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Abstract: The present note deals with a methodology for development of compact analytical
schemes, for the derivation of boundary value problems, which describe the statical and dynam-
ical behaviours of plates with complicating effects. A special set of multi-indices in differentiation
symbols and two formulae of integration by parts are introduced to develop compact analytical
expressions in the procedures for deriving the governing differential equations and natural
boundary conditions.
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1 INTRODUCTION

The calculus of variations is concerned with the

determination of extremes of functionals, a generali-

zation of the problem of finding extremes of real func-

tions of several variables. It is well known that in a

variational approach, the governing equations of a

structural problem are obtained by seeking the mini-

mum of total potential energy of the system. The var-

iational principles are the only valid mathematical

formulation of certain physical laws. Engineers and

applied mathematicians increasingly use the tech-

niques of calculus of variations to solve a large

number of problems. Particularly in solid mechanics,

the Hamiltonian principle constitutes a formidable

tool for obtaining the analytical expressions of the

equations of motion and their associated boundary

conditions.

Substantial literature has been devoted to the for-

mulation, by means of the calculus of variations, of

boundary value problems in the statics and dynamics

of isotropic plates [1–8]. In these works, the Kirchhoff

classical plate theory or the first-order shear deforma-

tion theory is considered. Also, anisotropic plates

have been treated [9–11]. More recently, as a conse-

quence of the dramatic increase in the use of

composite material in all types of engineering struc-

tures, new structural theories like the third-order

laminate theory have been developed [12]. In all

these texts, classical notations and algebraic manip-

ulations are used. This standard procedure is based

on the use of classical symbols to represent par-

tial derivatives, involving tedious algebraic manipu-

lations which inevitably lead to complicated

analytical expressions whose details are commonly

avoided.

The main aim of this note is to introduce a new

analytical manipulation of the variational procedure

to obtain the equations of motions and their

associated boundary and transition conditions. This

efficient approach is based on creating a compact

analytical manipulation of the terms of the first

variation of the functional involved in the applica-

tion of Hamiltonian principle. The analytical

condensation is performed in two stages: (a) by intro-

ducing four multi-indices in differentiation sym-

bols, manipulated by some simple algebraic rules

and (b) by developing two formulae of integration by

parts, based on the well-known Green’s theorem.

The efficiency and shorthand syntax of the

approach is demonstrated by generating all the ana-

lytical manipulations needed to obtain the boundary
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value problems, which describe the statical and

dynamical behaviours of anisotropic plates with

several complicating effects. The use of the proposed

condensed notation aids both intuition and mathe-

matical manipulation since it avoids complicated

and obscure formulae and allows including all the

analytical details.

No claim of originality is made by the author since

no new method is presented here. Nevertheless, it is

felt that the suggested procedure has important

advantages with respect to the traditional analytical

manipulations.

2 CLASSICAL TREATMENT

Consider an isotropic plate that in the equilibrium

position covers the two-dimensional domain G,

with smooth boundary @G elastically restrained

against rotation and translation, as shown in Fig. 1.

As usual, in order to analyse the transverse dis-

placements of the system under study suppose that

the vertical position of the plate at any time t, is

described by the function w ¼ wðx, y, t Þ, where

x, y
� �

2 �G and �G ¼ G [ @G: The rotational restraint is

characterized by the function cr ¼ cr ðsÞ and the trans-

lational restraint by the function ct ¼ ct ðsÞ, where s is

the arc length along the boundary @G: At time t, the

kinetic energy of the plate is given by

EK ðwÞ ¼
1

2

ð ð
G

�h
@w

@t

� �2

dxdy ð1Þ

where hðx, yÞ is the plate thickness and � the mass

density of the isotropic material.

On the other hand, at time t, the total potential

energy due to the elastic deformation of the plate

and to the elastic restraints on the boundary @G, is

given by

EDðwÞ ¼
1

2

ð ð
G

D

(
@2w

@x2
þ
@2w

@y2

� �2

þ2 1� �ð Þ

@2w

@x@y

� �2

�
@2w

@x2

@2w

@y2

#" )
dxdy

þ
1

2

ð
@G

cr ðsÞ
@w

@n

� �2

ds þ
1

2

ð
@G

ct ðsÞw
2ds

ð2Þ

Hamiltonian principle requires that between

times t0 and t1 at which the positions of the mechan-

ical system are known, it should execute a motion

which makes stationary the functional

I ðwÞ ¼

ðt1

t0

EK � EDð Þdt ð3Þ

on the space of admissible functions.

