a set of outcomes D. In other words, the inference will capture how much 
unbalanced the die is according to experience. In our case, each face of this die represents each one of the cells of 
the problem under study. Following this analogy, ∈ N( )P S j  is equivalent to the probability of obtaining face j of 
the die in the next throw before observing the data D and ∈ N D( )P S j  is the probability of obtaining face j of 
the die in the next throw after learning about the data D.

In the initial instance of knowledge, there is total uncertainty about which victim is associated with remains S, 
a fact which is consistent with assigning the same chance to each individual of V . As a consequence, 

∈ =( )P S Nj jN /N . The sum of ∈ N( )P S j  over all the cells j is 1, following the assumptions (c) and (d), 
which means that with certainty UHR S belongs to one of the possible victims of set V . To update ∈( )P S jN D  
after learning about the identified cases, it is necessary to go back to the problem of the die, but imagining the 
experiment of throwing the m faces die n times, being n the total number of already-solved cases in the problem. 
If face i has a probability θi of resulting the winning face, it is possible to compute the probability of the outcome 
n n n( , , , )m1 2 …  which means that face 1 results n1 times, and face 2 results n2 times and so on until the face m, 

which results nm times. The probability of obtaining the outcome …n n n( , , , )m1 2  is a well-known probability 
distribution called the Multinomial Distribution19: 

θ θ θ θ θ θ… | … =
…

… .P n n n n
n n n( , , , , , , )

!
! ! ! (3)m m

m

n n
m
n

1 2 1 2
1 2

1 2
m1 2

It is known that the mean value of the outcome n1 is θ=E n n( )1 1, and in general E n n( )i iθ=  for the face i. The 
multinomial distribution can be used to obtain the probability of a particular realization of an experiment in 
which it is possible to assume the probability of each outcome, or the existence of a model to generate the n out-
puts for which outcome 1 has probability 1θ , outcome 2, 2θ , and so on up to outcome m, which has probability mθ . 
The problem under study is different empirically since there is (obviously) not a die involved, but human beings. 
Also, it is worth to remember that in Statistical Inference, instead of knowing the true parameters of the probabil-
ity model, and using them to obtain probabilities of possible different samples, there is a single sample 

…n n n( , , , )m1 2  from which to learn the value of the parameters ( , , , )j1 2θ θ θ… . That single sample is the observed 
data D from the already-solved cases. In the context of this formalization of the problem, the data D of the 
already-solved cases can be thought as a particular realization of the n throws of the die, which results in I1 iden-
tified cases coming from cell 1, I2 from cell 2, and so on up to Im identified cases from cell m. Thus, the data D 
became one possible result of the experiment of throwing the die, that is I I I{ , , }m1 2D = … , where the sum of all 
the elements of D are ns, which is the total number of identified cases: I nj

m
j s1∑ == .

It is worthwhile to note that thinking about the die as an abstract mathematical problem and the multinomial 
distribution that arises therein is actually an approximation. That is because a multinomial model for the data is 
akin to assuming sampling with replacement. In contrast, UHR recognition involves sampling without replace-
ment, which would entail a multivariate hypergeometric distribution. Mathematically, opting for that approxi-
mation has the advantage of having a conjugate prior, which greatly simplifies calculations and makes available 
a posterior distribution and its first two moments as point estimators in closed-form. The alternative, i.e., the 
multivariate hypergeometric distribution, does not belong to the exponential family of distributions and thus 
it has no conjugate prior. Bayesian calculations for that model would entail numerical approximations for the 
arising integrals, or implementation of the Gibbs sampler, which would, in turn, require special computing code 
for the algorithms and convergence diagnostics. We aim our manuscript at Forensic researchers hoping they will 
implement the proposed methodology as a tool to prioritize cases and guide the searches. That simplicity in com-
putational terms is the main reason why we adopt the multinomial approximation in this manuscript.

Bayesian inference.  Using the Bayes Theorem to update the probabilities in the ideal problem of the m
-faced die, posterior probabilities of the parameters θi can be written in terms of prior probabilities: 

θ θ θ
θ θ θ θ θ θ

… =
… ⋅ …f p f

P
( , ) ( , ) ( , )

( )
,

(4)m
m m

1 2
1 2 1 2D

D

D

where 

•	 Dθ θ θ…f ( , )m1 2  is the posterior density of the parameters θ θ θ…( , )m1 2 ,
•	 D θ θ θ…p( , )m1 2  is the likelihood, which was expressed as a multinomial distribution in this problem,
•	 f ( , )m1 2θ θ θ…  is the prior density of the parameters θ θ θ…( , )m1 2 ,
•	 and the denominator ∫ ∫ θ θ θ θ θ θ θ θ= … ⋅ … …P p f d d( ) ( , ) ( , )m m m1 2 1 2 1D D  is the integral (across the 

prior) of the product of the likelihood and the prior.

A Dirichlet distribution is considered as a prior density of the cell parameters θ θ θ…f ( , )m1 2 . By writing a prior 
distribution of the parameters, it is assumed that the parameters are not fixed values but random variables that 
have a certain probability distribution, which is expressed as a function of certain hyperparameters α1, 2α , …, mα . 
It is given in Eq. (5): 

https://doi.org/10.1038/s41598-020-59841-3


9Scientific Reports |         (2020) 10:5026  | https://doi.org/10.1038/s41598-020-59841-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

θ θ θ
α α α

α α α
θ θ θ… =

Γ + + … + + …

Γ Γ …Γ …
…α α α− − −( )

f ( , , , )
( ) ( ) ( )

,
(5)

m
j

j
m1 2

1 2

1 2
1

1
2

1 1m1 2

where each θ ≥ 0i  and 1m1θ θ+ … + = .
There are several reasons for which a Dirichlet distribution is used as a prior. The first one is that this distribu-

tion adapts to both informative and non-informative prior distributions since it allows the calibration of the 
hyperparameters for both situations. Informative means that not all the possible outcomes are equally likely to 
occur (as in our case). The second reason is that the Dirichlet is the conjugate prior for the Multinomial distribu-
tion, which means that the following property is met: if the likelihood of the parameters is a Multinomial distri-
bution and the prior density of the parameters is a Dirichlet one, then the Posterior density of the parameters 

θ θ θ…f ( , )m1 2 D  is also a Dirichlet distribution but with updated values of the parameters, which are going to be 
a known function of the hyperparameters and the data D.

