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Abstract: The supervisory control problem is analysed as an online robust design problem using switching to select the relevant
models for designing the control law. The proposed supervisory control algorithm is based on the integration of concepts used in
supervisory adaptive control, robust control and receding horizon control. It involves a two-stage adaptive control algorithm: (i)
the identification of a time-varying set of models PL(k), from the set of admissible models PL, that explains the input–output
behaviour of the system, followed by (ii) the design of the control law using a parametric linear optimisation problem. The
authors show that under the proposed supervisory control algorithm, the system output remains bounded for any bounded
disturbance. The use of superstability concepts, together with certain assumptions on PL, allows us to establish overall
performance and robust stability guarantees for the supervisory scheme and to include constrains in the closed-loop variables
as well as in the controller structure. The relevant features of the proposed control algorithm are demonstrated in a numerical
simulation.
1 Introduction

Adaptive systems control has been investigated for over four
decades. Since the beginning, for the sake of mathematical
tractability, adaptive control theorists confined their
attention to time-invariant systems with unknown
parameters or slow drifts in the parameters [1, 2]. The
accepted philosophy was that if an adaptive system was
faster than the system parameters variation and accurate
enough, the convergence to real parameters and the closed-
loop stability can be guaranteed [3]. Based on this general
principle, adaptive control was extensively studied and
numerous robust adaptive control algorithms were derived
[4]. In this framework, the problem of selecting the best
controller according to a given performance index can be
addressed, along with a dual control approach [5].
However, such approach is generally difficult to implement
because of its computational burden. Besides, the closed-
loop system shows a poor performance during the transient
phase, exhibiting an oscillatory behaviour, when there are
large errors in the initial parameters estimates [3]. A
computationally feasible, even though sub-optimal,
approach to design adaptive controllers is the so-called
supervisory control, also known as multiple model adaptive
control (MMAC), originally introduced in [6] and further
developed in the last two decades.

There is a great amount of work on supervisory control, see
[7] and references therein. Early works on the subject used a
strategy of sequentially stepping through controllers until we
find one that stabilises the plant [6]. The selection of the
candidate controller is based on monitoring the output of
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the system over a moving window of time. The next
controller is switched into the loop if the value of the
monitoring function for the second half of the observation
window is higher than its value for the first half, assuming
that the length of the window is sufficiently large. A model-
based approach to supervisory control was introduced in
[8, 9]. In this case, the supervisor evaluates a set of
performance signals ml(k), which are estimates of the
output error with respect to each candidate model
el(k) ¼ y(k) 2 yl(k), then the supervisor switches into the
loop the controller with the best performance signal. Others
approaches to supervisory control use calibrate forecasts
[10] and a bank of observers for the system identification
combined with a hypothesis testing strategy to select the
controller [11, 12]. Other model-based approaches to
supervisory control can be found in [13–15].

An alternative approach to supervisory control is the cost-
based unfalsified control approach [16, 17], which is a non-
identifier-based deterministic approach. It is a model-free
approach that employs the closed-loop data to select the
right controller. Based on the performance assessments, the
controllers that do not meet a pre-specified desired
performance condition are rejected from the set of candidate
controllers. For a cost-based supervisory scheme to be
effective, the cost should be representative of the objectives
of the problem [18]. Simulation studies [19, 20] report
unacceptable transients since closed-loop data may reflect
the effect of initial conditions, resulting in the selection of
poorly performing controllers until measurements quality
improves. Therefore to achieve a good closed-loop
performance, it is necessary to include information about
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the plant model [20]. To deal with this problem, an adaptive
control scheme that combines both the approaches, that is,
cost-based falsification and model-based switching, has
been proposed recently [21, 22].

In most of the works that deal with these approaches to
adaptive control, the switching is based on the certainty
equivalence principle. The implementation and the analysis
of a supervisory control are simplified by considering a
finite number of candidate controllers (finite cover set) [23].
The compromise between robustness and performance is
made offline when the cover set is designed. If the cover set
comprises a small number of controllers, each one
stabilising a wide set of models, then stability is rapidly
achieved, even before a large amount of information has
been accrued, but in the long run the resulting performance
is typically poor. In contrast, if the cover set comprises a
large number of controllers, each one tailored to a narrow
set of models, high performance is potentially achieved, but
poor performance will possibly arise during the transient
phase until there is enough data to obtain an accurate
estimate of the system model.

Supervisory control schemes provide an attractive
framework for combining adaptive and robust control tools.
They are capable of overcoming the loss of stabilisation
problem and respond rapidly to abrupt parameters changes.
However, switching may introduce undesirable behaviours
that could affect closed-loop performance. One of these
behaviours is the intermittent switching among similar
models, which is caused by the algorithms hysteresis when
the plant is near the boundary of several models. This fact
may lead the supervisor to select the controller that does
not achieve a desirable closed-loop behaviour, despite that
the observed data indicate an acceptable candidate
controller (persistent selection of poorly performing
controllers). To encourage switching, hysteresis constant
can be reduced or replaced with dwell-time logic but at the
increased risk of long-term intermittent switching, resulting
in transients from initialisation of the new controller.
Finally, robust performance is only recovered in the steady-
state phase.