In the classical variational calculus, it is a com-

mon practice to use �w to denote a variation of the

function w: It is defined by �w ¼ "v, where " is a small

real number and v a function which satisfies deter-

mined conditions. Thus, �w is considered as an

operator that changes from the function w into �w:

The derivatives are changed in the same form.

For instance, dw=dx is changed into � dw=dxð Þ ¼

"dv=dx: The variational operator can be interchanged

with derivatives and integrals. For instance

�

ð
�

Fdx ¼

ð
�

�F dx ð4Þ

This heuristic procedure requires now to define

�F : Thus, if F ¼ F x, w, w 0ð Þ, then the variation �F is

given by

�F ¼
@F

@w
�w þ

@F

@w 0
�w 0 ð5Þ

From (3), (4), and (5), the condition of stationary

functional is given by

�I ¼

ðt1

t0

ð ð
G

(
�h
@w

@t

@ð�wÞ

@t
�D

" 
@2w

@x2
þ
@2w

@y2

!

@2 �wð Þ

@x2
þ
@2 �wð Þ

@y2

� �
þ 2ð1� �Þ 

@2w

@x@y

@2ð�wÞ

@x@y
�

1

2

@2w

@x2

@2 �wð Þ

@y2
�

1

2

@2w

@y2

@2 �wð Þ

@x2

!)

dxdydt �

ðt1

t0

ð
@G

cr ðsÞ
@w

@n

� �
@ �wð Þ

@n

� �
dsdt

�

ðt1

t0

ð
@G

ct ðsÞw�wdsdt ¼ 0 ð6Þ

Now, the application of the well-known Green’s

theorem of integration by parts results in a lengthy

analytical procedure whose final product is the

following boundary value problem

�h
@2w

@t 2
þD

@4w

@x4
þ
@4w

@y4
þ 2

@4w

@x2@y2

� �
¼ 0, 8x 2 G

ð7Þ

h

G

rc

G∂

1x

2x

tc

Fig. 1 Plate with elastically restrained boundary
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cr ðsÞ
@w

@n
¼�D �

@2w

@x2
þ
@2w

@y2

� �
� 1� �ð Þ

�

@2w

@x2
n2

x þ
@2w

@y2
n2

y þ 2nxny
@2w

@x@y

� ��
ð8Þ

ct ðsÞw ¼ D

(
@

@n

�
@2w

@x2
þ
@2w

@y2

!
þ

 
1� �

!

@

@s

"
@2w

@x2
nxny þ

@2w

@y2
nxny þ

@2w

@x@y

 
n2

x � n2
y

!#)

ð9Þ

It is obvious that if for instance, the plate has

anisotropic material, the corresponding variational

treatment implies an extremely lengthy analytical

manipulation process, revealing the necessity of a

more efficient notation.

3 A NEW PROCEDURE FOR THE

MANIPULATION OF DERIVATIVES

Consider the well-known notation

D�u xð Þ ¼
@ �j ju xð Þ

@x�1

1 @x
�2

2 @x
�3

3

ð10Þ

where u : S ! R, u 2 C �j j Sð Þ, S � R
3, and

x ¼ x1, x2, x3ð Þ: The vector � ¼ �1,�2,�3ð Þ is a multi-

index whose co-ordinates are non-negative integers

and �j j the sum �j j ¼
P3
i¼1

�i : Now, introduce the fol-

lowing multi-indices

�ð1Þ ¼ 2, 0, 0ð Þ,�ð2Þ ¼ 0, 2, 0ð Þ,�ð3Þ ¼ 1, 1, 0ð Þ,�ð4Þ

¼ 0, 0, 2ð Þ

1ðiÞ ¼ �1i , �2i , �3ið Þ, i ¼ 1, 2, 3

ð11Þ

where �ji is the Kronecker delta, �ji ¼ 1 if j ¼ i and

�ji ¼ 0 if j 6¼ i:
Consider a function v : S ! R, defined on

S ¼ G � 0, T½ � for some fixed time T 4 0, with

x ¼ x1, x2ð Þ 2 G, x3 ¼ t , G � R
2: The use of (10) and

(11) leads to

D1ðiÞv x, tð Þ ¼
@v

@xi
x, tð Þ,

D�ðiÞv x, tð Þ ¼
@2v

@x2
i

x, tð Þ, i ¼ 1, 2,

D�ð3Þv x, tð Þ ¼
@2v

@x1@x2
x, tð Þ, D1ð3Þv x, tð Þ ¼

@v

@t
x, tð Þ,

D�ð4Þv x, tð Þ ¼
@2v

@t 2
x, tð Þ

ð12Þ

Proposition 1

The multi-indices (11) verify the following algebraic rules

1ðiÞ þ 1ðiÞ ¼ �ðiÞ, 8i 2 1, 2f g ð13Þ

1ð3�iÞ þ 1ðiÞ ¼ �ð3Þ, 8i 2 1, 2f g ð14Þ

1ð3Þ þ 1ð3Þ ¼ �ð4Þ ð15Þ

Proof

This follows from the sum operation of multi-indices.