By having a distribution of probability associated, the parameters θ have an associated uncertainty. The follow-
ing expressions are met for the expected values and variance of the parameters θj ( θ( )E j  and θ( )Var j  respectively) 
as a function of the hyperparameters jα  for all j value: 

θ
α

α
θ

α α α

α α
= =

−

+
( ) ( )E Var

( )

( 1)
,

(6)
j

j
j

j j

0

0

0
2

0

where α α α α= + + … + m0 1 2 . Those properties render a very amenable interpretation for prior elicitation 
(i.e. translating expert knowledge into concrete values)16. GeoTemporal cell probabilities at the initial instance of 
knowledge of the problem have to be consistent with what is known before the already-solved cases. This means 
that all the possible victims are equally probable, and therefore those cells with more victims will be more likely. 
As a consequence, before the data from the identifications, the prior probabilities of the cells are proportional to 
the number of victims belonging to every GeoTemporal cell. A further condition is that the parameters of the 
distribution are such that the prior expectation of jθ , θ =( )E N Nj j  for all = …j m1, 2 , . In this way, it is 
required that all individuals have the same chance of corresponding with UHR S in the instance of the knowledge 
prior to the data of the already-solved cases. As for the Dirichlet distribution it is known that the expected value 
of the variable jθ  is αj/ 0α , from Eq. (6), then what must be satisfied are m conditions, one for each j cell: 

( )E
N
N (7)j

j j

0
θ

α

α
= = .

The m conditions of Eq. (7) are not independent, since the sum of jα  over all j from 1 to m is 0α . This fact 
implies that it is not possible to solve the system equations of m unknown variables and only −m 1 independent 
equations. It is necessary to propose another condition as an extra equation. The coefficient of variation (CV) of a 
random variable is defined as the quotient between its standard deviation and its expected value. As a convention-
ally accepted “rule of thumb”, random variables with a  coefficient of variation greater than 0.5 are considered very 
heterogeneous, while those with values lower than 0.10 are considered very homogeneous. Since it is expected to 
specify a fairly vague prior, it is possible to establish the coefficient of variation of the most populated cell to be 1, 
as a criterion to establish the needed extra condition, i.e., 

θ
θ

θ
= =

Var
E

CV ( )
( )

( )
1,

(8)k
k

k

where cell k is that cell for which Nk is maximum over all the Nj cell values. The fact that this condition is met for 
the most populated cell ensures that the coefficient of variation will be more than 1  for the rest of the cells. By 
squaring the expression of Eq. (8) and replacing it in the second one of Eq. (6), the following extra condition for 
the hyperparameters is obtained: 

( )
( 1) (9)

k k k0

0
2

0 0

2
α α α
α α

α
α

−
+

=










After solving the system of equations given by the Eqs. (7) and (9), an expression for 0α  as a function of the 
data is obtained as: α = − 2N

N0
k

. By replacing this result in Eq. (7), an expression for every hyperparameter αj 
corresponding to cell j is obtained: 

N
N

N
N

j2
(10)

j
j

k
α =






−





∀

It is important to note that if =N 0j  for cell j, then 0jα = , which implies that the expected value is zero 
θ =( )E( 0)j  for this cell. In other words, if there are no cases of kidnapped individuals within the place and dates 

corresponding with the GeoTemporal cell j, then the probability of remains S to be associated to somebody from 
this cell is null, which makes sense because there are no people with that combination of values of the variables.
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Using the property of conjugate distributions for the Dirichlet (prior distribution) and Multinomial (likeli-
hood), the posterior distribution results in a Dirichlet distribution with updated parameters: 

θ θ θ
α α α

α α α
θ θ θ… =

Γ + + … + + …

Γ Γ …Γ …
…α α α

′ ′ ′

′ ′ ′

− − −′ ′ ′( )
( )

f ( , , , )
( ) ( ) (11)

m
j

j
m2

1 2

1 2
1

1
2

1 1m1 2

where values of α ′
1, 2α ′ , …, α ′m are functions of the hyperparameters α and the data D, as: α α= +′ Ij j j, in 

general for cell j. This means that the expected values of the posterior parameters θ1, 2θ , …, mθ  are:
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j j j
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These are the Bayesian estimators of the unknown probabilities which use both the knowledge given by the 
prior distribution (equiprobability of all the eligible victims) and the observed data (the set of already-solved 
cases) for a particular cell partition of non-genetic variables. This means that in the problem of the die the proba-
bility that the outcome is face j (the cell j in the problem at hand) will depend on the prior expected value modi-
fied by the data D from the already-solved cases (both of the total already-solved cases identified ns and of the 
total of already-solved cases that fell into that cell, Ij). These results imply that the probability that remains S 
belong to some victim of cell j, which is ∈( )P S jN D  (called j

postθ  for the sake of simplicity), is:
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This work was accepted and presented in the Congress of the American Academy of Forensic Sciences20. 
Data are not available but all the scripts for implementing the methodology in R are available in https://github.
com/inescaridi/PriorID as the project priorID. An open, free, multi-platform and standalone interface for users 
to implement this methodology in diverse problems and incorporate feedback from forensic researchers is now 
under construction.
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