The aim of this work is to develop a new robust supervisory
adaptive control approach, called multiple models, switching
and tuning, capable of overcoming the problems described in
previous paragraphs, offering an alternative to the existing
supervisory adaptive control approaches. The proposed
supervisory adaptive scheme differs from previous
developments in three aspects:

† The controller is designed online using a convex
optimisation problem and a time-varying polytopic linear
model (PLM) PL(k) that is identified from a parameterised
class of admissible system models PL.
† The PLM PL(k) is built by excluding those models of PL
that cannot explain the time evolution of the plant input–
output trajectories, and
† The switching takes places in the cost function and
constraints of the optimisation problem employed to design
the controller.

The proposed algorithm exploits the advantages of
superstable systems [24] in the derivation of the
optimisation problem used to design the controller, which is
convex in the controller parameters and allows the inclusion
of robustness and performance specifications. The PLM
PL(k) is built using set-valued observers (SVOs) that track
the output estimates with a minimal size confidence
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ellipsoid consistent with the measurements, the uncertainty
description and the effect of unknown but bounded noises
[25]. This approach to supervisory control is equivalent to a
standard supervisory scheme that has an infinite number of
controllers with different degrees of robustness, plus the
additional benefit of constraints handling.

This paper is structured as follows: the class of superstable
system is recalled and some properties of this class of systems
are analysed in Section 2. The class of linear time-varying
(LTV) superstable systems is introduced and analysed for
the special case of switching systems. Besides, a controller
design procedure based on superstability [24] is recalled at
the end of the section. In Section 3 the multiple models
switching and tuning control approach is proposed, and the
stability and performance of the resulting closed-loop
system is analysed. Section 4 presents a numerical example.
Finally, concluding remarks and possible extensions of the
proposed adaptive control algorithm are presented in
Section 5.

2 Preliminaries

2.1 Superstable systems

Consider a linear time-invariant (LTI) discrete-time closed-
loop system described by a scalar equation

(1 + A(z))y(k) = B(z)w(k) (1)

where w(k) [ l1 is an exogenous input, y(k) is the system
output, z is the back-shift operator zy(k) ¼ y(k 2 1), A(z)
and B(z) are given polynomials

A(z) =
∑nA

i=1

aiz
i, B(z) =

∑nB

i=0

biz
i, nA ≥ nB (2)

In the sequel, we denote

||A||1 =
∑nA

i=1

|ai|, ||B||1 =
∑nB

i=0

|bi| (3)

and l1 stands for ‖w(k)‖1 ≤ 1, ∀k ≥ 0.

Definition 1: The system (1) is superstable if ‖A‖1 , 1.
Note that superstability is formulated in terms of

coefficients of the polynomial instead of its roots. Therefore
a superstable system is stable, but the converse does not
hold. Similar results can be found in a number of textbooks
on linear algebra and system theory [26–29].

Discrete-time superstable system has a number of
important properties. The main one is that superstable
systems admit non-asymptotic estimates for all time steps
and arbitrary initial conditions while stable systems only
have asymptotic estimates.

Lemma 1: If the discrete system (1) is superstable and the
initial conditions |y(i)| ≤ m, ∀i , 0, then

† for |w(k)| ≤ 1 ∀k, the norm of the system output is
bounded by

|y(k)| ≤ h+ ||A||(k+1)/nA
1 max{0, m− h}, ∀k ≥ 0 (4)
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where

h = ||B||1/(1 − ||A||1) (5)

is the equalised performance of the system [30].

† for w(k) ¼ 0 ∀k, the norm of the system output is
bounded by

|y(k)| ≤ ||A||(k+1)/nA
1 m, ∀k ≥ 0 (6)

Proof: See [24], p. 135. A

These results indicate that the norm of a superstable system
output decreases monotonically, while this property cannot be
guaranteed for stable systems whose estimate is

|y(k)| ≤ C(1)(r+ 1)km, 1 . 0, r+ 1 , 1

The constant C(1) may be large and |y(k)| can increase rather
than decay monotonically at initial iterations.

Remark 1: If a system is superstable and m ≤ h, then all
trajectories verifies |y(k)| ≤ h, ∀k for all admissible
perturbations.

These results can be extended to uncertain systems in a
straightforward way. Suppose that we use an additive
uncertainty description to represent the true system

A(z) = A0(z) + DA(z), B(z) = B0(z) + DB(z),

||DA||1 ≤ 1A, ||DB||1 ≤ 1B (7)

where A0(z), DA(z), B0(z) and DB(z) are polynomials of the
same form as in (2). We say that the uncertain system is
robustly superstable if

||A||1 ≤ 1 − 1A (8)

and the robust equalised performance is given by

h = ||B0||1 + 1B

1 − ||A||1 − 1A

(9)

Note that perturbations DA(z) and DB(z) can be LTV such
that they model a bounded non-linear system as well.