Remark 1

If v 2 C 2 �S
� �

, the order of differentiation is immaterial

and by (14)

D�ð3Þv ¼
1

2

X2

i¼1

D1ðiÞ D1ð3�iÞ

v
� 	

ð16Þ

The decomposition (16) proves to be valuable in the

analytical manipulations used in the next sections.

The other essential step to compact analytical expres-

sions, is the derivation of formulae needed to trans-

form the terms which involves derivatives of

variations.

Proposition 2

Suppose that F : S ! R, v : S ! R, S ¼ G � 0, T½ �, F

�, tð Þ, v �, tð Þ 2 C 2ð �GÞ, G � R
2 and i 2 1, 2f g: Then, the

following formula is validð
G

F ðx, t Þ
�

D�ðiÞvðx, t Þ
	

dx

¼

ð
@G

h
F ðx, t Þ

�
D1ðiÞvðx, t Þ

	
niðxÞ �

�
D1ðiÞF ðx, t Þ

	

vðx, t ÞniðxÞ
i

ds þ

ð
G

D�ðiÞF ðx, t Þ
� 	

vðx, t Þdx ð17Þ

If i ¼ 3, thenð
G

F ðx, t Þ D�ð3Þvðx, t Þ
� 	

dx

¼
1

2

X2

i¼1

nð
@G

h
F ðx, t Þ

�
D1ð3�iÞ

vðx, t Þ
	

niðxÞ

� D1ðiÞF ðx, t Þ
� 	

vðx, t Þn3�iðxÞ
i

ds
o

þ

ð
G

D�ð3ÞF ðx, t Þ
� 	

vðx, t Þdx ð18Þ

Proof

The Green formula is given byð ð
G

u
@v

@xi
dx1dx2 ¼

ð
@G

uvnids

�

ð ð
G

v
@u

@xi
dx1dx2, u, v 2 C 1ð �GÞ ð19Þ
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where ni denotes the ith component of the outward

unit normal ~n to the boundary @G:Using this formula

and the decomposition given by (13) yieldsð
G

FD�ðiÞvdx ¼

ð
G

FD1ðiÞ D1ðiÞv
� 	

dx

¼

ð
@G

F D1ðiÞv
� 	

nids �

ð
G

D1ðiÞF
� 	

D1ðiÞv
� 	

dx

¼

ð
@G

F D1ðiÞv
� 	

ni � D1ðiÞF
� 	

vni

h i
ds

þ

ð
G

D1ðiÞ D1ðiÞF
� 	

vdx

Hence, (17) is valid. On the other hand, by (16)

and (19)ð
G

FD�ð3Þvdx¼
1

2

X2

i¼1

ð
G

FD1ðiÞ D1ð3�iÞ

v
� 	

dx

¼
1

2

X2

i¼1

ð
@G

F D1ð3�iÞ

v
� 	

nids�

ð
G

D1ðiÞF
� 	

D1ð3�iÞ

v
� 	

dx

� �

¼
1

2

X2

i¼1

ð
@G

F D1ð3�iÞ

v
� 	

ni� D1ðiÞF
� 	

vn3�i

h i
ds




þ

ð
G

D1ð3�iÞ

D1ðiÞF
� 	

vdx

�

from which (18) follows.

4 APPLICATION TO THE CLASSICAL

ANISOTROPIC PLATE THEORY

Consider the plate described in section 2 when it has

anisotropic material and is subjected to an external

load q ¼ qðx, t Þ: It is well known that the functional

needed in the application of Hamiltonian principle is

given by [13]

F wð Þ ¼
1

2

ðt1

t0

ð
G

�h
@w

@t

� �2

�E11

@2w

@x2
1

� �2
 (

� 2E12

@2w

@x2
1

@2w

@x2
2

� E22

@2w

@x2
2

� �2

� 4
@2w

@x1@x2
E16

@2w

@x2
1

þ E26

@2w

@x2
2

� �
� 4E66

@2w

@x1@x2

� �2

þ2qw

!
dx �

ð
@G

cr ðsÞ
@w

@n

� �2

ds �

ð
@G

ct ðsÞw
2ds

)
dt

ð20Þ

where the coefficients Eij ¼ EijðxÞ are the rigidities of

the anisotropic material [9].

