
ar
X

iv
:1

90
5.

01
30

5v
2

 [
cs

.L
O

]
 1

1
A

pr
 2

02
0

arXiv manuscript No.
(will be inserted by the editor)

A categorical construction for the computational

definition of vector spaces

Alejandro Díaz-Caro · Octavio Malherbe

Submitted to arXiv

Abstract Lambda-S is an extension to first-order lambda calculus unifying two
approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication
of variables, while the other is to consider all lambda-terms as algebraic linear
functions. The type system of Lambda-S has a constructor S such that a type A
is considered as the base of a vector space while S(A) is its span. Lambda-S can
also be seen as a language for the computational manipulation of vector spaces: The
vector spaces axioms are given as a rewrite system, describing the computational
steps to be performed. In this paper we give an abstract categorical semantics
of Lambda-S∗ (a fragment of Lambda-S), showing that S can be interpreted as
the composition of two functors in an adjunction relation between a Cartesian
category and an additive symmetric monoidal category. The right adjoint is a
forgetful functor U , which is hidden in the language, and plays a central role in
the computational reasoning.

Keywords Quantum computing · algebraic lambda-calculus · categorical
semantics

A. Díaz-Caro has been partially supported by PICT 2015 1208, ECOS-Sud A17C03 QuCa and
PEDECIBA. O. Malherbe has been partially supported by MIA CSIC UdelaR.

A. Díaz-Caro
Universidad Nacional de Quilmes &
Instituto de Ciencias de la Computación (CONICET-Universidad de Buenos Aires)
Buenos Aires, Argentina
E-mail: adiazcaro@icc.fcen.uba.ar

O. Malherbe
Departamento de Matemática y Afines, CURE &
Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay
E-mail: malherbe@fing.edu.uy

http://arxiv.org/abs/1905.01305v2

2 Alejandro Díaz-Caro, Octavio Malherbe

1 Introduction

Algebraic lambda calculi aim to embed to the lambda calculus, the notion of vector
spaces over programs. This way a linear combination α.v+β.w of programs v and
w, for some scalars α and β, is also a program [3]. This kind of construction has two
independent origins. The Algebraic Lambda Calculus (ALC for short) [21] has been
introduced as a fragment of the Differential Lambda Calculus [13], which is itself
originated from Linear Logic [14]. ALC can be seen as the Differential Lambda
Calculus without a differential operator. In the ALC the notion of vector spaces
is embedded in the calculus with an equational theory, so the axioms of vector
spaces, such as α.v+ β.v = (α+ β).v are seen as equalities between programs. On
the other hand, the Linear Algebraic Lambda Calculus (Lineal for short) [2] was
meant for quantum computation. The aim of Lineal is to provide a computational
definition of vector space and bilinear functions, and so, it defines the axioms of
vector spaces as rewrite rules, providing a confluent calculus. This way, an equality
such as −v + v + 3.w − 2.w = w is described computationally step by step as

(−1).v+ v + 3.w + (−2).w −→ 0.v + 3.w + (−2).w

−→ 0.v + 1.w

−→ 0+ 1.w

−→ 1.w

−→ w

Rules like α.v+ β.v −→ (α+β).v say that these expressions are not the same but
one reduces to the other, and so, a computational step has been performed. The
backbone of this computation can be described as having an element α.v + β.v
without properties, which is decomposed into its constituents parts α, β, and v,
and reconstructed in another way. Otherwise, if we consider α.v + β.v being just
a vector, as in the ALC, then it would be equal to (α+ β).v and the computation
needed to arrive from the former to the latter would be ignored. The main idea in
the present paper is to study the construction of Lineal from a categorical point
of view, with an adjunction between a Cartesian closed category, which will treat
the elements as not having properties, and an additive symmetric monoidal closed
category, where the underlying properties will allow to do the needed algebraic
manipulation. A concrete example is an adjunction between the category Set of
sets and the category Vec of vector spaces. This way, a functor from Set to Vec

will allow to do the needed manipulation, while a forgetful functor from Vec to
Set will return the result of the computation.

The calculus Lambda-S [7,8] is a first-order typed fragment of Lineal, extended
with measurements. The type system has been designed as a quantum lambda cal-
culus, where the main goal was to study the non-cloning restrictions. In quantum
computing a known vector, such as a basis vector from the base considered for
the measurements, can be duplicated freely (normally the duplication process is
just a preparation of a new qubit in the same known basis state), while an un-
known vector cannot. For this reason, a linear-logic like type system has been put
in place. In linear logic we would write A the types of terms that cannot be du-
plicated while !A types duplicable terms. In Lambda-S instead A are the types of
the terms that represent basis vectors, while S(A) are linear combinations of those

A categorical construction for the computational definition of vector spaces 3

(the span of A). Hence, A means that we can duplicate, while S(A) means that we
cannot duplicate. Therefore, the S is not the same as the bang “ !”, but somehow
the opposite. This can be explained by the fact that linear logic is focused on the
possibility of duplication, while here we focus on the possibility of superposition,
which implies the impossibility of duplication.

In [7,8] a first denotational semantics (in environment style) is given where the
type B is interpreted as {|0〉 , |1〉} while S(B) is interpreted as Span({|0〉 , |1〉}) =
C2, and, in general, a type A is interpreted as a basis while S(A) is the vector
space generated by such a basis. In [10, 11] we went further and gave a prelimi-
nary concrete categorical interpretation of Lambda-S where S is a functor of an
adjunction between the category Set and the category Vec. Explicitly, when we
evaluate S we obtain formal finite linear combinations of elements of a set with
complex numbers as coefficients and the other functor of the adjunction, U , allows
us to forget the vectorial structure. In this paper, we define the abstract categori-
cal semantics of the fragment of Lambda-S without measurement, which we may
refer as Lambda-S∗, so we focus on the computational definition of vector spaces,
avoiding any interference produced by probabilistic constructions.

The main structural feature of our model is that it is expressive enough to de-
scribe the bridge between the property-less elements such as α.v+β.v, without any
equational theory, and the result of its algebraic manipulation into (α+β).v, explic-
itly controlling its interaction. In the literature, intuitionistic linear (as in linear-
logic) models are obtained by a monoidal comonad determined by a monoidal
adjunction (S,m) ⊣ (U,n), i.e., the bang ! is interpreted by the comonad SU
(see [4]). In a different way, a crucial ingredient of our model is to consider the
monad US for the interpretation of S determined by a similar monoidal adjunc-
tion. This implies that on the one hand we have tight control of the Cartesian
structure of the model (i.e. duplication, etc) and on the other hand the world of
superpositions lives in some sense inside the classical world, i.e. determined exter-
nally by classical rules until we decide to explore it. This is given by the following
composition of maps:

US(B)× US(B)
n−→ U(S(B)⊗ S(B))

U(m)−−−−→ US(B× B)

that allows us to operate in a monoidal structure explicitly allowing the algebraic
manipulation and then to return to the Cartesian product.

This is different from linear logic, where the ! stops any algebraic manipulation,
i.e. (!B)⊗ (!B) is a product inside a monoidal category.

Outline. The paper is structured as follows.

– Section 2 gives the intuition and formalization of the fragment of Lambda-S
without measurements, called Lambda-S∗, we give some examples, and state
its main properties.

– Section 3 presents the categorical construction for algebraic manipulation.
– Section 4 gives a denotational semantics of Lambda-S∗, using the categorical

constructions from Section 3.
– Section 4.2 proves the soundness and completeness of such semantics.
– Finally, we conclude in Section 5. We also include an appendix with detailed

proofs.

4 Alejandro Díaz-Caro, Octavio Malherbe

2 The calculus Lambda-S∗

In this section we define Lambda-S∗, a fragment of Lambda-S, without measure-
ments. In addition, instead of considering the scalars in C, we use any commutative
ring, which we will write C, so to make the system more general.

The syntax of terms and types is given in Figure 2.1, where we write Bn for
B× · · ·×B n-times, with the convention that B1 = B. We use capital Latin letters
(A,B, C, . . .) for general types and the capital Greek letters Ψ , Φ, Ξ, and Υ for
qubit types. B = {Bn | n ∈ N}, Q is the set of qubit types, and T is the set of types
(B (Q (T). In the same way, Vars is the set of variables, B is the set of basis
terms, V the set of values, and Λ the set of terms. We have Vars (B (V (Λ.

Ψ := Bn | S(Ψ) | Ψ × Ψ Qubit types (Q)
A := Ψ | Ψ ⇒ A | S(A) Types (T)

b := x | λx:Ψ.t | |0〉 | |1〉 | b× b Basis terms (B)
v := b | (v + v) | 0S(A) | α.v | v × v Values (V)
t := v | tt | (t + t) | α.t | ?t·t | t× t | head t | tail t |⇑r t |⇑ℓ t Terms (Λ)

where α ∈ C.

Fig. 2.1: Syntax of types and terms of Lambda-S∗.

The intuition of these syntaxes is given by considering C = C. The type B is
the type of a specific base of C2, the base {|0〉 , |1〉}, where we use the standard
notation from quantum computing |0〉 and |1〉: |0〉 denotes the vector (1

0) and |1〉
denotes the vector (0

1). This way, B× B = {|0〉 × |0〉 , |0〉 × |1〉 , |1〉 × |0〉 , |1〉 × |1〉}
is the base of C4. The type S(B) is the type of any vector in C2, so S can be
seen as the span operator. For example, 2. |0〉+ i. |1〉 may live inside S(B). On the
other hand, a type of the form B × S(B) is the type of a pair of a base vector
with a general vector, for example |0〉 × (α. |0〉+ β. |1〉) will have this type. There
is no type for pair of function types, only pair of qubit types are considered. The
type constructor S can be used on any type, for example, the type S(B ⇒ B)
is a valid type which denotes the types of superpositions of functions, such as
2.λx:B.x+3.λx:B. |0〉. We will come back to the meaning of superposed functions
later.

Terms are considered modulo associativity and commutativity of the syntactic
symbol +.

The term syntax is split in three: basis terms, which are values in the base of
a vector space of values. Values, which are obtained by the formal linear combi-
nations of basis terms, together with a null vector 0S(A) associated to each type
S(A). And a set Λ of general terms, which includes the values.

The syntax of terms contains:

– The three basic terms for first-order lambda-calculus, namely, variables, ab-
stractions and applications.

– Two basic terms |0〉 and |1〉 to represent qubits, and one test ?r·s on them. We
may write t?r·s for (?r·s)t, see Example 2.1 for a clarification of why to choose
this presentation.

A categorical construction for the computational definition of vector spaces 5

– A product × to represent associative pairs (i.e. lists), with its destructors head

and tail. We may use the notation |b1b2 . . . bn〉 for |b1〉 × |b2〉 × · · · × |bn〉.
– Constructors to write linear combinations of terms, namely + (sum) and .

(scalar multiplication), without destructor (the destructor is the measuring
operator, which we have explicitly left out of this presentation), and one null
vector 0S(A) for each type S(A).

– Two casting functions ⇑r and ⇑ℓ which allows us to consider lists of superpo-
sitions as superpositions of lists (see Example 2.2).

The rewrite system has not yet been exposed, however the next examples give
some intuitions and clarify the ?r·s and the casting functions.

Example 2.1 The term ?r·s is meant to test whether the condition is |1〉 or |0〉.
However, defining it as a function, allows us to use the algebraic linearity to im-
plement the quantum-if [1]:

(?r·s)(α. |1〉+β. |0〉) = (α. |1〉+ β. |0〉)?r·s −→∗ α.|1〉?r·s+β.|0〉?r·s −→∗ α.r+β.s

Example 2.2 The term (1√
2
(|0〉+ |1〉))× |0〉 is the encoding of the qubit 1√

2
(|0〉+

|1〉)⊗ |0〉. However, while the qubit 1√
2
(|0〉+ |1〉) ⊗ |0〉 is equal to 1√

2
(|0〉 ⊗ |0〉+

|1〉 ⊗ |0〉), the term will not rewrite to the encoding of it, unless a casting ⇑r is
preceding the term:

⇑r (
1√
2
(|0〉+ |1〉))× |0〉 −→∗ 1√

2
(|0〉 × |0〉+ |1〉 × |0〉)

The reason is that we want the term (1√
2
(|0〉+ |1〉))× |0〉 to have type S(B)× B,

highlighting the fact that the second qubit is a basis qubit, i.e. duplicable, while the
term 1√

2
(|0〉× |0〉+ |1〉× |0〉) will have type S(B×B), showing that the full term is

a superposition where no information can be extracted and hence, non-duplicable.