Another important property of a superstable system is its
simple behaviour for LTV systems

(1 + Ak (z))y(k) = Bk(z)w(k) (10)

where

Ak(z) =
∑nA

i=1

ai(k)zi, Bk(z) =
∑nB

i=0

bi(k) (11)

The results obtained for LTI superstable systems can be
extended to LTV systems by analysing the behaviour of the
LTI frozen systems. Indeed, the superstability of frozen
LTI systems (‖Ak‖1 , 1 ∀k) implies superstability of LTV
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system, guaranteeing an equalised performance

�h =
�b

1 − �g
(12)

and the norm of the system output is bounded by

|y(k)| ≤ �h+ �g(k+1)/nA max{0, m− �h} (13)

where

�b = max
∀k

||Bk ||1, �g = max
∀k

||Ak ||1 (14)

Now, let us consider the special case of a LTV system of the
form

(1 + AS(k)(z))y(k) = BS(k)(z)w(k) (15)

where

AS(k)(z) =
∑
l[L

sl(k)
∑nA

i=1

al
iz

i

BS(k)(z) =
∑
l[L

sl(k)
∑nB

i=0

bl
iz

i

(16)

S(k) = [sl(k)] [ S ∀l [ L are the time-varying parameters,
L is a finite index set, that is, L = {1, 2, . . . , m} and S is a
given compact set.

The results obtained for LTI systems can be extended to
LTV systems as follows:

Definition 2: A LTV system is superstable if ‖AS(k)‖1 , 1,
∀S(k) [ S.

Lemma 2: If the LTV system (15) is superstable and the
initial conditions |y(i)| ≤ m ∀i , 0, then the following facts
hold for all admissible trajectories of S(k) [ S:

† for |w(k)| ≤ 1 ∀k, the norm of the LTV system output is
bounded by

|y(k)| ≤ �h+ �g(k+1)/nA max{0, m− �h} (17)

where

�h =
�b

1 − �g
, �b = sup

∀k
sup

∀S(k)[S
||BS(k)||1,

�g = sup
∀k

sup
∀S(k)[S

||AS(k)||1 (18)

† for w(k) ¼ 0 ∀k, the norm of the LTV system output is
bounded by

|y(k)| ≤ �g(k+1)/nAm (19)

Proof: See Appendix 1. A

The first property is related to input–output stability (BIBO
stability) and disturbance rejection, whereas the second
property is the system behaviour with respect to initial
conditions. Thus, the switching between superstable
systems leads to a superstable LTV system. It is well
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known that this does not hold for the more general class of
stable systems [31].

2.2 Superstability-based controller design

Let us consider a standard unity feedback discrete-time
single-input single-output (SISO) system (other controller
structures, like a two-degree of freedom controller can be
considered in the controller design), comprising a plant
P (z) ¼ N(z)/D(z) and a controller C(z) ¼ F(z)/G(z), whose
performance will be optimised for the rejection of bounded
disturbances (see Fig. 1). Among such controllers, we are
interested in the one that minimises the performance index

J = sup
w(k)[l1

sup
∀k

|e(k)| (20)

which provides the maximal reduction of the effect of
disturbances. In a more general setting, a linear function of
the error e(t) and manipulated variable u(k) can be
considered rather than the error itself. [Other cost functions
or combination of them can be employed, leading to
different design problems. The structure of the resulting
optimisation problem is the same like (21) and they only
differ on the cost function minimised (see [24, 32]).]

Lemma 3: If there exist a controller C(z) such that the
resulting closed-loop system is superstable, then the
minimisation of (20) is equivalent to solve the parametric
linear problem

min
s[[0,1)

min
F,G

1

1 − s
||DG||1

such that

||DG + NF − 1||1 ≤ s

(21)

For the optimal values s∗, F∗ and G∗ the inequality
|e(k)| , h∗ ∀k . 0 is satisfied for the closed-loop system,
provided that it is satisfied for e(i) ∀i , 0.

Proof: See Appendix 2. A

The feasibility of this optimisation problem is guaranteed
for polynomials F(z) and G(z) of order nF ¼ nD and
nG ¼ nN 2 1, respectively, due to the Bezout theorem.
Using standard tools, problem (21) can be reformulated as
an LP with respect to the parameters of the controller.
Therefore it allows the inclusion of constraints in the
structure and parameters of C(z).

Combining the feasibility of (21) with Lemma 1, the
resulting closed-loop system is superstable with an
equalised performance h∗, an estimate of the maximum
closed-loop error sup∀k|e(k)| ≤ rh∗ and the norm of its
output is bounded by (4) for any initial condition or
disturbance.