In order to avoid the vague mechanical � method

described briefly in section 2, consider the following.

The condition of stationary functional which corre-

sponds to (20) requires that

�F w; vð Þ ¼ 0, 8v 2 Da ð21Þ

where �F w; vð Þ is the first variation of F at w in the

direction v and Da the space of admissible directions

at w for the domain D of this functional. The definition

of the variation of F at w in the direction v is given as a

generalization of the definition of the directional

derivative of a real valued function defined on a

subset of R
n [14]. Consequently, the definition of the

first variation of F at w in the direction v is given by

�F w; vð Þ ¼
dF

d"
w þ "vð Þ

����
"¼0

ð22Þ

It can be noted that v is simply an element of a

vector space which generalizes the concept of direc-

tion and that a fundamental step is the determination

of the spaces of admissible functions and directions.

In order to make the mathematical developments

required by the techniques of the calculus of varia-

tions assume that

�h 2 C �G
� �

, qð�, t Þ 2 C �G
� �

, Eij 2 C 2 �G
� �

,

w x, �ð Þ 2 C 2 t0, t1½ �, w �, tð Þ 2 C 4 �G
� �

From (22), it easily follows that the variation of the

functional (20) is given by

�F w; vð Þ ¼

ðt1

t0

ð
G

�h
@w

@t

@v

@t
� E11

@2w

@x2
1

@2v

@x2
1

�


�E12
@2w

@x2
1

@2v

@x2
2

þ
@2w

@x2
2

@2v

@x2
1

� �

� E22
@2w

@x2
2

@2v

@x2
2

� 2E16
@2w

@x1@x2

@2v

@x2
1

þ
@2w

@x2
1

@2v

@x1@x2

� �

� 2E26
@2w

@x1@x2

@2v

@x2
2

þ
@2w

@x2
2

@2v

@x1@x2

� �

�4E66
@2w

@x1@x2

@2v

@x1@x2

� �
þ qv

�
dx

�

ð
@G

cr ðsÞ
@w

@n

@v

@n
ds �

ð
@G

ct ðsÞwvds

�
dt ð23Þ

Introduce the coefficients Aij as the elements of the

symmetric matrix

A ¼
E11 E12 2E16

E12 E22 2E26

2E16 2E26 4E66

2
4

3
5 ð24Þ

Using the notation introduced above, the variation

(23) can be compacted to

�F w; vð Þ ¼

Z t1

t0

Z
G

�h D1ð3Þw
� 	

D1ð3Þv
� 	h


�
X3

i¼1

X3

j¼1

AijD
�ð j Þw

� 	
D�ðiÞv þ qv

#
dx

�

Z
@G

cr
@w

@n

@v

@n
ds �

Z
@G

ct wvds

�
dt ð25Þ
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In view of all these observations and since