The rewrite system depends on types. Indeed, λx:SΨ.t follows a call-by-name
strategy, while λx:B.t, which can duplicate its argument, must follow a call-by-
base strategy [3], that is, not only the argument must be reduced first, but also
it will distribute over linear combinations prior to β-reduction. Therefore, we give
first the type system and then the rewrite system.

The typing relation is given in Figure 2.2. Contexts, identified by the capital
Greek letters Γ , ∆, and Θ, are partial functions from Vars to T . The contexts
assigning only types in B are identified with the super-index B, e.g. ΘB. When-
ever more than one context appear in a typing rule, their domains are considered
pair-wise disjoint. Observe that all types are linear (as in linear-logic) except on
basis types Bn, which can be weakened and contracted (expressed by the common
contexts ΘB).

Notice that rule SI makes type assignment not unique, since it makes possible
to add as many S as wished. Also, there can be more than one type derivation
tree assigning the same type, for example:

⊢ 0S(B) : S(B)
Ax0

⊢ 0S(B) : S(S(B))
SI

⊢ 1.0S(B) : S(S(B))
αI

and

⊢ 0S(B) : S(B)
Ax0

⊢ 1.0S(B) : S(B)
αI

⊢ 1.0S(B) : S(S(B))
SI

6 Alejandro Díaz-Caro, Octavio Malherbe

ΘB, x : Ψ ⊢ x : Ψ
Ax

ΘB ⊢ 0S(A) : S(A)
Ax0

ΘB ⊢ |0〉 : B
Ax|0〉

ΘB ⊢ |1〉 : B
Ax|1〉

Γ ⊢ t : S(A)

Γ ⊢ α.t : S(A)
αI

Γ,ΘB ⊢ t : S(A) ∆,ΘB ⊢ u : S(A)

Γ,∆,ΘB ⊢ (t+ u) : S(A)
+I

Γ ⊢ t : A

Γ ⊢ t : S(A)
SI

Γ ⊢ t : A Γ ⊢ r : A
Γ ⊢ ?t·r : B ⇒ A

If
Γ, x : Ψ ⊢ t : A

Γ ⊢ λx:Ψ.t : Ψ ⇒ A
⇒I

∆,ΘB ⊢ u : Ψ Γ,ΘB ⊢ t : Ψ ⇒ A

∆, Γ,ΘB ⊢ tu : A
⇒E

∆,ΘB ⊢ u : S(Ψ) Γ,ΘB ⊢ t : S(Ψ ⇒ A)

∆,Γ,ΘB ⊢ tu : S(A)
⇒ES

Γ,ΘB ⊢ t : Ψ ∆,ΘB ⊢ u : Φ

Γ,∆,ΘB ⊢ t× u : Ψ × Φ
×I

Γ ⊢ t : Bn n>1

Γ ⊢ head t : B
×Er

Γ ⊢ t : Bn n>1

Γ ⊢ tail t : Bn−1
×El

Γ ⊢ t : S(Ψ × Sk(Φ)) k>0 Ψ 6=S(A)

Γ ⊢⇑ℓ t : S(Ψ × Φ)
⇑ℓ

Γ ⊢ t : S(Sk(Ψ) × Φ) k>0 Ψ 6=S(A)

Γ ⊢⇑r t : S(Ψ × Φ)
⇑r

Fig. 2.2: Typing relation

If b has type Bn and b ∈ B, (λx:Bn.t)b −→ (b/x)t (βb)

If u has type SΨ , (λx:SΨ.t)u −→ (u/x)t (βn)

Fig. 2.3: Beta rules

If t has type Bn ⇒ A, t(u + v) −→ (tu + tv) (lin+r)

If t has type Bn ⇒ A, t(α.u) −→ α.tu (linαr)

If t has type Bn ⇒ A, t0S(Bn) −→ 0S(A) (lin0r)

(t + u)v −→ (tv + uv) (lin+
l
)

(α.t)u −→ α.tu (linαl)

0S(Bn⇒A)t −→ 0S(A) (lin0l)

Fig. 2.4: Linear distribution rules

The rewrite relation is given in Figures 2.3 to 2.9.

The two beta rules (Figure 2.3) are applied according to the shape of the ab-
straction. If the abstraction expects an argument with a superposed type, then
the reduction follows a call-by-name strategy (rule (βn)), while if the abstraction
expects a basis type, the reduction is call-by-base (rule (βb)): it β-reduces only
when its argument is a basis term. However, typing rules also allow to type an
abstraction expecting an argument with basis type, applied to a term with su-
perposed type (cf. Example 2.3). In this case, the β-reduction cannot occur and,
instead, the application must distribute using the rules from Figure 2.4: the linear
distribution rules.

Figure 2.5 gives the two rules for the conditional construction. Together with
the linear distribution rules (cf. Figure 2.4), these rules implement the quantum-if
(cf. Example 2.1).

Figure 2.6 gives the rules for lists, (head) and (tail).

A categorical construction for the computational definition of vector spaces 7

|1〉?t·r −→ t (if1) |0〉?t·r −→ r (if0)

Fig. 2.5: Rules of the conditional construction

If h 6= u× v and h ∈ B, head h× t −→ h (head)

If h 6= u× v and h ∈ B, tail h× t −→ t (tail)

Fig. 2.6: Rules for lists

(0S(A) + t) −→ t (neutral)

1.t −→ t (unit)

If t has type A, 0.t −→ 0S(A) (zeroα)

α.0S(A) −→ 0S(A) (zero)

α.(β.t) −→ (αβ).t (prod)

α.(t+ u) −→ (α.t + α.u) (αdist)

(α.t+ β.t) −→ (α + β).t (fact)

(α.t + t) −→ (α + 1).t (fact1)

(t + t) −→ 2.t (fact2)

Fig. 2.7: Rules implementing the vector space axioms

Figure 2.7 deals with the vector space structure implementing a directed version
of the vector space axioms. The direction is chosen in order to yield a canonical
form [2].

Figure 2.8 are the rules to implement the castings. The idea is that × does not
distribute with respect to +, unless a casting allows such a distribution. This way,
the types B×S(B) and S(B×B) are different. Indeed, |0〉× (|0〉+ |1〉) has the first
type but not the second, while |0〉× |0〉+ |0〉× |1〉 has the second type but not the
first. This way, the first type give us the information that the state is separable,
while the second type does not. We can choose to take the first state as a pair
of qubits forgetting the separability information, by casting its type, in the same
way as in certain programming languages an integer can be cast to a float (and
so, forgetting the information that it was indeed an integer and not any float).

A second example is to take again Example 2.2: The term 1√
2
.(|0〉+|1〉)×|0〉 has

type S(B)×B, expressing the fact that it is the composition of a superposed qubit
with a basis qubit. However, the term 1√

2
.(|0〉× |0〉+ |1〉× |0〉) has type S(B×B),

expressing the fact that it is a superposition of two qubits. The first type give us
information about the separability of the two-qubits state, which is gathered from
the fact that the term is indeed written as the product of two qubits. Contrarily,
the second term is not the product of two qubits, and so the type cannot reflect
its separability condition. In order to not lose subject reduction, we need to cast
the first term so we “forget” its separability information, prior reduction.

Finally, Figure 2.9 give the contextual rules implementing the call-by-value and
call-by-name strategies.

8 Alejandro Díaz-Caro, Octavio Malherbe

⇑r (r + s)× u −→ (⇑r r × u+ ⇑r s× u) (dist+r)

⇑ℓ u× (r + s) −→ (⇑ℓ u× r + ⇑ℓ u× s) (dist+
l
)

⇑r (α.r)× u −→ α. ⇑r r × u (distαr)

⇑ℓ u× (α.r) −→ α. ⇑r u× r (distαl)

If u has type Ψ , ⇑r 0S(Φ) × u −→ 0S(Φ×Ψ) (dist0r)

If u has type Ψ , ⇑ℓ u× 0S(Φ) −→ 0S(Ψ×Φ) (dist0l)

⇑ (t + u) −→ (⇑ t+ ⇑ u) (dist+⇑)

⇑ (α.t) −→ α. ⇑ t (distα⇑)

⇑r 0S(S(SΨ)×Φ) −→⇑r 0S(SΨ×Φ) (dist0⇑r
)

⇑r 0S(S(Bn)×Φ) −→ 0S(Bn×Φ) (neut⇑0r)

⇑ℓ 0S(Ψ×S(SΦ)) −→⇑ℓ 0S(Ψ×SΦ) (dist0⇑ℓ
)

⇑ℓ 0S(Ψ×S(Bn)) −→ 0S(Ψ×Bn) (neut⇑
0ℓ)

If v ∈ B, ⇑ℓ u× v −→ u× v (neut⇑r)

If u ∈ B, ⇑r u× v −→ u× v (neut⇑ℓ)

Fig. 2.8: Rules for castings ⇑r and ⇑ℓ

If t −→ u, then
tv −→ uv (λx:Bn.v)t −→ (λx:Bn.v)u (t + v) −→ (u+ v)
α.t −→ α.u t× v −→ u× v

v × t −→ v × u ⇑r t −→⇑r u ⇑ℓ t −→⇑ℓ u
head t −→ head u tail t −→ tail u t?r·s −→ u?r·s

Fig. 2.9: Contextual rules

Example 2.3 The term λx:B.x × x does not represent a cloning machine, but a
CNOT1 with an ancillary qubit |0〉. Indeed,

(λx:B.x× x) 1√
2
.(|0〉+ |1〉) (linα

r
)−−−→ 1√

2
.(λx:B.x× x)(|0〉+ |1〉)

(lin+
r
)−−−→ 1√

2
.((λx:B.x× x) |0〉+ (λx:B.x× x) |1〉)

βb−→ 1√
2
.(|0〉 × |0〉+ (λx:B.x× x) |1〉)

βb−→ 1√
2
.(|0〉 × |0〉+ |1〉 × |1〉)

1 The CNOT quantum gate is such that CNOT|0x〉 = |0x〉 and CNOT|1x〉 = |1x〉. Therefore,
CNOT(α. |0〉 + β. |1〉) |0〉 = α.CNOT |00〉+ β.CNOT |10〉 = α. |00〉+ β. |11〉.

A categorical construction for the computational definition of vector spaces 9

The type derivation is as follows:

x : B ⊢ x : B
Ax

x : B ⊢ x : B
Ax

x : B ⊢ x× x : B2
×I

⊢ λx:B.x× x : B ⇒ B2
⇒I

⊢ λx:B.x× x : S(B ⇒ B2)
SI

⊢ |0〉 : B
Ax|0〉

⊢ |0〉 : S(B)
SI

⊢ |1〉 : B
Ax|1〉

⊢ |1〉 : S(B)
SI

⊢ |0〉+ |1〉 : S(B)
+I

⊢ 1√
2
.(|0〉+ |1〉) : S(B)

αI

⊢ (λx:B.x× x) 1√
2
.(|0〉+ |1〉) : SB2

⇒ES

Example 2.4 A Hadamard gate2 can be implemented by H = λx:B.x?|−〉·|+〉,
where |+〉 = 1√

2
. |0〉+ 1√

2
. |1〉 and |−〉 = 1√

2
. |0〉− 1√

2
. |1〉. Therefore, H : B ⇒ S(B)

and we have H |0〉 −→∗ |+〉 and H |1〉 −→∗ |−〉.

Correctness has been established in previous works for slightly different versions
of Lambda-S∗, except for the case of confluence, which has only been proved for
Lineal. Lineal can be seen as an untyped fragment without several constructions (in
particular, without measurement), extended with higher-order computation. The
proof of confluence for Lambda-S is delayed to future work, using the development
of probabilistic confluence from [12]. The proof of Subject Reduction and Strong
Normalization are straightforward modifications from the proofs of the different
presentations of Lambda-S.

Theorem 2.5 (Confluence of Lineal, [2, Thm. 7.25]) Lineal is confluent.

⊓⊔

Theorem 2.6 (Subject reduction on closed terms, [8, Thm. 5.12]) For

any closed terms t and r and type A, if t −→ r and ⊢ t : A, then ⊢ r : A. ⊓⊔

Theorem 2.7 (Strong normalization, [8, Thm. 6.10]) If Γ ⊢ t : A then t is

strongly normalizing. ⊓⊔

Why first order. The restriction on functions to be first order answers a technical
issue with respect to the no-cloning property on quantum computing. Lambda-S
is meant for quantum computing, and, in quantum computing, there is no univer-
sal cloning machine. Defining an affine type system, as we did, we avoid cloning
machines such as λxS(B).x× x, which cannot be typed. However, with high order
it would be possible to encode a cloning machine by encapsulating the term to be
cloned inside a lambda abstraction, as in the following example:

λyS(B).
(

λxB⇒S(B).(x |0〉)× (x |0〉)
)(

λzB.y
)

First order ensures this cannot be done.