Fig. 1 Closed-loop system considered in the design problem
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Robust design: The effect of uncertainty on the controller
design can be easily included into problem (21). The
structure of the resulting problem depends on the
description of uncertainty adopted. If the additive
uncertainty description is considered (7), the sensitivity
function f(z) is given by

f(z) = (D(z) + DD(z))G(z)

(D(z) + DD(z))G(z) + (N (z) + DN (z))F(z)
(22)

and h(f) becomes

h(f) = ||DG||1 + 1D||G||1
1 − ||DG + NF − 1||1 − 1D||G||1 − 1N ||F||1

(23)

This index leads to an LP optimisation problem similar to
(21), with the inclusion of the uncertainty terms

min
s[[0,1)

min
F ,G

1

1 − s
||DG||1 + 1D||G||1

such that

||DG + NF − 1||1 + 1D||G||1 + 1N ||F||1 ≤ s

(24)

If a polytopic model PL is employed to represent the plant
P [ PL such that

PL = co(Pl, L)

= P/P =
∑
l[L

ulPl,
∑
l[L

ul = 1, ul ≥ 0

{ }
(25)

the robust rejection of bounded disturbances problem
becomes

min
s[[0,1)

min
F ,G

1

1 − s

∑
l[L

ul||DlG||1

such that

||DlG + NlF − 1||1 ≤ s, l [ L

(26)

The coefficients ul allows the designer to assign different
weights to each model Pl such that its influence on the
controller design can be emphasised. This optimisation
problem corresponds to a hybrid characterisation of the
robust design problem where closed-loop performance is
measured through a weighted-norm objective function

1

1 − s

∑
l[L

ul||DlG||1

that includes the closed-loop performances of all models of
PL, while the superstability is guaranteed by the constraints
by ensuring the superstability of each model of PL

||DlG + NlF − 1||1 ≤ s, l [ L

Finally, these two approaches to robust design can be
combined to tackle the uncertainty of the individual models
Pl [ PL adding the extra terms of (24) in the objective
function and constraints of (26).
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3 Adaptive control using multiple models,
switching and tuning

The objective of many supervisory adaptive control schemes
is to control an unknown LTI plant P such that it is subject to
an exogenous unknown disturbance w(k) [ l1. Supervisory
controllers use information obtained online to switch among
a finite set of candidate robust non-adaptive controllers
C = {C1, C2, . . . ,Cm} such that the control law is given by
u(k) ¼ CS(k)(z)e(k), where the switching signal S(k):
[0, 1) � L is admissible if it is piecewise constant with a
dwell-time t . 0 such that consecutive switching times
ta , tb satisfy tb 2 ta ≥ t. The switching is based on the
estimated performance of each controller Cl(z) ∀l [ L,
computed using the online measurements.

In this work we adopt a different approach: instead of
switching among a set of non-adaptive controllers, we use a
soft-variable controller CL(k)(Fk (z), Gk(z)) that is designed
using superstability concepts and a time-varying PLM
PL(k), whose structure is shown in Fig. 2b. At every
sample, the monitoring block M builds PL(k) # PL with
only those models Pl that explain the input–output
trajectory of the plant P, such that P [ PL(k), using
information generated by the estimation block SVO, which
is composed of one SVO for each model of PL. PL(k) is
characterised by the set of indexes L(k) # L, which is used
by the supervisor block S to generate the switching signal
S(k) ¼ [sl(k)]

sl(k) = 1, ∀l [ L(k)
0, ∀l � L(k)

{
(27)

and the optimisation weights Q(k) ¼ [ul(k)]

ul(k) =
1 − tr(Pl(k|k))∑

l[L(k) tr(Pl(k|k))
, ∀l [ L(k)

0, ∀l � L(k)

⎧⎨
⎩ (28)

where Pl(k|k) is the covariance matrix of each set-value
observer. These signals are used to select the models, and the
corresponding constraints, to design CL(k) by computing
the parameters of Fk and Gk through the optimiser. Then, the
resulting controller polynomials Fk(z) and Gk(z) are updated
at every sample to compute the control law u(k).

Fig. 2 depicts the structure for both supervisory controllers,
where we can see the differences between both schemes. They
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have a supervisor and a monitoring block with similar
structure but different internal variables:

† the estimation errors el(k), monitoring signals ml(k) and
switching variables S(k) in the supervisory adaptive
controller;
† the covariance matrices Pl(k|k), set of index L(k),
switching variables S(k) and optimisation weights Q(k) in
the proposed controller.

The difference in the information employed by each
scheme is due to the structure of the controller: a set of m
robust non-adaptive controllers in the supervisory adaptive
controllers and a soft-variable controller [33] in the
proposed structure, which is equivalent to use an infinite
cover set (m � 1). It should be obvious that employing an
infinite number of controllers increase the flexibility in
terms of the control objectives, robustness and performance,
since the values of the eigenvalues can continuously change
and the regulation rate will thus be greater, than would be
in the case of using a switching controller.

3.1 Controller structure

The proposed adaptive control law has the format

u(k) = CL(k)(Fk(z), Gk (z))e(k) (29)

where Fk(z) and Gk(z) are the polynomials of the controller

Fk(z) =
∑nF

i=0

fi(k)zi, Gk(z) = 1 +
∑nB

i=1

gi(k)zi (30)

which are obtained solving the following optimisation
problem at every sample

min
s[[0,1)

min
Fk ,Gk

1

1 − s

∑
l[L(k)

ul(k)||DlGk ||1

such that

sl(k)||DlGk + NlFk − 1||1 ≤ s l [ L(k)

(31)

The main assumptions on the polytope PL and controller
order are
Fig. 2 Structure of the supervisory controller

a Supervisory adaptive
b Multiple, models, switching and tuning
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Assumption 1: The order of the polynomials Fk(z) and Gk(z)
are

nF = max
∀l[L

(nDl), nG = max
∀l[L

(nNl) − 1 (32)

Assumption 2: The optimisation problem (31) is feasible for
L(k) = L.