Hamiltonian principle requires that at times t0 and

t1 the positions are known, the space D where the

functional (20) is defined is given by

D ¼ w; w x, �ð Þ 2 C 2 t0, t1½ �, w �, tð Þ 2 C 4 �G
� �

,



w x, t0ð Þ, w x, t1ð Þ prescribed
�

ð26Þ

The only admissible directions v at w 2 D are those

for which w þ "v 2 D for sufficiently small " and

�F w; vð Þ exists. In consequence, and in view of (26),

v is an admissible direction at w for D if, and only if,

v 2 Da where

Da ¼ v; v x, �ð Þ 2 C 2 t0, t1½ �, v �, tð Þ 2 C 4 �G
� �

,



v x, t0ð Þ

¼ v x, t1ð Þ ¼ 0, 8x 2 �G
�

ð27Þ

Consider the first term of (25). Since

w x, �ð Þ, v x, �ð Þ 2 C 2 t0, t1½ �, integrating by parts with

respect to t and applying the conditions v x, t0ð Þ ¼

v x, t1ð Þ ¼ 0, 8x 2 �G, imposed in (27) yields

ðt1

t0

ð
G

�h D1ð3Þw
� 	

D1ð3Þv
� 	

dxdt

¼

ð
G

�h D1ð3Þw
� 	

v

����t1

t0

dx�

�

ðt1

t0

ð
G

�h D1ð3Þ D1ð3Þw
� 	� 	

vdxdt

¼ �

ðt1

t0

ð
G

�h D�ð4Þw
� 	

vdxdt ð28Þ

To transform the terms of (25) which are multiplied

by a coefficient Aij , the formulae (17) and (18) must

be employed. Then, if i 2 1, 2f g by (17)ð
G

SiD
�ðiÞvdx ¼

ð
@G

Si D1ðiÞv
� 	

ni � D1ðiÞSi

� 	
vni

h i
dsþ

þ

ð
G

D�ðiÞSi

� 	
vdx ð29Þ

where

Si ¼
X3

j¼1

AijD
�ð j Þw ð30Þ

Finally, by (18)ð
G

S3 D�ð3Þv
� 	

dx

¼
1

2

X2

i¼1

ð
@G

S3 D1ð3�iÞ

v
� 	

ni � D1ðiÞS3

� 	
vn3�i

h i
ds

þ

ð
G

D�ð3ÞS3

� 	
vdx ð31Þ

Substituting (28), (29), and (31) into (25) yields

�F w; vð Þ

¼ �

ðt1

t0

ð
G

�h D�ð4Þw
� 	

þ
X3

i¼1

D�ðiÞSi

� 	
� q

 !
vdxdt

�

ðt1

t0

ð
@G

X2

i¼1

�
Si D1ðiÞv
� 	

ni � D1ðiÞSi

� 	
vni :

(

þ
1

2
S3 D1ð3�iÞ

v
� 	

ni � D1ðiÞS3

� 	
vn3�i

� 	�

þcr ðsÞ
@w

@n

@v

@n
þ ct ðsÞwv

)
dsdt ð32Þ

The important properties that are shown in the

following proposition, allow an adequate collection

of terms.

Proposition 3

The sums in (32) verify the following properties

X2

i¼1

D1ð3�iÞ

v
� 	

ni ¼
X2

i¼1

D1ðiÞv
� 	

n3�i ð33Þ

X2

i¼1

D1ðiÞS3

� 	
n3�i ¼

X2

i¼1

D1ð3�iÞ

S3

� 	
ni ð34Þ

Proof

The development of the sums in both members leads

to the corresponding demonstrations.

As usual, it is convenient from now on to introduce

a change of variables in order to deal with the points

which correspond to the boundary curve @G: The new

variables are n, sð Þ where s is the arc length of the

boundary curve @G and n a distance measured from

@G along the unit normal ~n [13]. If @G is a smooth

curve represented in the parametric form by the C1

function

� : 0, l½ � ! R
2; � ¼ �1ðsÞ,�2ðsÞð Þ, s 2 0, l½ �

where l ¼ l ð@GÞ is the length of the curve @G, then the

relation of the variables x1, x2ð Þwith n, sð Þ leads to [13]

@v

@x1
ðx, t Þ

����
@G

¼
@v

@n
�, tð Þn1 �ð Þ �

@v

@s
�, tð Þn2 �ð Þ

@v

@x2
ðx, t Þ

����
@G

¼
@v

@n
�, tð Þn2 �ð Þ þ

@v

@s
�, tð Þn1 �ð Þ

which can be condensed by

D1ðiÞv ¼
@v

@n
ni þ �1ð Þi

@v

@s
n3�i , i ¼ 1, 2, in @G ð35Þ
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Substituting (35) into (32) and applying (33) and