Since the calculus is first order, it adds atomic terms (|0〉 and |1〉), and so, no
need to encode those. Therefore, products of functions are not needed either, this
is the reason why Lambda-S does not include them.

2 The Hadamard quantum gate is such that H |0〉 = 1√
2
(|0〉+ |1〉) and H |1〉 = 1√

2
(|0〉−|1〉).

10 Alejandro Díaz-Caro, Octavio Malherbe

More intuitions. Despite that Lambda-S has been defined with quantum compu-
tation in mind, it can be seen just as a calculus to manipulate vector spaces. This is
the feature that we want to highlight in this work, which is more general than just
quantum computing. In particular, the derivation of v+(−1).v+3.w+(−2).w = w
given in the introduction can be replicated with the rules from Lambda-S∗ as fol-
lows.

(−1).v+ v + 3.w + (−2).w
(fact1)−−−−→ 0.v + 3.w + (−2).w

(fact)−−−→ 0.v + 1.w

(zero)−−−→ 0S(A) + 1.w

(neutral)−−−−−→ 1.w

(unit)−−−→ w

Also, with the help of the casting, we can write step by step distributions between
+ and ⊗. In Lambda-S∗ we write × instead of ⊗ because it does not behave as a
⊗ unless it is preceded by a casting ⇑. For example, u⊗(v+w) = (u⊗v)+(u⊗w),
but u× (v+w) does not reduce to (u× v) + (u×w), unless the casting is present,
in which case we have

⇑ℓ u× (v + w)
(dist+

l
)−−−−→⇑ℓ u× v+ ⇑ℓ u× w

(neut⇑
ℓ
)−−−−→ (u× v) + (u× w)

3 A categorical construction for algebraic manipulation

3.1 Preliminaries

In this section, we recall certain basic concepts of the theory of categories and
we establish a common notation that will help to define our work platform. For
general preliminaries and notations on categories we refer to [19].

Definition 3.1 A symmetric monoidal category, also called tensor category, is a
category V with an identity object I ∈ V , a bifunctor ⊗ : V × V → V and natural
isomorphisms λ : A ⊗ I → A, ρ : I ⊗ A → A, α : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C,
σ : A⊗B → B ⊗A satisfying appropriate coherence axioms.

A symmetric monoidal closed category is a symmetric monoidal category V
for which each functor − ⊗ B : V → V has a right adjoint [B,−] : V → V , i.e.,
V(A⊗B,C) ∼= V(A, [B,C]).

Definition 3.2 A Cartesian category is a category admitting finite products (that
is, products of a finite family of objects). Equivalently, a Cartesian category
is a category admitting binary products and a terminal object (the product of
the empty family of objects). A Cartesian category can be seen as a symmetric
monoidal category with structural maps defined in an obvious way.

A Cartesian closed category is a Cartesian category C which is closed as a
symmetric monoidal category.

A categorical construction for the computational definition of vector spaces 11

Definition 3.3 A symmetric monoidal functor (F,mA,B ,mI) between symmetric
monoidal categories (V ,⊗, I, α, ρ, λ, σ) and (W ,⊗′, I′, α′, ρ′, λ′, σ′) is a functor F :
V → W equipped with morphisms mA,B : FA ⊗′ FB → F (A ⊗ B) natural in A
and B , and for the units morphism mI : I′ → F (I) satisfying some coherence
axioms. A monoidal functor is said to be strong when mI and mA,B for every A
and B are isomorphisms and strict when all the mA,B and mI are identities.

Definition 3.4 A monoidal natural transformation θ : (F,m) → (G,n) between
monoidal functors is a natural transformation θA : FA → GA such that the
following axioms hold: nA,B ◦ (θA ⊗′ θB) = θA⊗B ◦mA,B and θI ◦mI = nI .

Definition 3.5 Let (V ,⊗, I) and (W ,⊗′, I′) be monoidal categories. We say that
((F,m), (G,n), η, ε) is a monoidal adjunction if

– (F,G, η, ε) is an adjunction.
– (F,m), (G,n) are monoidal functors

(V ,⊗, I) ⊥ (W ,⊗′, I′)

(F,m)

(G,n)

– η : Id ⇒ G ◦ F and ε : F ◦ G ⇒ Id are monoidal natural transformations, as
defined in Definition 3.4,

Definition 3.6 A preadditive category is a category C together with an abelian
group structure on each set C(A,B) of morphisms, in such a way that the compo-
sition mappings

cABC : C(A,B)× C(B,C) −→ C(A,C)

(f, g) 7→ g ◦ f
are group homomorphisms in each variable. We shall write the group structure
additively.

An additive category is a preadditive category with a zero object and a binary
biproduct.

Definition 3.7 An additive symmetric monoidal closed category is a category
(V ,⊗,⊕) such that (V ,⊗) is a symmetric monoidal closed category, (V ,⊕) is an
additive category, and ⊗ is bi-additive.

3.2 Adjunction for algebraic manipulation

In this section we give the main categorical construction on this paper, which is
the adjunction for algebraic manipulation.

Definition 3.8 An adjunction for algebraic manipulation is a monoidal adjunc-
tion

(C,×, 1) ⊥ (V ,⊗, I)

(S,m)

(U,n)

12 Alejandro Díaz-Caro, Octavio Malherbe

where

– (C,×, 1) is a Cartesian closed category with 1 as a terminal object.
– (V ,⊗,⊕, ρ, λ, σ) is an additive symmetric monoidal closed category.
– The following axiom (Axiom0) is satisfied for any f and g

UV

A UW

UV ′

U0f

g U0

where 0 is the zero morphism of the additive category.
– The following axiom (Axiom

Dist
) is satisfied

UV × UV × UW U(V ⊕ V)× UW

UV × UW × UV × UW U((V ⊕ V)⊗W)

U(V ⊗W)× U(V ⊗W) U((V ⊗W)⊕ (V ⊗W))

p×Id

d n

n×n Uδ

p

where
– The map d : UV × UV × UW −→ UV × UW × UV × UW is defined by

(Id× σ × Id) ◦ (Id×∆).
– The map δ is an isomorphism determined by the fact that ⊗ has a right

adjoint. Explicitly, δ : (V ⊕ V) ⊗W −→ (V ⊗W) ⊕ (V ⊗W) is given by
δ = 〈π1 ⊗ Id, π2 ⊗ Id〉.

– The map p is an isomorphism determined by the preservation of product
of the functor U given by the fact that U has a left adjoint. Explicitly,
pV,W : UV × UW −→ U(V ⊕W) is given by p = φ(〈φ−1(π1), φ

−1(π2)〉V)
where φ : V(S(UV × UW), V ⊕W) ∼= C(UV × UW,U(V ⊕W)), in which
π1 : UV × UW −→ UV and π2 : UV × UW −→ UW are the projection
maps.

– There exists an object B ∈ |C| and maps i1, i2 such that for every 1
f−→ A

and 1
g−→ A, there exists a unique map [f, g] such that the following diagram

commutes

1 B 1

A

i1

f

[f,g]

i2

g

Remark 3.9

– The object B allows us to represent the type B, and the map [f, g] to interpret
the if construction (Definition 4.3).

– C is a Cartesian closed category where ηA is the unit and εA is the counit
of − × A ⊣ [A,−], from which we can define the curryfication (curry) and
un-curryfication (uncurry) of any map.

A categorical construction for the computational definition of vector spaces 13

– The adjunction S ⊣ U gives rise to a monad (T, η, µ) in the category C, where
T = US, η : Id → T is the unit of the adjunction, and using the counit ε, we
obtain µ = UεS : TT → T , satisfying unity and associativity laws (see [19]).

– Remember that in an additive category the morphism factoring through the
zero object, i.e. the zero morphisms 0 are exactly the identities for the group
structure in each V(A,B) for every A and B.

– Notice that since the tensor ⊗ is bi-additive, it satisfies that f ⊗0 = 0⊗ f = 0

for every f .

Intuitively, the axiom Axiom0 carries the absorbing property of the zero mor-
phism, to the category C. Indeed, an analogous situation to this axiom, in the
category V is

V

W W ′

V ′

0

0

f

g 0

which is valid since the dashed arrow makes the diagram commute. However, using
the functor U we would obtain

UV

UW UW ′

UV ′

U0

U0

Uf

Ug U0

which is less general than Axiom0. Indeed, in Axiom0 we allow the domain to be
any A, and not necessarily of the form UW , capturing the absorbing property of
a zero morphism, but in C.

The axiom Axiom
Dist

gives us explicitly the intuition developed in the intro-
duction. In the Cartesian category C we do not have all the structure and prop-
erties as in the additive symmetric monoidal closed category V . However, we can
mimic the distributivity property of ⊗ with respect to ⊕ by simply duplicating
the last element and performing a permutation, i.e., 〈〈a, b〉, c〉 7→ 〈〈a, b〉, 〈c, c〉〉 7→
〈〈a, c〉, 〈b, c〉〉 mimic (a⊕b)⊗c = (a⊕c)⊕(b⊗c). While this property may be trivial
when concrete categories are given, such as Set for the Cartesian category and
Vec for the additive symmetric monoidal closed category, we have to axiomatize
it in this abstract framework.

Example 3.10 One concrete model for Lambda-S∗ has been briefly mentioned,
which is the one presented in [10, 11]: an adjunction for algebraic manipulation
where C = Set and V = Vec.

We must prove that those categories satisfy the requirements from Defini-
tion 3.8.

– Axiom0 is satisfied for any f and g since the zero morphism is absorbing in
Vec and this property is preserved by U .

– Axiom
Dist

is satisfied since the concrete maps are the following:

〈a, b, c〉 7→ 〈〈a, b〉, c〉 7→ 〈a, b〉 ⊗ c 7→ 〈a⊗ c, b⊗ c〉
〈a, b, c〉 7→ 〈a, c, b, c〉 7→ 〈a⊗ c, b⊗ c〉

14 Alejandro Díaz-Caro, Octavio Malherbe

– We identify the object B ∈ |Set| with {|0〉 , |1〉}, which satisfies the required
properties.

Example 3.11 More general, a family of examples is obtained by replacing Vec by
a category ModR of modules on a commutative ring R. The proof is essentially
the same as the previous example.

Example 3.12 Let (C,×, 1) be the category of sets Set and (V ,⊗,⊕) be the cate-
gory Ab of abelian groups and group homomorphisms. These categories are carte-
sian and symmetric monoidal closed respectively. The tensor in Ab is defined by
a universal property, concretely, is the quotient of the free abelian group on the
direct sum determined by the subgroup that satisfies some well-know relations
and where I = Z. Also, Ab is an additive category (see [5]). The functor S is
the free construction S(X) = {{zx}x∈X : zx ∈ Z; |{x : zx 6= 0}| < ω} and U is
the forgetful functor U : (Ab,⊗Z,Z) → (Set,×, {∗}) where the mediating map
nA,B : U(A)× U(B) → U(A⊗B) sends (a, b) 7→ a⊗ b the map nI : ∗ 7→ 1.

Example 3.13 Let C be a cocommutative cosemisimple K-coalgebra, where K is
a field. We consider (C,×, 1) to be C = Coalg/C as the slice category of K-
cocommutative coalgebras and morphisms of coalgebras defined as follows: objects
are morphisms of coalgebras with codomain in C, if φ : D → C and ψ : E → C are
morphisms of coalgebras (as object in the slice category), morphisms f : (φ) → (ψ)
correspond to coalgebra morphisms f : D → E such that ψ ◦ f = φ. Cartesian
product is given by pullbacks and 1 = idC the identity morphism.

The structure (V ,⊗,⊕) is defined as follows: V is the additive (abelian) cate-
gory of C-comodules MC (see [6]) such that the tensor is defined by an equalizer:
Let (V, v) and (W,w) be C-comodules, where v and w are right coactions. There
is a structure of C-comodule denoted by V ⊗C W in the vector space generated
by {x ⊗ y ∈ V ⊗W | v(x) ⊗ y = x ⊗ τ (w(y))} where the coaction is defined by
δ(x⊗ y) = x⊗w(y) (see [16,17]). If C is a cocommutative coalgebra, the category
(MC,⊗C , C) is symmetric monoidal. Moreover, it is closed if and only if C is
cosemisimple. (see [16,17]). We define S : Coalg/C → MC to be the functor that
takes each object φ : D → C to the comodule (D,d), where d : D → D ⊗ C is
the coaction defined by d = (idD ⊗ φ) ◦∆D and each morphism to its underlying
morphism in MC. This functor is a strong monoidal functor and the existence of
a right adjoint follows from the special adjoint functor theorem (see [16,19]) which
implies the existence of a monoidal adjunction (see [18]).