These assumptions ensure the existence of control law
(29) for all samples by guaranteeing the feasibility of the
optimisation problem (31). Assumption 1 guarantees that
the control law has enough parameters to freely place the
poles (a lower order controller may exist, but the
feasibility of (31) needs to be checked), whereas
Assumption 2 guarantees the feasibility of (31) for the
worst case: the superstability of the entire polytope
PL(k) = PL.

If the desired closed-loop performance is defined
through constraints on the closed-loop variables, the
feasibility of optimisation problem (31) will depend on
this constraints. One way of ensuring the feasibility of
the optimisation problem (31) is by softening
performance constraints with slack variables and then
penalised their deviation by including the slack variables
in the objective function [34].

3.2 Supervisory algorithm

The role of the supervisory algorithm is to built PL(k) by
excluding those models Pl [ PL that do not explain the
time evolution of the input–output trajectories of plant P.
PL(k) is build using the switching signal S(k), which define
the models Pl that will be employed by the optimisation
problem (31). The problem of disqualifying models is
addressed using SVOs [12]. This type of observers assume
that the initial conditions of the plant is uncertain, there are
disturbances acting upon the plant, the measurements are
corrupted with noise and the plant is given by its state-
space representation

x(k + 1) = (A + LxDA)x(k) + (B + LxDB)u(k)

y(k) = (C + LyDC)x(k) + v(k)
(33)

where Lx and Ly are problem-dependent scaling matrices and
the uncertainties terms DA, DB and DC are bounded in norm.
Therefore the estimate is a set (confidence set) instead of a
single point. This set can be built using polytopes
(differential inclusions) [35, 36] or being approximated
through an ellipsoid [37–39]. Polytopes are accurate and
non-conservative but they have a significant computational
load due to the increasing number of constraints employed
to approximate the set. On the other side, the use of
ellipsoids to bound the confidence set reduce the
computational burden at expenses of introducing a degree
of conservativeness in the description of the confidence set.
In this work we will use ellipsoids El(x̂l(k), El(k)) to bound
the confidence set, defined by the central estimated x̂l(k)
and shape matrix El(k) such that {j(k): j(k) =
x̂l(k|k) + El(k|k)w(k)}. Its size is measured by means of the
sum of squared semi-axes lengths given by
tr(El(k|k)ET

l (k|k)) = tr(Pl(k|k)).
Like in the supervisory adaptive control architecture

proposed by Rosa et al. [12], we use a bank of SVOs each
of which is tuned for a pre-specified model Pl, ∀l [ L. In
IET Control Theory Appl., 2011, Vol. 5, Iss. 18, pp. 2168–2178
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this work we use the robust SVO proposed by El Ghaoui
and Calafiore [40] that provides the minimal size ellipsoid
of confidence, computed recursively through two convex
optimisation problems:

† one problem computes the minimal size ellipsoid of
confidence for the estimate prediction

min
Pl(k|k−1),x̂(k|k−1),tw,tx ,tDA

tr(Pl(k|k − 1)), ∀l [ L

such that

tw, tx, tD . 0

Pl(k|k − 1) F

FT V

[ ]
≻ 0 (34)

where

F = [Ax̂(k − 1|k − 1) − x̂(k|k − 1) AlEl(k) BDAl],

V = diag[1 − tx, txI − tDA
Pl(k − 1|k − 1), twI , tDA

I ]

and tw, tx and tDA
are positive scalar.

† the other one that computes the minimal size ellipsoid of
confidence for the measurement update is

min
Pl(k|k−1),x̂(k|k−1),tv,tx,tDA

tr(Pl(k|k − 1)), ∀l [ L

such that

Fig. 3 Supervisory algorithm
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tx, tw, tDC
. 0

Pl(k|k) FmC

CTFT
m CTVmC

[ ]
≻ 0 (35)

where

Fm = [Ax̂(k|k − 1) − x̂(k|k) El(k|k) 0 0],

Vm = diag(1 − tx − tv, txI − tDC
Pl(k|k), tvI , tDC

I)
(36)

tx, tv and tDC
are positive scalars and C is the orthogonal

complement of

Fy = [ŷ(k) − y(k) CEl(k|k) I DC]

If the ellipsoid of confidence El(x̂l(k|k), El(k|k)) provided by
the second optimisation problem has a covariance matrix with
very small trace (tr(Pl(k|k)) ≃ 0), then the intersection
between the sets of predicted states and the measurements
is void and the measurements are not compatible with the
model. Therefore it can be discarded. Based upon this fact,
the algorithm to construct PL(k) is proposed in Fig. 3.

4 Stability analysis

The proof of robust stability of the closed-loop is based upon
the fact that the SVOs are non-conservative, that is,
tr(Pl(k|k)) . 1 for some l [ L, then y(k) can be explained
by input and output trajectories of those models Pl that
tr(Pl(k|k)) . 1 and the existence of CL(k)(Fk , Gk ) can be
guaranteed.