(34) yields

�F w; vð Þ ¼

�

ðt1

t0

ð
G

�h D�ð4Þw
� 	

þ
X3

i¼1

D�ðiÞSi

� 	
� q

" #
vdxdt

�

ðt1

t0

ð
@G

X2

i¼1

� D1ðiÞSi þ 0:5D1ð3�iÞ

S3

� 	
vni

h(

þ
@v

@n
Sin

2
i þ 0:5S3nin3�i

� �
þ �1ð Þi

@v

@s
Sinin3�i þ 0:5S3n2

3�i

� ��

þcr ðsÞ
@w

@n

@v

@n
þ ct ðsÞwv

)
dsdt ð36Þ

If Pi3�i ¼ �1ð Þi Sinin3�i þ 0:5S3n2
3�i

� �
, an integra-

tion by parts yieldsð
@G

@v

@s
Pi3�ids ¼�

ð
@G

@Pi3�i

@s
vds ð37Þ

Replacing (37) into (36) yields

�F w; vð Þ

¼ �

ðt1

t0

ð
G

�h D�ð4Þw
� 	

þ
X3

i¼1

D�ðiÞSi

� 	
� q

" #
vdxdt

þ

ðt1

t0

ð
@G

X2

i¼1

��
D1ðiÞSi þ 0:5D1ð3�iÞ

S3

� 	
ni

(

þ
@Pi3�i

@s
� 0:5ct ðsÞw

�
v

�
@v

@n
Sin

2
i þ 0:5S3nin3�i þ 0:5cr ðsÞ

@w

@n

� ��)
dsdt

ð38Þ

According to the condition of stationary func-

tional (21), the expression (38) must vanish for the

function w corresponding to the actual motion of

the plate for all admissible directions v, and in par-

ticular for those admissible v, for which the curvi-

linear integrals in (38) vanish. Then, the variation

(38) reduces to

�F w; vð Þ ¼ �

ðt1

t0

ð
G

�h D�ð4Þw
� 	�

þ
X3

i¼1

D�ðiÞSi

� 	
� q

!
vdxdt ð39Þ

If the fundamental lemma of the calculus of varia-

tions is applied, it is concluded that the function w

must satisfy the following differential equation

�h xð ÞD�ð4Þw x, tð Þ

þ
X3

i¼1

D�ðiÞ
X3

j¼1

AijðxÞD
�ð j Þw x, tð Þ

 ! !
¼ qðx, t Þ,

8x 2 G, t � 0 ð40Þ

Finally, from (38) and (40), the condition (21) leads

to the following natural boundary conditions

cr ðsÞ
@w

@n
¼ �

X2

i¼1

Sin
2
i þ 0:5S3nin3�i

� �
ð41Þ

ct ðsÞw ¼
X2

i¼1

D1ðiÞSi þ 0:5D1ð3�iÞ

S3

� 	
ni

h

þ �1ð Þi
@

@s
Sinin3�i þ 0:5S3n2

3�i

� ��
ð42Þ

where Si is given by (30).

5 RECTANGULAR PLATE WITH AN INTERNAL
LINE HINGE

Consider an isotropic rectangular plate that in the

equilibrium position covers the two-dimensional

domain G, with piecewise smooth boundary @G

elastically restrained against rotation and transla-

tion. The plate has also an intermediate line

hinge, as shown in Fig. 2. It is assumed that the

domain G is divided into two parts G ð1Þ and

G ð2Þ(with boundaries @G ð1Þ and @G ð2Þ, respectively)

by the line �ðcÞ: In this case, consider the expression

(25) with

A ¼
E ðkÞ �E ðkÞ 0
�E ðkÞ E ðkÞ 0

0 0 2 1� �ð ÞE ðkÞ

2
4

3
5

where E ðkÞ denotes the flexural rigidity of the plate

material which corresponds to the subdomain G ðkÞ:

In the manner of achieving the boundary value prob-

lem in section 4, to the side

�ð1Þ,1 ¼ x1, bð Þ, x1 2 0, c½ �

 �

a

b

c

1
x

(1),1 (1),1,
r t

2
x

(1)G
(2)G

line hinge 

(2),1 (2),1,

(2),2 (2),2,
r t

(2),3 (2),3,
r t

(1),3 (1),3,

(1),2 (1),2,

r tr t

r t

c c

c c

c c

c c

c c

c c

( )cΓ

Fig. 2 A rectangular plate with an internal line hinge in
a variable position
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corresponds the following boundary conditions

c ð1Þ,1r xð ÞD1ð2Þw x, tð Þ

���
ðx1,bÞ

¼ �E ð1Þ xð Þ D�ð2Þw x, tð Þ þ �D�ð1Þw x, tð Þ

� 	���
ðx1,bÞ

,

8x1 2 0, c½ �

c ð1Þ,1t ðxÞw
���
ðx1,bÞ

¼ D1ð2Þ E ð1Þ xð Þ D�ð2Þw x, tð Þ þ �D�ð1Þw x, tð Þ

� 	h i
þ2 1� �ð ÞD1ð1Þ E ð1Þ xð ÞD�ð3Þw x, tð Þ

� 	
jðx1,bÞ, 8x1 2 0, c½ �

In an analogue form, the remaining boundary con-

ditions can be obtained. Moreover, from the curvilin-

ear integral which corresponds to the line hinge when

is considered as part of Að1Þ, i.e.ðt1

t0

ð
�ðcÞ

Sð1Þ1 D1ð1Þv � D1ð1ÞSð1Þ1 þD1ð2ÞS3

� 	
v

� 	
dsdt

ð43Þ

and the corresponding to Að2Þ, the transition condi-

tions are given by

Sð1Þ1

���
ðc,x2Þ
¼ Sð2Þ1

���
ðc,x2Þ
¼ 0, 8x2 2 0, b½ � ð44Þ

D1ð1ÞSð1Þ1 þD1ð2ÞSð1Þ3

���
ðc,x2Þ

¼ D1ð1ÞS
ð2Þ
1 þD1ð2ÞS

ð2Þ
3

���
ðc,x2Þ

, 8x2 2 0, b½ � ð45Þ

In analogue form, the equations can be obtained

which correspond to the subdomain G ð2Þ:
The proposed mathematical model is tested to