4 Denotational semantics

4.1 Definitions

In this section we give the denotational semantics of Lambda-S∗ by using the
adjunction for algebraic manipulation defined in the previous section.

Definition 4.1 Types are interpreted in the category C, as follows:

JBK = B

JΨ ⇒ AK = [JΨK , JAK]

A categorical construction for the computational definition of vector spaces 15

JS(A)K = US JAK
JΨ × ΦK = JΨK × JΦK

Remark 4.2 To avoid cumbersome notation, we will use the following convention:
We write directly USA for JS(A)K = US JAK and A for JAK, when there is no
ambiguity.

In addition, we abuse notation and write JΓ K for the product of the inter-
pretations of all the types in Γ . E.g. If Γ = x1 : Ψ1, . . . , xn : Ψn, then JΓ K =
JΨ1K × · · · × JΨnK. We may write directly Γ for JΓ K, when there is no ambiguity.

Before giving the interpretation of typing derivation trees in the model, we need
to define certain maps which will serve to implement some of the constructions in
the language.

To implement the if construction we define the following map.

Definition 4.3 Given t, r ∈ C(Γ,A) there exists a map ft,r ∈ C(B, [Γ,A]) defined
by ft,r = [t̂, r̂] where t̂ ∈ C(1, [Γ,A]) and r̂ ∈ C(1, [Γ,A]) are given by t̂ = curry(t ◦
πΓ) and ŝ = curry(r ◦ πΓ).

1 B 1

[Γ,A]

i1

t̂

ft,r

i2

r̂

The sum in Lambda-S∗ will be implemented internally by the map ∇ issued
from the universal property of ⊕. This way, we define a sum +̂ in C as follows.

Definition 4.4 The map +̂ is defined by

UV × UV U(V ⊕ V)

UV

p

+̂

U∇

where p has been defined in Definition 3.8.

The sum +̂ on USUV × USUV is performed in the following way USUV ×
USUV

p−→ U(SUV ⊕ SUV)
U∇−−→ USUV . Notice that the map ∇ used in this

construction is fundamentally different from the map ∇ defined over V ⊕ V . In
order to perform all the sums at the same “level”, we would need to do USUV ×
USUV

g1−→ US(UV ×UV)
USp−−−→ USU(V ⊕V)

USU∇−−−−→ USUV , where g1 factorizes
the first US. We can generalize this idea to (US)kUV × (US)kUV with a map gk
factorizing the first k (US)s. Such a map is defined as follows.

Definition 4.5 The map gk : (US)kUV × (US)kUW → (US)k(UV × UW) is
defined by

g0 = Id

gk = ((US)k−1Um) ◦ ((US)k−1n) ◦ ((US)k−2Um) ◦ ((US)k−2n) ◦ · · · ◦ (Um) ◦ n

Example 4.6 We can define a map sum on USUSUV × USUSUV by using the
sum +̂ on UV as USUS+̂◦g2, where g2 = (USUm)◦ (USn)◦ (Um)◦n. This gives
the following diagram

16 Alejandro Díaz-Caro, Octavio Malherbe

USUSUV × USUSUV U(SUSUV ⊗ SUSUV)

USUSUV US(USUV × USUV)

USUS(UV × UV) USU(SUV ⊗ SUV)

n

g2

sum Um

USnUSUS+̂

USUm

The aim of the casting ⇑r is to implement the distributivity property in C by
mapping USA×B into US(A×B). We want to perform such a property by using
the underlying distributivity property in V .

In fact, the casting is defined more generally between US(USA × B) and
US(A×B). A map denoting ⇑r can be defined as follows.

Definition 4.7 Let ⇑1
r be defined as follows

US(USA×B) US(A×B)

US(USA× USB) USU(SA⊗ SB) USUS(A×B)

⇑1
r

US(Id×η)

USn USUm

µ

We generalize ⇑1
r to the case US((US)kA×B) with the map ⇑k

r : US((US)
kA×

B) → US(A×B) is defined by

⇑k
r=⇑1

r ◦ · · · ◦ ⇑1
r

Analogously, we define ⇑k
ℓ : US(A× (US)kB) → US(A×B).

Using all the previous definitions, we can finally give the interpretation of a
type derivation tree in our model. If Γ ⊢ t : A with a derivation π, we write it

generically JπK as Γ
tA−−→ A. When A is clear from the context, we may write just

t for tA. Also, each interpretation depends on a choice of scalars, i.e., a function
c : C → V(I, I); without loss of generality we denote the values c(α) with the same
letter α.

Definition 4.8 If π is a type derivation tree, we define JπK inductively as follows,

r
Γ B, x : Ψ ⊢ x : Ψ

Ax
z
= Γ B × Ψ

!×Id−−−→ 1× Ψ ≈ Ψ
r
Γ B ⊢ 0S(A) : S(A)

Ax0

z
= Γ B !−→ 1

η−→ US1
U0−−→ USA

r
Γ B ⊢ |0〉 : B

Ax|0〉
z
= Γ B !−→ 1

i1−→ B
r
Γ B ⊢ |1〉 : B

Ax|1〉
z
= Γ B !−→ 1

i2−→ B
s
Γ ⊢ t : Sm(A)

Γ ⊢ α.t : Sm(A)
αI

{
= Γ

t−→ (US)mA
(US)m−1Uλ−−−−−−−−→ (US)m−1U(SA⊗ I)

(US)m−1U(Id⊗α)−−−−−−−−−−−−→ (US)m−1U(SA⊗ I)

(US)m−1Uλ−1

−−−−−−−−−−→ (US)mA

A categorical construction for the computational definition of vector spaces 17

t
Γ,ΞB ⊢ t : Sm(A) ∆,ΞB ⊢ r : Sm(A)

Γ,∆,ΞB ⊢ t+ r : Sm(A)
+I

|
= Γ×∆×ΞB d−→ Γ×ΞB×∆×ΞB

t×r−−→ (US)mA× (US)mA
gm−1−−−→ (US)m−1(USA× USA)

(US)m−1+̂−−−−−−−→ (US)mA
s

Γ ⊢ t : A
Γ ⊢ t : S(A)

SI

{
= Γ

t−→ A
η−→ USA

r
Γ ⊢ t : A Γ ⊢ r : A
Γ ⊢ ?t·r : B ⇒ A

If

z
= Γ

curry(uncurry(ft,r) ◦ swap)−−−−−−−−−−−−−−−→ [B, A]
s

Γ, x : Ψ ⊢ t : A
Γ ⊢ λx:Ψ.t : Ψ ⇒ A

⇒I

{
= Γ

ηΨ

−−→ [Ψ, Γ × Ψ]
[Id,t]−−−→ [Ψ,A]

t
∆,ΞB ⊢ u : Ψ Γ,ΞB ⊢ t : Ψ ⇒ A

∆,Γ,ΞB ⊢ tu : A
⇒E

|
= ∆× Γ × ΞB d−→ ∆×ΞB × Γ ×ΞB

u×t−−−→ Ψ × [Ψ,A]
εΨ

−−→ A
t
∆,ΞB ⊢ u : SΨ Γ,ΞB ⊢ t : S(Ψ ⇒ A)

∆,Γ,ΞB ⊢ tu : S(A)
⇒ES

|
= ∆×Γ×ΞB d−→ ∆×ΞB×Γ×ΞB

u×t−−−→ USΨ × US[Ψ,A]
n−→ U(SΨ ⊗ S([Ψ,A]))

Um−−→ US(Ψ × [Ψ,A])

USεΨ

−−−−→ USA
t
Γ,ΞB ⊢ t : Ψ ∆,ΞB ⊢ u : Φ

Γ,∆,ΞB ⊢ t× u : Ψ × Φ
×I

|
= Γ×∆×ΞB d−→ Γ×ΞB×∆×ΞB t×u−−−→ Ψ×Φ

r
Γ ⊢ t : Bn

Γ ⊢ head t : B
×Er

z
= Γ

t−→ B
n π1−→ B

s
Γ ⊢ t : Bn

Γ ⊢ tail t : Bn−1
×El

{
= Γ

t−→ B
n π2−→ B

n−1

s
Γ ⊢ t : S(Sk(Ψ)× Φ)

Γ ⊢⇑r t : S(Ψ × Φ)
⇑r

{
= Γ

t−→ US((US)kΨ × Φ)
⇑k

r−−→ US(Ψ × Φ)

s
Γ ⊢ t : S(Ψ × Sk(Φ))

Γ ⊢⇑ℓ t : S(Ψ × Φ)
⇑ℓ

{
= Γ

t−→ US(Ψ × (US)kΦ)
⇑k

ℓ−−→ US(Ψ × Φ)

4.2 Properties

In this section we prove that the given denotational semantics is sound (Theo-
rem 4.11) and complete (Theorem 4.14).

Proposition 4.9 allows us to write the semantics of a sequent, independently of
its derivation. Hence, due to this independence, we can write JΓ ⊢ t : AK, without
ambiguity.

Proposition 4.9 (Independence of derivation) If Γ ⊢ t : A can be derived

with two different derivations π and π′, then JπK =
q
π′y

18 Alejandro Díaz-Caro, Octavio Malherbe

Proof Without taking into account rules ⇒E, ⇒ES and SI , the typing system is
syntax directed. In the case of the application (rules ⇒E and ⇒ES), they can be
interchanged only in a few specific cases.

Hence, we give a rewrite system on trees such that each time a rule SI can
be applied before or after another rule, we chose a direction to rewrite the tree
to one of these forms. Similarly, we chose a direction for rules ⇒E and ⇒ES.
Then we prove that every rule preserves the semantics of the tree. This rewrite
system is clearly confluent and normalizing, hence for each tree π we can take the
semantics of its normal form, and so every sequent will have one way to calculate
its semantics, i.e. as the semantics of the normal tree.

The full proof is given in the appendix. ⊓⊔

Lemma 4.10 (Substitution) If Γ ′, x : Ψ, Γ ⊢ t : A and ⊢ r : Ψ , then the

following diagram commutes:

Γ ′ × Γ A

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

(r/x)t

λ×

Id×r×Id

t

That is,
q
Γ ′, Γ ⊢ (r/x)t : A

y
=

q
Γ ′, x : Ψ, Γ ⊢ t : A

y
◦ (J⊢ r : ΨK × Id).

Proof By induction on the derivation of Γ ′, x : Ψ, Γ ⊢ t : A. The full proof is given
in the appendix. ⊓⊔

Theorem 4.11 (Soundness) If ⊢ t : A, and t −→ r, then J⊢ t : AK = J⊢ r : AK.

Proof By induction on the rewrite relation, using the first derivable type for each
term. The full proof is given in the appendix. ⊓⊔

In order to prove completeness (Theorem 4.14), we use an adaptation to
Lambda-S∗ of Tait’s proof for strong normalization [20] (cf. [15, Chapter 6] for
reference).

Definition 4.12 Let A,B be sets of closed terms. We define the following oper-
ators on them:

– Closure by antireduction: A = {t | t −→∗ r, with r ∈ A and FV (t) = ∅}.
– Product: A× B = {t× u | t ∈ A and u ∈ B}.
– Arrow: A ⇒ B = {t | ∀u ∈ A, tu ∈ B}.
– Span: SA = {∑i αiri | ri ∈ A} where αr is a notation for α.r when α 6= 1, or

1.r or just r when α = 1. Also, we use the convention that
∑1

i=1 αiri = αiri
and 0r = 0S(A) for any r.

The set of computational closed terms of type A (denoted CA), is defined by

CB = {|0〉 , |1〉}
CA×B = CA × CB

CΨ⇒A = CΨ ⇒ CA
CS(A) = SCA

A substitution σ is valid with respect to a context Γ (notation σ � Γ) if for
each x : A ∈ Γ , σx ∈ CA.

A categorical construction for the computational definition of vector spaces 19

Lemma 4.13 (Adequacy) If Γ ⊢ t : A and σ � Γ , then σt ∈ CA.

Proof By induction on the derivation of Γ ⊢ t : A. The detailed proof can be found
in the appendix. ⊓⊔

Theorem 4.14 (Completeness) If J⊢ t : S(Bn)K = J⊢ r : S(Bn)K, then for any

concrete model interpretation injective on values there exists s such that t −→∗ s
and r −→∗ s.