Assumption 3: The uncertainty scaling matrices Lx and Ly are
chosen such that the regions of the different models of the
polytope PL cover the entire uncertainty region.

Hereafter, the stability of the closed-loop system is
discussed. The fact that the controller CL(k) is computed
such that all elements of PL(k) are superstable, leads to the
first local stability result.

Theorem 1: Supposed Assumptions 1–3 are satisfied and
using the algorithm described in Fig. 3, then the resulting
closed-loop system at time k is stable.

Proof: To proof the closed-loop stability, we need to
guarantee that the plant P [ PL(k) and the optimisation
problem (31) is feasible at every sample.

The set PL(k) is non-empty due to Assumption 3 and the
current output y(k) [ El(xl(k|k), El(k|k)), ∀l [ L(k) [40],
therefore the true plant P [ PL(k).

Assumptions 1 and 2 ensure the feasibility of (31) by
ensuring: (a) CL(k) has enough parameters to freely place
the closed-loop poles and (b) the feasibility of (31) for PL.
Then, the controller CL(k) superstabilises all models of PL(k)
by satisfying

||DlGk + NlFk − 1||1 ≤ s, ∀l [ L(k) (37)

which implies the uniform asymptotic stability of P. A

This result, valid for each individual polytope PL(k) ∀k, can
be also applied to the switching between different polytopes
PL(k) � PL(k+1), since it is a consequence of the robust
superstability of each polytope. Furthermore, it is clear from
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Lemma 2 that the trajectories of the closed-loop system
decrease in norm along all trajectories of PL(k) such that

|e(k)| ≤
∏k

j=0

g(j) max
i[[1,nA]

(|e(k)|)

≤ �g(k+1)/nA max
i[[1,nA]

(|e(k)|) (38)

and the closed-loop response admits the estimate

||y(k)|| ≤ �h+ �g(k+1)/nA max(0, m− h̃) (39)

where

g(j) =
∑m

l=0

|sl(j)| ||Al||1, �g = sup
j[[0,k]

g(j),

b(j) =
∑m

l=0

|sl(j)| ||Bl||1, �b = sup
j[[0,k]

b(j),

�h =
�b

1 − �g

(40)

5 Simulations and results

In this section we provide an illustrative numerical example.
Let us consider a stable plant P that results from the
linearisation of a continuous stirred tank reactor (CSTR)
at different operating points. It was originally used by
Morningred et al. [41] for testing discrete control
algorithms. The objective is to control the output
concentration y(k) using the coolant flow rate u(k). The
reactor has two disturbances: (a) the inlet coolant
temperature, which is measurable and (b) the feed
concentration which is non-measurable and acts on the
reactor output. The PLM PL associated with the behaviour
of CSTR within the operating space region given by the cube

−0.045 ≤ y(k) − 0.085 ≤ 0.045 mol lt−1,

−20 ≤ u(k) − 100 ≤ 10 lt min−1 (41)

is defined by the discrete LTI models shown in Table 1 with
L = {1, 2, 3, 4}.

The performance of the closed-loop system is defined
through the minimisation of the worst-case error
(sup∀k sup∀l[L(k) |e(k)|) and a set of constraints on the
closed-loop response:

Table 1 Vertices of PL

P1(z) = 0.186

z2 − 1.984z + 0.941

P2(z) = 0.216

z2 − 1.727z + 0.779

P3(z) = 0.115

z2 − 1.710z + 0.755

P4(z) = 0.831

z2 − 1.792z + 0.824
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† An overshoot of 5%

y(k) ≤ 1.05r0, ∀k ≥ N0 (42)

† A settling time of 50 samples for an error of 5%

|e(k)| ≤ 0.05r0, ∀k ≥ N0 + 50 (43)

† A zero-offset steady-state response

∑nG

i=1

|gi(k)| = 1, ∀k ≥ N0 + 50 (44)

where r0 is the reference value and N0 is the time instant when
changes happen. These constraints were then included in the
optimisation problem (31) for all models of PL.

The proposed robust adaptive controller will be compared
with (i) a supervisory adaptive controller with SVOs [12]
and (ii) a robust model reference adaptive controller based
on LPV systems [42]. Both adaptive controllers employ
robust non-adaptive controllers designed for each model of
PL using mixed-m synthesis. Then, the supervisory
adaptive controller [12] employs SVOs, built using
polytopes, to select the controller that switches into the
loop. On the other side, the robust model reference adaptive
controller computes the control signal as a weighted sums
of model-following control signals for each extreme model
of PL, and those weights are tuned adaptively [42]. When
uncertain parameters are time-varying, stabilising signals
are also introduced to stabilise plants and to regulate the
effect of time-varying parameters. Those additional signals
are derived as solutions of non-linear H1 control problems
for certain virtual systems.

In a first case we will consider the situation that the reactor
operates in the neighbourhood of the region corresponding
to P1

P(z) = 0.186

z2 − 1.984z + 0.941
(45)

This scenario leads to a potential intermittent switching
between models associated with P1 and P2 in supervisory
adaptive controllers since both models have the same
steady-state and similar behaviours.