find the non-dimensional frequency coefficient

� ¼ !b2
ffiffiffiffiffiffiffiffiffiffiffiffi
�h=E

p
for a rectangular plate elastically

restrained against rotation and translation with an

internal line hinge. A combination of the Ritz

method and the Lagrange multipliers method [15] is

used to determinate the values of the mentioned fre-

quency coefficient. For the sake of simplicity, assume

E ð1Þ ¼ E ð2Þ ¼ E and hð1Þ ¼ hð2Þ ¼ h. Table 1 depicts the

first five values of the frequency parameter

� ¼ !b2
ffiffiffiffiffiffiffiffiffiffiffiffi
�h=E

p
for a square plate with the following

restraint parameters

RðkÞ1 ¼ c ðkÞ,1r b=E , RðkÞ2 ¼ c ðkÞ,2r a=E , RðkÞ3 ¼ c ðkÞ,3r b=E ,

T ðkÞ1 ¼ c ðkÞ,1t b3=E , T ðkÞ2 ¼ c ðkÞ,2t a3=E , T ðkÞ3

¼ c ðkÞ,3t b3=E , k ¼ 1, 2

and the internal line hinge is located at c=a ¼ 0:3:

6 CONCLUDING REMARKS

The compact procedure presented is particularly

adequate for the variational derivation of boundary

and eigenvalue problems which correspond to differ-

ent plate theories. The compact analytical expres-

sions generated diminish the analytical effort and

the amount of information. This method greatly

broadens the applicability and simplifies analytical

procedures and particularly, allows the determina-

tion of the properties (33) and (34), which are essen-

tial in the compactness of analytical expressions.

These properties are not evidenced when using the

classical analytical developments.

The compact procedure presented is also adequate

in the determination of weak solutions. In effect, it is

well known that the statical behaviour of the aniso-

tropic plate described in section 4 when a load

q¼q(x) is applied, is governed by the equation

X3

i¼1

D�ðiÞ
X3

j¼1

AijðxÞD
�ð j Þw xð Þ

 ! !
¼ qðxÞ, 8x 2 G

ð46Þ

and the boundary conditions (41) and (42) when the

variable t is deleted. Considering an arbitrary func-

tion v 2 H 2ðGÞ, where H 2ðGÞ is a Sobolev space [16,

17], multiplying equation (46) by this function and

integrating the result over the domain G yields

ð
G

X3

i¼1

D�ðiÞ
X3

j¼1

AijðxÞD
�ð j Þw xð Þ

 !" #
vðxÞdx

¼

ð
G

qðxÞvðxÞdx ð47Þ

Table 1 The first five values of the frequency parame-

ter � ¼ !b2
ffiffiffiffiffiffiffiffiffiffiffiffi
�h=E

p
for a square plate with four

edges elastically restrained against rotation

R ¼ Rð1Þi ¼ Rð2Þi , i ¼ 1, 2, 3
� 	

and translation

T ¼ T ð1Þi ¼ T ð2Þi , i ¼ 1, 2, 3
� 	

. The line hinge is

located at c=a ¼ 0:3

RðkÞi ¼ R T ðkÞi ¼ T

Mode sequence

1 2 3 4 5

1 1 1.997 7.904 9.940 18.645 36.881
10 6.223 10.535 12.299 20.382 37.666
100 17.208 23.146 24.946 32.413 44.892
1000 29.526 46.627 53.785 67.845 79.881

1000 1 1.997 7.892 9.923 18.620 36.773
10 6.221 10.528 12.287 20.362 37.564
100 17.183 23.138 24.941 32.411 44.836
1000 29.424 46.514 53.669 67.737 79.852

100 1 1.996 7.790 9.768 18.407 35.840
10 6.211 10.470 12.187 20.196 36.683
100 16.967 23.074 24.901 32.401 44.360
1000 28.573 45.585 52.723 66.864 79.615

10 1 1.993 6.977 8.570 16.983 29.210
10 6.117 10.024 11.435 19.105 30.482
100 15.345 22.652 24.634 32.334 41.219
1000 23.602 40.682 47.739 62.602 78.411
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Now, upon applying the formulae (17) and (18) and

the boundary conditions (41) and (42), the corre-

sponding bilinear form is given by

B w, vð Þ ¼

ð
G

X3

i¼1

X3

j¼1

AijðxÞD
�ð j Þw xð Þ

 !
D�ðiÞv

 !

dx þ

ð
@G

ct wv þ cr
@w

@n

@v

@n

� �
ds ð48Þ

As usual, a function w 2 H 2ðGÞ is called a weak solu-

tion of the boundary value problem if ið Þ w 2 H 2ðGÞ,

iið Þ Bðw , vÞ ¼ ðq, vÞL2ðGÞ, 8v 2 V , where V is the

space of elements of H 2ðGÞ, which satisfy the stable

homogeneous boundary conditions.