Proof By Lemma 4.13, t ∈ CS(Bn) = SCBn = S(Bn). Hence, t −→∗ ψ, with ⊢ ψ :
S(Bn) and ψ =

∑

i αi |bi1〉 × · · · × |bin〉. Then, by Theorem 4.11, J⊢ t : S(Bn)K =
J⊢ ψ : S(Bn)K. Analogously, r −→∗ φ and so by Theorem 4.11, J⊢ r : S(Bn)K =
J⊢ φ : S(Bn)K, with φ =

∑

j βj |bj1〉 × · · · × |bjn〉. Therefore, since J⊢ t : S(Bn)K =
J⊢ r : S(Bn)K, we have J⊢ ψ : S(Bn)K = J⊢ φ : S(Bn)K, and so, since the model is
injective on values, we have ψ = φ = s. ⊓⊔

Remark 4.15 It is easy to verify that the model from Example 3.10 is injective on
values, and hence, the model is Complete (Theorem 4.14).

On the other hand, there exist non injective concrete models. An easy example
is the degenerated concrete model where both C and V are the terminal category
(the category with a unique object and morphism), which is trivially both, Carte-
sian closed, and additive symmetric monoidal closed, and both axioms are satisfied
trivially.

5 Conclusion

In this paper, we have given an abstract categorical semantics of Lambda-S∗,
a fragment of Lambda-S without measurements, and we have proved that it is
sound (Theorem 4.11) and complete (Theorem 4.14). Such a semantics highlights
the dynamics of the calculus: The algebraic rewriting (linear distribution, vector
space axioms, and typing casts rules) emphasize the standard behavior of vector
spaces, in a computational way: the vector space axioms give rise to computational
steps. We have enforced this computational steps by interpreting the calculus
into a Cartesian category C, without distributivity properties, and defining and
using an adjunction for algebraic manipulation between this category C and an
additive symmetric monoidal closed category V with all the properties needed for
the vectorial space axioms. This way, in order to transform an element from the
category C, we use the adjunction to carry these elements to V , where the proper
transformation properties are in place.

As an immediate future work, we are willing to pursue a complete semantics
for quantum computing, for which we need to add back the measurement operator,
and define a notion of a norm, maybe following [9].

Acknowledgments We thank the anonymous reviewer for the suggestion with some
examples on concrete models.

20 Alejandro Díaz-Caro, Octavio Malherbe

References

1. Altenkirch, T., Grattage, J.: A functional quantum programming language. In: Proceed-
ings of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS), pp.
249–258. IEEE (2005)

2. Arrighi, P., Dowek, G.: Lineal: a linear-algebraic lambda-calculus. Logical Methods in
Computer Science 13(1:8) (2017)

3. Assaf, A., Díaz-Caro, A., Perdrix, S., Tasson, C., Valiron, B.: Call-by-value, call-by-name
and the vectorial behaviour of the algebraic λ-calculus. Logical Methods in Computer
Science 10(4:8) (2014)

4. Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models. In: L. Pacholski,
J. Tiuryn (eds.) Computer Science Logic (CSL 1994), Lecture Notes in Computer Science,
vol. 933, pp. 121–135. Springer, Berlin, Heidelberg (1994)

5. Borceux, F.: Handbook of Categorical Algebra, Encyclopedia of Mathematics and Appli-

cations, vol. 50. Cambridge University Press (2008)
6. Dascalescu, S., Nastasescu, C., Raianu, S.: Hopf Algebras: an Introduction. Pure and

Applied Mathematics: A series of Monographs and Textbooks. CRC Press (2000)
7. Díaz-Caro, A., Dowek, G.: Typing quantum superpositions and measurement. In: Theory

and Practice of Natural Computing (TPNC 2017), Lecture Notes in Computer Science,
vol. 10687, pp. 281–293. Springer, Cham (2017)

8. Díaz-Caro, A., Dowek, G., Rinaldi, J.: Two linearities for quantum computing in the
lambda calculus. BioSystems 186, 104012 (2019). Postproceedings of TPNC 2017

9. Díaz-Caro, A., Guillermo, M., Miquel, A., Valiron, B.: Realizability in the unitary sphere.
In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2019), pp. 1–13 (2019)

10. Díaz-Caro, A., Malherbe, O.: A concrete categorical semantics for Lambda-S. In: Logical
and Semantic Frameworks with Applications (LSFA’18), Electronic Notes in Theoretical
Computer Science, vol. 344, pp. 83–100 (2019)

11. Díaz-Caro, A., Malherbe, O.: A fully abstract model for quantum controlled lambda cal-
culus. Draft at arXiv:1806.09236 (2020)

12. Díaz-Caro, A., Martínez, G.: Confluence in probabilistic rewriting. In: Logical and Seman-
tic Frameworks with Applications (LSFA 2017), Electronic Notes in Teoretical Computer

Science, vol. 338, pp. 115–131 (2018)
13. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theoretical Computer Science

309(1), 1–41 (2003)
14. Girard, J.Y.: Linear logic. Theoretical Compututer Science 50, 1–102 (1987)
15. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types. Cambridge University Press (1989)
16. Grunenfelder, L., Paré, R.: Families parametrized by coalgebras. Journal of Algebra

107(2), 316–375 (1987)
17. Haim, M., Malherbe, O.: Linear hyperdoctrines and comodules. arXiv:1612.06602 (2016)
18. Kelly, G.: Doctrinal adjunction. In: Category Seminar, Lectures Notes in Mathematics,

vol. 420, pp. 257–280 (1974)
19. Mac Lane, S.: Categories for the Working Mathematician, 2 edn. Springer (1998)
20. Tait, W.W.: Intensional interpretations of functionals of finite type I. The Journal of

Symbolic Logic 32(2), 198–212 (1967)
21. Vaux, L.: The algebraic lambda calculus. Mathematical Structures in Computer Science

19, 1029–1059 (2009)

A Detailed proofs

Proposition 4.9 (Independence of derivation). If Γ ⊢ t : A can be derived with two

different derivations π and π′, then JπK = Jπ′K

Proof Without taking into account rules ⇒E , ⇒SE and SI , the typing system is syntax
directed. In the case of the application (rules ⇒E and ⇒SE), they can be interchanged only
in few specific cases.

Hence, we give a rewrite system on trees such that each time a rule SI can be applied
before or after another rule, we chose a direction to rewrite the three to one of these forms.
Similarly we chose a direction for rules ⇒E and ⇒ES . Then we prove that every rule preserves

A categorical construction for the computational definition of vector spaces 21

the semantics of the tree. This rewrite system is clearly confluent and normalizing, hence for
each tree π we can take the semantics of its normal form, and so every sequent will have one
way to calculate its semantics: as the semantics of the normal tree.

In order to define the rewrite system, we first analyze the typing rules containing only one
premise, and check whether these rules allow for a previous and posterior rule SI . If both are
allowed, we choose a direction for the rewrite rule. Then we continue with rules with more than
one premise and check under which conditions a commutation of rules is possible, choosing
also a direction.
Rules with one premise:

– Rule αI :

Γ ⊢ t : S(A)

Γ ⊢ t : S(S(A))
SI

Γ ⊢ α.t : S(S(A))
αI

−→

Γ ⊢ t : S(A)

Γ ⊢ α.t : S(A)
αI

Γ ⊢ α.t : S(S(A))
SI

(A.1)

– Rules ⇒I , ×Er
, ×El

, ⇑r , and ⇑ℓ: These rules end with a specific types not admitting two

S in the head position (i.e. Bj ×S(Bn−j), Ψ ⇒ A, B, Bn−1, and S(Ψ ×Φ)) hence removing
an S or adding an S would not allow the rule to be applied, and hence, these rules followed
or preceded by SI cannot commute.

Rules with more than one premise:

– Rule +I :

Γ,ΞB ⊢ t : S(A)

Γ,ΞB ⊢ t : S(S(A))
SI

∆,ΞB ⊢ r : S(A)

∆,ΞB ⊢ u : S(S(A))
SI

Γ,∆,ΞB ⊢ (t + u) : S(S(A))
+I

−→

Γ,ΞB ⊢ t : S(A) ∆,ΞB ⊢ u : S(A)

Γ,∆,ΞB ⊢ (t + u) : S(A)
+I

Γ,∆,ΞB ⊢ (t + u) : S(S(A))
SI

(A.2)

– Rules ⇒E and ⇒ES:

∆,ΞB ⊢ u : Ψ

∆,ΞB ⊢ u : SΨ
SI

Γ,ΞB ⊢ t : Ψ ⇒ A

Γ,ΞB ⊢ t : S(Ψ ⇒ A)
SI

∆,Γ,ΞB ⊢ tu : S(A)
⇒ES

−→

∆,ΞB ⊢ u : Ψ Γ,ΞB ⊢ t : Ψ ⇒ A

∆,Γ,ΞB ⊢ tu : A
⇒E

∆,Γ,ΞB ⊢ tu : S(A)
SI

(A.3)

– Rules If and ×I : These rules end with a specific types not admitting two S in the head
position (i.e. B ⇒ A and Ψ ×Φ), hence removing an S or adding an S would not allow the
rule to be applied, and hence, these rules followed or preceded by SI cannot commute.

The confluence of this rewrite system is easily inferred from the fact that there are not critical
pairs. The strong normalization follows from the fact that the trees are finite and all the rewrite
rules push the SI to the root of the trees.

It only remains to check that each rule preserves the semantics.

– Rule (A.1): The following diagram gives the semantics of both trees (we only treat, without
lost of generality, the case where A 6= S(A′)).

Γ

USA USUSA USU(SA⊗ I) USU(SA⊗ I)

U(SA⊗ I) U(SA⊗ I) USA USUSA

t

Uλ

η

f

USUλ

USf

USU(Id⊗α)

USUλ−1

U(Id⊗α) Uλ−1 η

22 Alejandro Díaz-Caro, Octavio Malherbe

Let h = λ−1 ◦ (Id ⊗ α) ◦ λ and f = Uh. The diagram commutes by naturality of η with
respect to f .

– Rule (A.2): The following diagram gives the semantics of both trees (we only treat, without
lost of generality, the case where A 6= S(A′)).

Γ ×ΞB ×∆×ΞB (USA)2 (USUSA)2

Γ ×∆× ΞB ×ΞB (USA)2 US(USA)2 U(SUSA⊗ SUSA)

Γ ×∆× ΞB USA USUSA

t×r η2

g0=Id g1
nId×σ×Id

+̂

η

US+̂

Um

Id×∆

η

(1)
(2)

(3)

1. Definition of g1.
2. η is a monoidal natural transformation.
3. Naturality of η with respect to +̂.

– Rule (A.3): The following diagram gives the semantics of both trees.

∆× ΞB × Γ ×ΞB ∆× Γ × ΞB

Ψ × [Ψ,A] USΨ × US([Ψ,A]) U(SΨ ⊗ S([Ψ,A]))

A US(A) US(Ψ × [Ψ,A])

u×t

(Id×σ×Id)◦(Id×∆)

εΨ
η

η2
n

Um

η

US(εΨ)

(1) (2)

1. Naturality of η with respect to εΨ .
2. η is a monoidal natural transformation. ⊓⊔

Lemma A.1 (Weakening) If Γ ⊢ t : A, then Γ,∆B ⊢ t : A. Moreover,
q
Γ,∆B ⊢ t : A

y
=

JΓ ⊢ t : AK ◦ (Id × !).

Proof It is easy to show that a tree deriving Γ ⊢ t : A can be transformed into a tree deriving
Γ,∆B ⊢ t : A just by adding ∆B to the contexts in its axioms. Moreover, since FV (t)∩∆B = ∅,
we have

q
Γ,∆B ⊢ t : A

y
= JΓ ⊢ t : AK ◦ (Id× !). ⊓⊔

Lemma 4.10 (Substitution). If Γ ′, x : Ψ, Γ ⊢ t : A and ⊢ r : Ψ , then the following diagram

commutes:

Γ ′ × Γ A

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

(r/x)t

λ××Id

Id×r×Id

t

That is, JΓ ′ × Γ ⊢ (r/x)t : AK = JΓ, x : Ψ, Γ ′ ⊢ t : AK ◦ (Id × J⊢ r : ΨK × Id).

Proof By induction on the derivation of Γ ′, x : Ψ, Γ ⊢ t : A. Also, we take the rules αI and
+I with m = 1, the generalization is straightforward.