The plant input (u(k)) and output ( y(k)) resulting from the
simulations with the controllers described above are shown
in Fig. 4. The proposed adaptive scheme exhibits a fast
regulation and easily satisfied the performance requirements
(constraints (42)–(44)). The closed-loop behaviour results
from two facts: (a) all parameters of CL(k) are allowed to
vary continuously, due to online design of the controller,
and (b) the supervisor quickly identify the relevant models
(P1 and P2) that explain the plant behaviour (see Fig. 5). At
this point it is necessary to highlight the lack of oscillations
and abrupt changes in the control signal, generated by
controller switches, which is due to the soft-variable nature
of the controller.

Fig. 4 also shows the closed-loop responses of others
adaptive controllers. The supervisory adaptive controller
shows a quick response during the transient phase of the
closed-loop response; however, it also exhibits a persistent
oscillation during the steady-state phase. This behaviour is
due to the characteristics of the plant dynamic (models with
similar steady-state behaviour), which induce a persistent
IET Control Theory Appl., 2011, Vol. 5, Iss. 18, pp. 2168–2178
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switching between two candidate controllers (the ones
corresponding to P1 and P2). On the other hand, the robust
model reference controller avoid this problem, since the
control input u(k) is the result of a weighted combination,
but exhibits a poor transient response.

The time evolution of the parameters of the proposed
adaptive controller ( fi(k) and gi(k)), the switching variables
(sl(k)) and the weight of the models (ul(k)) are shown in
Fig. 5. An initial transient behaviour appears, after each
change, before achieving their steady-state values. This fact
can be appreciated in the behaviour of S(k) and Q(k) that
show oscillations during the initial samples after the
reference changes. This controller hesitation is owing to the
fact that P1 and P2 has similar steady-state values and
different dynamics.

In Section 2.2 it was pointed out that controllers with
orders lower than the ones established by Bezout theorem
(nF , nD, nG , nN) can superstabilise the system. In this
example we consider the case of using a PID structure. The

Fig. 5 Time evolution of the controller’s parameters

a fi(k)
b gi(k)
c Switching variables (sl(k))
d Control weights (ul(k)) of the proposed controller

Fig. 4 Simulation results for a multiple models switching and
tuning controller (MMST), a supervisory adaptive controller
(MMAC) and a robust model reference adaptive controller
(RMRAC)
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necessary conditions for guaranteeing the superstabilisation
of PL were checked [24] and found that are satisfied.
Then, simulations using a controller with a PID structure
(nF ¼ 2 and nG ¼ 1) were done. The results are shown in
Figs. 6 and 7. Fig. 6 shows the time evolution of plant
input (u(k)) and output ( y(k)) and its comparison with the
responses resulting from the simulation of a full-order
structure (nF ¼ nG ¼ 2). The time evolution of the
parameters of the controller ( fi(k) and gi(k)), the switching
variables (sl(k)) and the weight of the models (ul(k)) are
shown in Fig. 7. In this case we can see that S(k) and Q(k)
have similar behaviours to the full-order controller, but take
longer time to achieve the steady-state values. Although in
both controllers the supervisor quickly identified the
relevant models (P1 and P2) that explained the plant
behaviour (see Figs. 5 and 7) and (b), the structure of the
PID imposes a severe limitation to control the plant due to
its poorly dampened characteristics. This fact is reflected in
the evolution of the control input u(k) that shows softer
changes in a longer period of time.

Now, let us consider the case in which the reactor operates
in a region between the operating regions corresponding to

Fig. 6 Simulation results for a full order and a PID structure of
CL(k)

Fig. 7 Time evolution of the controller’s parameters

a fi(k) and gi(k)
b Switching variables (sl(k))
c Control weights (ul(k)) for a PID controller
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P2 and P3

P(z) = 0.201

z2 − 1.720z + 0.775
(46)

This scenario leads to the simultaneous use of a set of models
(P2 and P3), but with different weights to explain the plant
output behaviour. In this scenario, a supervisory adaptive
control will choose only one robust controller.

The simulation results are shown in Figs. 8 and 9. Fig. 8
shows the time evolution of plant input (u(k)) and output
( y(k)) and its comparison with the responses resulting from
the simulation of the other adaptive controllers. In this case,
the supervisory adaptive controller shows a quick response
during the transient phase of the closed-loop response, and
do not exhibit a persistent oscillation during the steady-state

Fig. 8 Simulation results for a multiple models switching and
tuning controller (MMST), a supervisory adaptive controller
(MMAC) and a robust model reference adaptive controller
(RMRAC)

Fig. 9 Time evolution of the controller’s parameters

a fi(k)
b gi(k)
c Switching variables (sl(k))
d Control weights (ul(k)) of the proposed controller
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phase. This behaviour is due to the characteristics of the plant
dynamic (models with a different dynamic and steady-state
behaviour), which induce to select only one controller (the
ones corresponding to P2). Fig. 8 shows the time evolution
of the parameters of the controller ( fi(k) and gi(k)), the
switching variables (sl(k)) and the weights of the models
(ul(k)). In this case the supervisory identify model P2 is the
closest model that explain the plant behaviour: u2(k) is
bigger than the other weights (u2(k) ≃ 0.85) and the other
weight that is active is u3(k) (u3(k) ≃ 0.15).