The compact notation can also be implemented in

the variational treatment of the first-order laminate

plate theory [12] by introducing

u1 ¼ u, u2 ¼ v, u3 ¼ w, v1 ¼ u1, 0, u3ð Þ, v2

¼ 0, u2, u3ð Þ, v3 ¼ u1, u2, u3ð Þ

Dvi ¼ D1ðiÞui þ 0:5 D1ðiÞu3

� 	2

Dv3 ¼
X2

k¼1

D1ð3�kÞ

uk

� 	
þD1ð1Þu3D1ð2Þu3

Then, the classical terms Nxx , Nyy , and Nxy [12] can

be compacted as

Ni ¼
X3

j¼1

Eij Dvj � FijD
�ð j Þu3

� 	
,

Mi ¼
X3

j¼1

GijDvj �Hij D
�ð j Þu3

� 	
, i ¼ 1, 2, 3

The usual variational procedure leads to the differ-

ential equations

D1ðiÞ Nið Þþ D1ð3�iÞ

N3

� 	
¼ I0D�ð4Þui�I1 D1ðiÞD�ð4Þu3

� 	
,

i¼1,2,

X2

i¼1

D1ðiÞ NiD
1ðiÞu3

� 	�

þD1ð3�iÞ

N3D1ðiÞu3

� 	
þD�ðiÞMiþD�ð3ÞM3�I1D1ðiÞD�ð4Þui

þI2 D�ðiÞD�ð4Þu3

� 		
þq�I0D�ð4Þu3¼0

It is obvious from the presentation that the com-

pact notation has many advantages. It must be

remarked that the derived analytical expressions

can be recognized at first sight in the standard nota-

tion. For instance, equations (44) and (45) can be

immediately written as

E ð1Þ
@2w ð1Þ

@x2
1

x, tð Þ þ �
@2w ð1Þ

@x2
2

x, tð Þ

� �����
ðc,x2Þ

¼ E ð2Þ
@2w ð2Þ

@x2
1

x, tð Þ þ �
@2w ð2Þ

@x2
2

x, tð Þ

� �����
ðc,x2Þ

¼ 0,

8x2 2 0, b½ �

@

@x1
E ð1Þ xð Þ

@2w ð1Þ

@x2
1

x, tð Þ þ �
@2w ð1Þ

@x2
2

x, tð Þ

� �� �

þ2
@

@x2
1� �ð ÞE ð1Þ xð Þ

@2w ð1Þ

@x1@x2
x, tð Þ

� �����
ðc,x2Þ

¼
@

@x1
E ð2Þ xð Þ

@2w ð2Þ

@x2
1

x, tð Þ þ �
@2w ð2Þ

@x2
2

x, tð Þ

� �� �

þ2
@

@x2
1� �ð ÞE ð2Þ xð Þ

@2w ð2Þ

@x1@x2
x, tð Þ

� �����
ðc,x2Þ

,

8x2 2 0, b½ �

Admittedly, it is not a new method but nevertheless

it is an important tool for the analytical manipulation

which exhibits advantages even from a pedagogical

point of view.
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APPENDIX

Notation

a, b rectangular plate dimensions (Fig. 2)

Bðu, vÞ bilinear form

cr ðsÞ rotational stiffness

ct ðsÞ translational stiffness

C n Gð Þ space of all functions which, together

with all their partial derivatives of orders

� n, are continuous on G

E , E ðkÞ flexural rigidities of isotropic plate

ED strain energy

Eij bending, twisting, and coupling rigidities

of anisotropic plate

EK kinetic energy

G plate domain
�G closure of G, �G ¼ G [ @G

G ðiÞ plate subdomain

G � 0, T½ � Cartesian product of G an 0, T½ �

h plate thickness

H 2ðGÞ Sobolev space of order two

nx , ny direction cosines of the outward unit

normal

q transversal load

RðkÞi , T ðkÞi non-dimensional rotational and transla-

tional coefficients

s arc length

t time

v admissible direction

w deflection function

x1, x2 Cartesian coordinates

�,�ðiÞ, 1ðiÞ multi-index vectors

�I u; vð Þ first variation of functional I

@G plate boundary

� Poisson’s ratio

� mass density

! circular natural frequency of plate

vibration

� non-dimensional frequency parameter
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