– ∆B, x : Ψ ⊢ x : Ψ

∆B Ψ

1

∆B × 1 ∆B × Ψ

λ×

(r/x)x

! r

Id×r

!

x=!×Id(1)

(2)

(3)

1. Naturality of the projection.
2. Lemma A.1.
3. Functoriality of the product.

A categorical construction for the computational definition of vector spaces 23

–
Γ ′, x : Ψ, Γ ⊢ t : S(A)

Γ, x : Ψ, Γ ⊢ α.t : S(A)

USA

U(SA⊗ I)

Γ ′ × Γ U(SA⊗ I) Γ ′ × Ψ × Γ

USA

Γ ′ × 1× Γ

Uλ−1

λ
××

Id

(r
/x

)(
α
.t
)=

α
.(
r/
x)
t

(r/x)t

U(Id⊗α)

α.t

tUλ

Id
×r×

Id

(1) (2)

(3)

1. Definition of the map α.(r/x)t.
2. Definition of the map α.t.
3. Induction hypothesis.

–
Γ ′, x : Ψ, Γ,ΞB ⊢ t : S(A) ∆,ΞB ⊢ u : S(A)

Γ ′, x : Ψ, Γ,∆,ΞB ⊢ t+ u : S(A)

We only treat the case when x ∈ FV (t),
the cases x ∈ FV (u) and x ∈ FV (u) ∩
FV (t) are analogous.

Γ ′ × Γ ×∆× ΞB USA

USA× USA

Γ ′ × Γ ×ΞB ×∆× ΞB USA× USA

Γ ′ × 1× Γ × ΞB ×∆× ΞB Γ ′ × Ψ × Γ × ΞB ×∆× ΞB

Γ ′ × 1× Γ ×∆×ΞB Γ ′ × Ψ × Γ ×∆×ΞB

λ××Id

d

(r/x)(t+u)

+̂

(r/x)t×u

λ××Id

g0=Id

Id×r×Id

t×u

Id×r×Id
d

t+u

(1)(2)

(3)

(3)

1. Induction hypothesis.
2. Naturality of d.
3. Definition of +.

–
Γ ′, x : Ψ, Γ ⊢ t : A Γ ′, x : Ψ, Γ ⊢ s : A

Γ ′, x : Ψ, Γ ⊢ ?t·s : B ⇒ A

Γ ′ × Γ [B, A]

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

λ××Id

(r/x)G

Id×r×Id

G

where (r/x)G = curry(uncurry(f(r/x)t,(r/x)s)◦swap)
and G = curry(uncurry(ft,s) ◦ swap).
By the induction hypothesis, (r × Id) ◦ t = (r/x)t
and (r × Id) ◦ s = (r/x)s, hence, (r × Id) ◦ ft,s =
f(r/x)t,(r/x)s and so (r/x)G = (r × Id) ◦ G, which
makes the diagram commute.

–
Γ ′, x : Ψ, Γ, y : Φ ⊢ t : A

Γ ′, x : Ψ, Γ ⊢ λy:Φ.t : Φ ⇒ A

Γ ′ × Γ [Φ,A]

[Φ, Γ ′ × Γ]

[Φ, Γ ′ × 1× Γ] [Φ, Γ ′ × Ψ × Γ]

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

(r/x)(λy:Φ.t)=λy:Φ.(r/x)t

λ××Id

ηΦ

[Id,(r
/x)t]

[Id,λ××Id]

[Id,Id×r×Id]

[Id,t]

Id×r×Id

ηΦ

λy:Φ.t

ηΦ

(2)

(4)
(3)

(1)

(1)

1. Naturality of ηΦ.
2. Definition of the map

λy:Φ.(r/x)t.
3. Induction hypothesis

and the functoriality
of [Φ,−].

4. Definition of the map
λy:Φ.t.

24 Alejandro Díaz-Caro, Octavio Malherbe

–
∆,ΞB ⊢ u : Φ Γ ′, x : Ψ, Γ,ΞB ⊢ t : Φ ⇒ A

∆,Γ ′, x : Ψ, Γ,ΞB ⊢ tu : A

∆× Γ ′ × Γ ×ΞB A

∆×ΞB × Γ ′ × Γ × ΞB Φ× [Φ,A]

∆×ΞB × Γ ′ × 1× Γ ×ΞB ∆× ΞB × Γ ′ × Ψ × Γ × ΞB

∆× Γ ′ × 1× Γ × ΞB ∆× Γ ′ × Ψ × Γ ×ΞB

(r/x)(tu)=(r/x)tu

λ××Id

d

Id×λ××Id

u×(r/x)t

εΦ

Id×Id×r×Id

u×t

Id×r×Id

d

tu

d

(2)

(3)(1) (4)

(1)

1. Naturality of d.
2. Definition of the map (r/x)tu.
3. Induction hypothesis and functoriality of the product.
4. Definition of the map tu.

–
∆′, x : Ψ,∆,ΞB ⊢ u : Φ Γ,ΞB ⊢ t : Φ ⇒ A

∆′, x : Ψ,∆, Γ,ΞB ⊢ tu : A
Analogous to previous case.

–
∆,ΞB ⊢ u : SΦ Γ ′, x : Ψ, Γ, ΞB ⊢ t : S(Φ ⇒ A)

∆,Γ ′, x : Ψ, Γ,ΞB ⊢ tu : S(A)

∆× Γ ′ × Γ × ΞB]USA

US(Φ× [Φ,A])

U(SΦ⊗ S[Φ,A])

∆× ΞB × Γ ′ × Γ ×ΞB USΦ× US[Φ,A]

∆× ΞB × Γ ′ × 1× Γ × ΞB ∆×ΞB × Γ ′ × Ψ × Γ × ΞB

∆× Γ ′ × 1× Γ ×ΞB ∆× Γ ′ × Ψ × Γ × ΞB

(r/x)(tu)=(r/x)tu

λ××Id

d

USεΦ

Um

Id×λ××Id

u×(r/x)t

n

Id×Id×r×Id

u×t

Id×r×Id

d

tu

d

(3)

(2)

(4)

(1)

(1)

1. Naturality of d.
2. Definition of the map (r/x)tu.
3. Induction hypothesis and functoriality of the product.
4. Definition of the map tu.

–
∆′, x : Ψ,∆,ΞB ⊢ u : SΦ Γ,ΞB ⊢ t : S(Φ ⇒ A)

∆′x : Ψ,∆, Γ,ΞB ⊢ tu : S(A)
Analogous to previous case.

–
Γ ′, x : Ψ, Γ,ΞB ⊢ t : Φ ∆,ΞB ⊢ u : Υ

Γ ′, x : Ψ, Γ,∆,ΞB ⊢ t × u : Φ× Υ

Γ ′ × Γ ×∆× ΞB Ψ × Υ

Γ ′ × 1×∆× Γ ×ΞB Γ ′ × Ψ ×∆× Γ ×ΞB

(r/x)(t×u)

= (r/x)t×u

λ××Id=λ××Id×Id

Id×r×Id

= Id×r×Id×Id

t×u

This diagram commutes by the
induction hypothesis and the
functoriality of the product

–
Γ,ΞB ⊢ t : Φ ∆′, x : Ψ,∆,ΞB ⊢ u : Υ

Γ,∆′, x : Ψ,∆,ΞB ⊢ t× u : Φ× Υ
Analogous to previous case.

A categorical construction for the computational definition of vector spaces 25

–
Γ ′, x : Ψ, Γ ⊢ t : Bn

Γ ′, x : Ψ, Γ ⊢ head t : B

Γ ′ × Γ B

Bn

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

λ××Id

(r/x)(head t)=head (r/x)t

(r/x)t π1

Id×r×Id

head t

t

(1) (3)

(2)
1. Induction hypothesis.
2. Definition of the map head (r/x)t.
3. Definition of the map head t.

–
Γ ′, x : Ψ, Γ ⊢ t : Bn

Γ ′, x : Ψ, Γ ⊢ tail t : Bn−1

Γ ′ × Γ Bn−1

Bn

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

λ××Id

(r/x)(tail t)=tail (r/x)t

(r/x)t π2

Id×r×Id

tail t

t

(1) (3)

(2)
1. Induction hypothesis.
2. Definition of the map tail (r/x)t.
3. Definition of the map tail t.

–
Γ ′, x : Ψ, Γ ⊢ t : S(Sk(Φ)× Υ)

Γ ′, x : Ψ, Γ ⊢⇑r t : S(Φ× Υ)

Γ ′ × Γ US(Φ× Υ)

US((US)kΦ× Υ)

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

λ××Id

(r/x)(⇑rt)=⇑r(r/x)t

(r/x)t ⇑r

Id×r×Id

⇑rt

t

(1) (3)

(2)
1. Induction hypothesis.
2. Definition of the map ⇑r (r/x)t.
3. Definition of the map ⇑r t.

–
Γ ′, x : Ψ, Γ ⊢ t : S(Φ× S(Υ))

Γ ′, x : Ψ, Γ ⊢⇑ℓ t : S(Φ× Υ)
Analogous to previous case.

–
Γ ′, x : Ψ, Γ ⊢ t : A

Γ ′, x : Ψ, Γ ⊢ t : S(A)

Γ ′ × Γ USA

A

Γ ′ × 1× Γ Γ ′ × Ψ × Γ

λ××Id

(r/x)tUSA

(r/x)tA η

Id×r×Id

tUSA

tA
(1) (3)

(2)
1. Induction hypothesis.
2. Definition of the map (r/x)tUSA.
3. Definition of the map tUSA.

⊓⊔

Theorem 4.11 (Soundness). If ⊢ t : A, and t −→ r, then J⊢ t : AK = J⊢ r : AK.

Proof By induction on the rewrite relation, using the first derivable type for each term. We
take the rules αI and +I with m = 1, the generalization is straightforward.

(comm) (t + r) = (r + t). We have

⊢ t : S(A) ⊢ r : S(A)

⊢ (t + r) : S(A)
and

⊢ r : S(A) ⊢ t : S(A)

⊢ (r + t) : S(A)

Then,

26 Alejandro Díaz-Caro, Octavio Malherbe

1× 1 USA× USA

U(SA⊕ SA)

U(SA⊕ SA)

USA× USA USA

t×r

r×t +̂

p
γ

U [Id,Id]

Uσ

U [Id,Id]

+̂

p

Where γ is the symmetry on × and σ the symmetry on ⊕.
(asso) ((t + r) + s) = (t + (r + s)). We have

⊢ t : S(A) ⊢ r : S(A)

⊢ (t + r) : S(A) ⊢ s : S(A)

⊢ ((t + r) + s) : S(A)

and ⊢ t : S(A)

⊢ r : S(A) ⊢ s : S(A)

⊢ (r + s) : S(A)

⊢ (t + (r + s)) : S(A)

Then

13

USA× (USA)2 (USA)2 × USA

(USA)2 USA× U(SA⊕ SA) U(SA⊕ SA)× USA (USA)2

U(SA⊕ (SA⊕ SA)) U((SA⊕ SA)⊕ SA)

U(SA⊕ SA) U(SA⊕ SA)

USA

t×r×st×r×s

Id×+̂
Id×p

α×

+̂×Id
p×Id

+̂

p

Id×U∇
p p

U∇×Id

+̂

p

Uα⊕

U(Id⊕∇) U(∇⊕Id)

U∇ U∇

(3)

(1)

(2) (2)

(4)(4)

(5)(2) (2)

1. Naturality of α×.
2. Definition of +̂.
3. U monoidal functor.
4. Naturality of p with respect to ∇.
5. Associativity property of ⊕.

(βb) If b has type Bn and b ∈ B, then (λx:Bn.t)b −→ (b/x)t. We have,

x : Bn ⊢ t : A
⊢ λx:Bn.t : Bn ⇒ A ⊢ b : Bn

⊢ (λx:Bn.t)b : A
and ⊢ (b/x)t : A

Then,

1 A

Bn

(b/x)t

b t

This diagram commutes because of Lemma 4.10.
(βn) If u has type SΨ , then (λx:SΨ.t)u −→ (u/x)t. We have,

x : SΨ ⊢ t : A
⊢ λx:SΨ.t : SΨ ⇒ A ⊢ u : SΨ

⊢ (λx:SΨ.t)u : A
and ⊢ (u/x)t : A

Then,

A categorical construction for the computational definition of vector spaces 27

1 A

USΨ

(u/x)t

u t

This diagram commutes because of Lemma 4.10.

(If1) |1〉?t·r −→ t. We have,

⊢ t : A ⊢ r : A
⊢ ?t·r : B ⇒ A ⊢ |1〉 : B

⊢ |1〉?t·r : A

and ⊢ t : A

Then,

12 B× [B, A]

1 A

i2×curry(uncurry(ft,r)◦swap)

ελ×

t

Notice that curry(uncurry(ft,r) ◦ swap) transforms the arrow B
ft,r
−−−→ [1, A] (which is the

arrow |0〉 7→ r, |1〉 7→ t) into an arrow 1 −→ [B, A], and hence, ε ◦ (i2 × curry(uncurry(ft,r) ◦
swap)) = t.