6 Conclusion

A simple scheme for designing robust supervisory adaptive
controllers was presented. The motivation for multiple
models switching and tuning adaptive control is to develop
a deterministic approach that is capable of achieving high-
performance by utilising robust LTI and switching-based
adaptive tools, while avoiding issues of undesirable
switching behaviours and uncertain disturbance models.
The proposed approach is based on the receding horizon
philosophy, switching-based adaptive control and
parametric controller design techniques. In this way, the
proposed approach combines the fast response of switching-
based adaptive control schemes with the robustness of safe-
adaptive and robust control design procedures. The
resulting algorithms are able to handle constraints in the
input and outputs of the system, as well as the controller
structure and its parameters. The properties of the resulting
closed-loop system and design guidelines have been
discussed. Comparative results with others supervisory
adaptive and robust adaptive controllers, based on
simulations of a linear system, have been presented to
illustrate the effectiveness of the proposed controller. These
promising results warrant further evaluations.

The author is currently working towards extending this line
of research to problems of adaptive estimation and control for
MIMO systems and failure-robust design. Furthermore, the
multiple models, switching and tuning framework is
connected to some recent interesting works in robust
adaptive control [42–44] where the robust adaptive
controllers are derived using a polytopic representation of
the uncertain system.
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9 Appendix 1

9.1 Proof of Lemma 2

At time k, the output of the closed-loop system is given by

y(k) = AS(k)(z)y(k) + BS(k)(z)w(k) (47)

and its norm is bounded by

|y(k)| ≤ |AS(k)(z)y(k)| + |BS(k)(z)w(k)|

≤ ||AS(k)||1||Y (k − 1)||1 + ||BS(k)||1||W (k)||1
(48)

where

Y (k) = [y(k) · · · y(k − nA − 1)]

W (k) = [w(k) · · ·w(k − nB)]
(49)

Using the recursion (42) the norm of the system output can be
written in terms of the initial conditions

|y(k)| ≤
∏k

i=0

||AS(k−i)||1||Y (−1)||

+
∑k

i=1

∏i−1

l=0

||AS(k−l)||1||BS(k−i)||1||W (k − i)||1 (50)

If w(k) ¼ 0 ∀k, then the norm of the system output is

|y(k)| ≤
∏k

i=0

||AS(k−i)||1||Y (−1)|| ≤ g(k+1)/nAm (51)

where

�g = sup
∀k

sup
∀S(k)[S

||AS(k)||1 (52)

If ‖w(k)‖ ≤ 1 ∀k, then the norm of the system output when
there is disturbance is given by

‖y(k)| ≤ �g(k+1)/nAm+
∑k

i=0

�gi/nAb

≤ h+ �g(k+1)/nA max(0, m− h) (53)
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where

�b = sup
∀k

sup
∀S(k)[S

||BS(k)||1 (54)

This estimate shows that the PLM state trajectory is
decreasing in norm until it reaches the invariant set
{||e||1 ≤ �h}, that is, the trajectories originating in this set
stay in it for all admissible perturbations. If a disturbance
drives the state out of the invariant set, the control law will
drive it again to the invariant set.

10 Appendix 2

10.1 Proof of Lemma 3

The goal is to design a controller C(z) that ensures the
superstability of the closed-loop system and minimises

J = sup
w(k)[l1

sup
∀k

|e(k)| (55)

The first step is to find an upper bound of J that includes the
superstability of the closed-loop system. To this end, the error
e(k) is written in terms of the sensitivity function of the
closed-loop system and the disturbance w(k)

e(k) = D(z)G(z)

D(z)G(z) + N (z)F(z)
w(k) (56)

Since the closed-loop must be superstable (1 2 ‖DG +
NF 21‖1 . 0 or ‖DG + NF 2 1‖1 , 1), Lemma 1 can be
employed to obtain the estimate

|e(k)| ≤ h(f) + ||Ac||
(k+1)/nAc
1 max{0, me − h(f)}, ∀k ≥ 0

(57)

where Ac(z) ¼ D(z)G(z) + N(z)F(z) and |e(i)| ≤ me, ∀i , 0.
This is an upper bound of |e(k)|, ∀k for any w(k) [ l1. The
effect of initial conditions is attenuated after enough steps,
ko, such that |e(k)| ≤ h, ∀k . ko. This result provides
motivation for the minimisation of h, since J ≤ h(f),
which leads to the following optimisation problem

min
s[[0,1)

min
F,G

1

1 − s
||DG||1

such that

||DG + NF − 1||1 ≤ s

(58)

The solution provides the maximal reduction of the effect of
bounded disturbances. Such kinds of classical problems
where stability (not superstability) of the closed-loop system
is required are the subject of theory of l1-optimisation. They
are known to be extremely hard even for SISO systems, and
reasonable solutions can be obtained only in particular cases.
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