(If0) Analogous to (If1).

(lin+r) If t has type Bn ⇒ A, then t(u+ v) −→ tu+ tv. We have,

⊢ t : Bn ⇒ A

⊢ t : S(Bn ⇒ A)
⊢ u : SBn ⊢ v : SBn

⊢ u+ v : SBn

⊢ t(u+ v) : S(A)

and

⊢ t : Bn ⇒ A

⊢ t : S(Bn ⇒ A) ⊢ u : SBn

⊢ tu : S(A)

⊢ t : Bn ⇒ A

⊢ t : S(Bn ⇒ A) ⊢ v : SBn

⊢ tv : S(A)

⊢ tu+ tv : S(A)

28 Alejandro Díaz-Caro, Octavio Malherbe

USBn × US[Bn, A] U(SBn ⊗ S([Bn, A]))

US(Bn × [Bn, A])

(USBn)2 × US[Bn, A]
U(SBn ⊕ SBn)
×US[Bn, A]

USA

U((SBn ⊕ SBn)
⊗S[Bn, A])

(USA)2

U((SBn

⊗S[Bn, A])
⊕(SBn

⊗S[Bn, A]))

(USA)2

(USBn)2 × (US[Bn, A])2
(

US(Bn

×[Bn, A])

)2

(USBn)2 × [Bn, A]

1 (USBn)2 × [Bn, A]2
(

U(SBn⊗
S([Bn, A]))

)2

(USBn × [Bn, A])2
(

USBn×
US[Bn, A]

)2

n

Um

USεB
n

d

Id×∆

+̂×Id

p×Id

U∇×
Id

n

U
(∇

⊗
Id
)

Uδ

+̂

U∇

g0=Id

Id×
σ×

Id

(USεB
n
)2

+̂

g0×η

Id×∆u×v×t

u×t×v×t

u×v×t×t

Id×
σ×

Id

Id×η2 (Um)2

+̂

p

(Id×η)2

n×
n

(7)(6)

(6)

(8)

(8)

(5)

(5)

(1) (2)

(3) (4) (1)

1. Definition of +̂.
2. Naturality of ∇.
3. Axiom

Dist
.

4. Let f = π1 ⊗ Id, g = π2 ⊗ Id, and A = B = SBn ⊗ [Bn, A]. Hence,

∇ ◦ δ = [Id, Id] ◦ 〈f, g〉

= [Id, Id] ◦ Id ◦ 〈f, g〉

= [Id, Id] ◦ (iA ◦ πA + iB ◦ πB) ◦ 〈f, g〉

= (([Id, Id] ◦ iA ◦ πA) + ([Id, Id] ◦ iB ◦ πB)) ◦ 〈f, g〉

= (πA + πB) ◦ 〈f, g〉

= πA ◦ 〈f, g〉+ πB ◦ 〈f, g〉

= f + g

= π1 ⊗ Id+ π2 ⊗ Id

= ∇⊗ Id

5. Naturality of +̂.
6. Naturality of ∆.
7. Definition of d.
8. Naturality of σ.

A categorical construction for the computational definition of vector spaces 29

(linαr) If t has type Bn ⇒ A, then t(α.u) −→ α.(tu). We have,

⊢ t : Bn ⇒ A

⊢ t : S(Bn ⇒ A)
⊢ u : SBn

⊢ α.u : SBn

⊢ t(α.u) : S(A)

and

⊢ t : Bn ⇒ A

⊢ t : S(Bn ⇒ A) ⊢ u : SBn

⊢ tu : S(A)

⊢ α.(tu) : S(A)

Then,

1 USBn × [Bn, A]

USBn × US[Bn, A] U(SBn ⊗ I)× US[Bn, A]

U(SBn ⊗ S[Bn, A]) U(SBn ⊗ I ⊗ S[Bn, A]) U(SBn ⊗ I)× US[Bn, A]

US(Bn × [Bn, A]) U(SBn ⊗ I ⊗ S[Bn, A]) USBn × US[Bn, A]

U(SBn ⊗ S[Bn, A]⊗ I)

USA U(SBn ⊗ S[Bn, A]⊗ I) U(SBn ⊗ S[Bn, A])

U(S(Bn × [Bn, A])⊗ I)

U(SA⊗ I) U(S(Bn × [Bn, A])⊗ I) US(Bn × [Bn, A])

U(SA⊗ I) USA

u×t

Uλ×ηId×η

Uλ×Id

n U(Id⊗α)×Idn
U(λ⊗Id)

Um

Uλ U(Id⊗
σ)

U(Id⊗α⊗Id) Uλ−1×Idn

USεB
n

Uλ

U(Id⊗σ)
U(λ−1⊗Id)

n

U(m⊗Id)

U(Id⊗Id⊗α)

Uλ U(m⊗Id)

Uλ−1

Um

U(Sε
B
n ⊗Id)

U(Id⊗α)

U(Id⊗α)

Uλ−1

U(SεB
n
⊗Id)

USεB
n

Uλ−1

(3)

(1)

(2)

(3)
(2)

(2)

(4)

(5)

(7)(6)

(6)

(5)

1. Functoriality of ×.
2. Naturality of n.
3. Coherence of σ.
4. Naturality of λ with respect to m.
5. Functoriality of ⊗.
6. Naturality of λ with respect to SεB

n
.

7. Naturality of λ−1 with respect to m.

(lin0r) If t has type Bn ⇒ A, then t0S(Bn) −→ 0S(A). We have,

⊢ t : Bn ⇒ A

⊢ t : S(Bn ⇒ A) ⊢ 0S(Bn) : SBn

⊢ t0S(Bn) : S(A)

and ⊢ 0S(A) : S(A)

Then,

30 Alejandro Díaz-Caro, Octavio Malherbe

USBn × [Bn, A] USBn × US[Bn, A] U(SBn ⊗ S[Bn, A]) US(Bn × [Bn, A])

US1× US1 U(S1⊗ S1)

US1× UI U(S1⊗ I)

US1× 1

1 ≈ 12 US1 USA

Id×η n Um

U
S
ε
B
n

U
0
×
U
S
t

n

U
(0

⊗
S
t)

n

Id
×
U
m

I

U
(I
d
⊗
m

I
)

U
0
×
t

λ−1
×

Id×
n1

Id
×η

ηη
×
Id

λ×

Uλ

U0

U0

(1)
(2)

(3)
(4)

(5)

(6)

(7)

(2)

1. Naturality of η and functoriality of the product.
2. Naturality of n.
3. Property of monoidal adjunctions.
4. Notice that 0⊗ (St ◦mI) = 0, hence, this diagram commutes by property of 0.
5. Property of the morphism 0.
6. Property of monoidal categories.
7. Naturality of λ×.

(lin+l) (t + u)v −→ (tv + uv). This case is analogous to (lin+r). Notice that the axiom is valid

only for +̂× Id, not for Id× +̂, however, one can be transformed into the other by using a
swap.

(linαl) (α.t)u −→ α.(tu). This case is analogous to (linαr).

(lin0l) 0S(Bn⇒A)t −→ 0S(A). This case is analogous to (lin0r).
(neutral) (0S(A) + t) −→ t. We have

⊢ 0S(A) : S(A) ⊢ t : S(A)

⊢ 0S(A) + t : S(A) and ⊢ t : S(A)

Then,

1× 1 US1× USA USA× USA USA× USA

USA× USA U(SA⊕ SA) U(SA⊕ SA)

1 USA USA

η×t

t×t

U0×Id g0=Id

+̂

p
U0×U Id

p U(0⊕Id)

U∇

λ×=∆

t

t U(0+Id)

U∆
∆

(5)(4)

(7)

(6)

(1) (2) (3)

1. By Axiom0 and functoriality of product.
2. Naturality of p.
3. Definition of +̂.
4. Naturality of ∆.
5. U preserves product.
6. Property of sum in an additive category.
7. The map 0 is neutral with respect to the sum.

(unit) 1.t −→ t. We have
⊢ t : S(A)

⊢ 1.t : S(A) and ⊢ t : S(A)

Then,

A categorical construction for the computational definition of vector spaces 31

USA U(SA⊗ I) U(SA⊗ I)

1 USA

Uλ

Id

U(Id⊗1)

Uλ−1t

t

(zeroα) If t has type A, 0.t −→ 0S(A). We have

⊢ t : S(A)

⊢ 0.t : S(A)
and ⊢ 0S(A) : S(A)

Then,

USA U(SA⊗ I) U(SA⊗ I)

1 US1 USA

Uλ

U0

U0

U(Id⊗0)=U0

U(λ−1)

η

t

U0

(1)
(2)

(2)

1. Axiom0 .
2. Property of the map 0.

(zero) α.0S(A) −→ 0S(A). We have

⊢ 0S(A) : S(A)

⊢ α.0S(A) : S(A)
and ⊢ 0S(A) : S(A)

Then

1 US1 US(A) U(S(A)⊗ I) U(SUS(A)⊗ I)

US1 US(A)

η

η U0

U0

U(λ) U(Id⊗α)

U(λ−1)

U0

(1) (2)

1. Same arrows.
2. Property of the morphism 0.

(prod) α.(β.t) −→ (αβ).t. We have

⊢ t : S(A)

⊢ β.t : S(A)

⊢ α.(β.t) : S(A)

and
⊢ t : S(A)

⊢ (αβ).t : S(A)

Then

U(SA⊗ I) U(SA⊗ I) USA

USA U(SA⊗ I)

1 U(SA⊗ I)

USA U(SA⊗ I) U(SA⊗ Id) USA

U(Id⊗β) Uλ−1

Id UλUλ

U(Id⊗α)

t

t

Uλ−1

Uλ U(Id⊗(α.β)) Uλ−1

This diagram commutes by functoriality of ⊗.
(αdist) α.(t+ u) −→ α.t+ α.u. We have

⊢ t : S(A) ⊢ u : S(A)

⊢ t+ u : S(A)

⊢ α.(t + u) : S(A)

and

⊢ t : S(A)

⊢ α.t : S(A)

⊢ u : S(A)

⊢ α.u : S(A)

⊢ α.t+ α.u : S(A)

Then

32 Alejandro Díaz-Caro, Octavio Malherbe

(USA)2 USA U(SA⊗ I)

(USA)2 (U(SA⊗ I))2 U(SA⊗ I)

12 USA

1 (U(SA⊗ I))2 USA2

+̂ Uλ

U(Id⊗α)

(Uλ)2

g0
+̂

(U(Id⊗α))2

Uλ−1t×u

λ×

+̂

(Uλ−1)2
+̂

The three subdiagrams are valid by the naturality of +̂.
(fact) (α.t+ β.t) −→ (α + β).t. We have

⊢ t : S(A)

⊢ α.t : S(A)

⊢ t : S(A)

⊢ β.t : S(A)

⊢ (α.t + β.t) : S(A)

and
⊢ t : S(A)

⊢ (α+ β).t : S(A)

Then

(USA)2 U(SA⊗ I)× U(SA⊗ I) U(SA⊗ I)× U(SA⊗ I) (USA)2

12 U((SA⊗ I)⊕ (SA⊗ I)) U((SA⊗ I)⊕ (SA⊗ I))

(USA)2

1 U(SA⊗ (I ⊕ I)) U(SA⊗ (I ⊕ I))

USA U(SA⊗ I) U(SA⊗ I) USA

(Uλ)2 U(Id⊗α)×U(Id⊗β) (Uλ−1)2

+̂

p

g0=Id

t2

U((Id⊗α)⊕(Id⊗β))
p−1

U∇

p−1

+̂

t

λ
×
=
∆

U(Id⊗(α⊕β))

Uδ Uδ

U(Id⊗∇)

Uλ

∆

U(Id⊗(α+β))

∆
U∆

U(Id⊗∆)

Uλ−1

(3)

(4)

(6)
(3) (7)

(1)

(1)

(3)(2)

(5)

1. Naturality of ∆.
2. Functor U preserves product.
3. Distributivity property given by the fact that the tensor is a left adjoint.
4. Naturality of p−1.
5. Additivity of the category.
6. Definition of +̂.
7. Naturality of +̂.

(fact1) (α.t + t) −→ (α + 1).t. This case is a particular case of fact.
(fact2) (t + t) −→ 2.t. This case is a particular case of fact.
(head) If h 6= u× v, and h ∈ B, head h× t −→ h. We have

⊢ h : B ⊢ t : Bn−1

⊢ h× t : Bn

⊢ head h× t : B

and ⊢ h : B

Then

12 Bn

1 B

h×t

π1λ×

h

This diagram commutes since π1 is just the projection.

A categorical construction for the computational definition of vector spaces 33

(tail) If h 6= u× v, and h ∈ B, tail h× t −→ t. We have

⊢ h : B ⊢ t : Bn−1

⊢ h× t : Bn

⊢ tail h× t : Bn−1

and ⊢ t : Bn−1

Then

12 Bn

1 Bn−1

h×t

π2λ×

t

This diagram commutes since π2 is just the projection.

(dist+r) ⇑r ((r + s)× u) −→⇑r (r × u)+ ⇑r (s× u).

We have,

⊢ r : SΨ ⊢ s : SΨ
⊢ r + s : SΨ ⊢ u : Φ

⊢ (r + s)× u : SΨ × Φ

⊢ (r + s)× u : S(SΨ × Φ)

⊢⇑r ((r + s)× u) : S(Ψ × Φ)

and

⊢ r : SΨ ⊢ u : Φ
⊢ r × u : SΨ × Φ

⊢ r × u : S(SΨ × Φ)

⊢⇑r (r × u) : S(Ψ × Φ)

⊢ s : SΨ ⊢ u : Φ
⊢ s× u : SΨ × Φ

⊢ s× u : S(SΨ × Φ)

⊢⇑r (s× u) : S(Ψ × Φ)

⊢⇑r (r × u)+ ⇑r (s× u) : S(Ψ × Φ)

Then

USΨ × Φ US(USΨ × Φ) US(USΨ × USΦ) USU(SΨ ⊗ SΦ)

(USΨ)2 × Φ (USΨ)2 × USΦ USΨ × USΦ USUS(Ψ × Φ)

U(SΨ ⊗ SΦ) US(Ψ × Φ)

(USΨ × Φ)2 (USΨ × USΦ)2 (U(SΨ ⊗ SΦ))2 (US(Ψ × Φ))2

(US(USΨ × Φ))2 (US(USΨ × USΦ))2 (USU(SΨ ⊗ SΦ))2 (USUS(Ψ × Φ))2

η

Id×η

US(Id×η) US(n)

USUm+̂×Id

d

Id×η

d

+̂×Id

n µ

η

Um

η

η2

(Id×η)2 n2

η2 η2

(Um)2
+̂ +̂

η2

(US(Id×η))2 (USn)2 (USUm)2

µ2

(5)

(1) (2)

(3)

(4)

(2)

(6)

(2) (3)

1. Functoriality of the product.
2. Naturality of η.
3. Naturality of η (remark that by the axioms of monads, µ ◦ η = Id).
4. Naturality of d.
5. Axiom

Dist
and definition of +̂.

6. Naturality of +̂.

(dist+l) ⇑ℓ u× (r + s) −→⇑ℓ (u× r)+ ⇑ℓ (u× s). Analogous to case (dist+r)

(distαr) ⇑r (α.r)× u −→ α. ⇑r r × u. We have,

⊢ r : SΨ
⊢ α.r : SΨ ⊢ u : Φ

⊢ (α.r)× u : SΨ × Φ

⊢ (α.r)× u : S(SΨ × Φ)

⊢⇑r (α.r) × u : S(Ψ × Φ)

and

⊢ r : SΨ ⊢ u : Φ
⊢ r × u : SΨ × Φ

⊢ r × u : S(SΨ × Φ)

⊢⇑r (r × u) : S(Ψ × Φ)

⊢ α. ⇑r r × u : S(Ψ × Φ)

Then

34 Alejandro Díaz-Caro, Octavio Malherbe

USΨ × Φ US(USΨ × Φ) US(USΨ × USΦ) USU(SΨ ⊗ SΦ)

U(SΨ ⊗ I)× Φ US(U(SΨ ⊗ I)× Φ) USUS(Ψ × Φ)

US(U(SΨ ⊗ I)× USΦ) USUS(Ψ × Φ) US(Ψ × Φ)

USU(SΨ ⊗ I ⊗ SΦ) USU(S(Ψ × Φ)⊗ I) U(S(Ψ × Φ)⊗ I)

USU(SΨ ⊗ SΦ⊗ I) USU(S(Ψ × Φ)⊗ I) U(S(Ψ × Φ)⊗ I)

U(SΨ ⊗ I)× Φ U(SΨ ⊗ I)× USΦ U(SΨ ⊗ I ⊗ SΦ) U(SΨ ⊗ SΦ⊗ I)

USΨ × Φ USΨ × USΦ U(SΨ ⊗ SΦ) US(Ψ × Φ)

12 US(USΨ × USΦ) US(U(SΨ ⊗ SΦ)) USUS(Ψ × Φ)

US(USΨ × Φ)

η U(Id×η) USn

USUmUλ−1×Id

US(Id×η) µ

USn

µ

η

USU(Id⊗σ)

USUλ−1 Uλ−1

USU(m⊗Id)
USU(Id⊗α) U(Id⊗α)

η

Id×η

U
(I
d
⊗
α
)×

Id

η

n

U(λ−1⊗Id)

U(Id⊗σ)

U(m⊗Id)

Uλ×Id

η

Id×η n

Uλ×Id

η

Um

η

Uλ

Uλ

ηr×u

USn USUm

µ

U(Id×η)

(1)

(2)

(2)

(3) (4) (5) (6)

(2) (2) (2)

1. See next diagram.
2. Naturality of η.
3. Functoriality of product.
4. Naturality of n.
5. Coherence.
6. Naturality of λ.

USΨ × Φ US(USΨ × Φ) US(USΨ × USΦ) USU(SΨ ⊗ SΦ)

U(SΨ ⊗ I)× Φ USUS(Ψ × Φ)

US(U(SΨ ⊗ I)× Φ) US(Ψ × Φ)

U(SΨ ⊗ I)× Φ US(U(SΨ ⊗ I)× USΦ) USU(SΨ ⊗ SΦ⊗ I) USUS(Ψ × Φ)

US(U(SΨ ⊗ I)× Φ) USU(SΨ ⊗ I ⊗ SΦ) USU(S(Ψ × Φ)⊗ I)

US(U(SΨ ⊗ I)× USΦ) USU(SΨ ⊗ I ⊗ SΦ) USU(SΨ ⊗ SΦ⊗ I) USU(S(Ψ × Φ)⊗ I)

η U(Id×η) USn

USUm

η

Uλ−1×Id

η

US((Uλ−1)×Id)

US(Id×η)

U(Id⊗α)×Id

η

U
S(

(U
λ
−
1)×

Id
)

USn

U
S
U
λ
−
1

USU(m⊗Id)

η

US(Id×η)

US(
U(Id

⊗α)
×Id)

USU(Id⊗σ)

USU
(λ

−
1 ⊗Id)

USUλ−1

USn

US(
U(Id

⊗α)
×Id)

USU(Id⊗α⊗Id)

USU(Id⊗σ) USU(m⊗Id)

USU(Id⊗α)

USU(Id⊗α)

(4)
(5)

(1)

(1)

(2)

(2) (3)

(3)
(6) (7)

1. Naturality of η.
2. Functoriality of the product.
3. Naturality of n.
4. Coherence
5. Naturality of λ and functoriality of USU .
6. Naturality of σ.
7. Functoriality of the tensor.

(distα
l
) ⇑ℓ u× (α.r) −→ α. ⇑ℓ u× r. Analogous to case (distαr).

A categorical construction for the computational definition of vector spaces 35

(dist0r) If u has type Φ, ⇑r 0S(Ψ) × u −→ 0S(Ψ×Φ). We have

⊢ 0S(Ψ) : SΨ ⊢ u : Φ

⊢ 0S(Ψ) × u : SΨ × Φ

⊢ 0S(Ψ) × u : S(SΨ × Φ)

⊢⇑r 0S(Ψ) × u : S(Ψ × Φ)

and ⊢ 0S(Ψ×Φ) : S(Ψ × Φ)

Then

12 US1× Φ USΨ × Φ US(USΨ × Φ)

US1× USΦ

1 (US1)2

US1 U(S1⊗ S1) USΨ × USΦ US(USΨ × USΦ)

US(Ψ × Φ) U(SΨ ⊗ SΦ)

USUS(Ψ × Φ) USU(SΨ ⊗ SΦ)

η×u

η2

Id×η

U0×Id η

Id×η US(Id×η)

U0×Id

∆

η

Id
×
U
S
u

n

U0
U0

∆

U
(
0⊗

S
u
)

η

n

USn

η
η

Um

µ

USUm

(3)

(1)

(2)

(1)

(4) (5)

(1)
(6)

(1)

1. Naturality of η.
2. Functoriality of the product.
3. Naturality of ∆.
4. U(0⊗ Su) = U0, hence, we conclude by Axiom0 with the maps n ◦∆ and Id.
5. Naturality of n.
6. Property of map 0.

(dist0
l
) If u has type Ψ , ⇑ℓ u× 0S(Φ) −→ 0S(Ψ×Φ). Analogous to case (dist0r).

(dist+⇑) ⇑ (t+ u) −→ (⇑ t+ ⇑ u). We only give the details for ⇑r , the case ⇑ℓ is analogous.

⊢ t : S(SΨ × Φ) ⊢ u : S(SΨ × Φ)

⊢ t+ u : S(SΨ × Φ)

⊢⇑r (t + u) : S(Ψ × Φ)

and

⊢ t : S(SΨ × Φ)

⊢⇑r t : S(Ψ × Φ)

⊢ u : S(SΨ × Φ)

⊢⇑r u : S(Ψ × Φ)

⊢⇑r t+ ⇑r u : S(Ψ × Φ)

Then

36 Alejandro Díaz-Caro, Octavio Malherbe

(US(USΨ × Φ))2 US(USΨ × Φ)

(US(USΨ × USΦ))2 US(USΨ × USΦ)

(USU(SΨ ⊗ SΦ))2 USU(SΨ ⊗ SΦ)

(USUS(Ψ × Φ))2 USUS(Ψ × Φ)

(US(Ψ × Φ))2 US(Ψ × Φ)

(U(Id×η))2

+̂

U(Id×η)

(USn)2

+̂

USn

(USUm)2

+̂

USUm

µ2

+̂

µ

+̂

This diagram commutes by naturality of +̂.

(distα⇑) ⇑ (α.t) −→ α. ⇑ t. We only give the details for ⇑r, the case ⇑ℓ is similar.

⊢ t : S(SΨ × Φ)

⊢ α.t : S(SΨ × Φ)

⊢⇑r (α.t) : S(Ψ × Φ)

and

⊢ t : S(SΨ × Φ)

⊢⇑r t : S(Ψ × Φ)

⊢ α. ⇑r t : S(Ψ × Φ)

Then

US(USΨ × Φ) U(S(USΨ × Φ)⊗ I) U(S(USΨ × Φ)⊗ I) US(USΨ × Φ)

US(USΨ × USΦ) U(S(USΨ × USΦ)⊗ I) U(S(USΨ × USΦ)⊗ I) US(USΨ × USΦ)

USU(SΨ ⊗ SΦ) U(SU(SΨ ⊗ SΦ)⊗ I) U(SU(SΨ ⊗ SΦ)⊗ I) US(U(SΨ ⊗ SΦ))

USUS(Ψ × Φ) U(SUS(Ψ × Φ)⊗ I) U(SUS(Ψ × Φ)⊗ I) USUS(Ψ × Φ)

US(Ψ × Φ) U(S(Ψ × Φ)⊗ I) U(S(Ψ × Φ) ⊗ I) US(Ψ × Φ)

Uλ

U(Id×η)

U(Id⊗α)

U(S(Id×η)⊗Id)

Uλ−1

U(S(Id×η)⊗Id) U(Id×η)

USn

Uλ

U(Sn⊗Id)

U(Id⊗α)

U(Sn⊗Id)

Uλ−1

USn

USUm

Uλ

U(SUm⊗Id) U(SUm⊗Id)

Uλ−1

USUm

µΨ×Φ=UεS(Ψ×Φ)

Uλ U(Id⊗α)

U(εS(Ψ×Φ)⊗Id)

Uλ−1

U(εS(Ψ×Φ)⊗Id) µΨ×Φ=UεS(Ψ×Φ)

Uλ S(Id⊗α) Uλ−1

(3)

(3)

(3)

(1)

(1)

(1)

(2)

(4)

(4)

(4)

(5)

1. Naturality of λ.
2. Naturality of λ and the definition of monad given by an adjunction.
3. Functoriality of tensor.
4. Naturality of λ−1.
5. Naturality of λ−1 and the definition of monad given by an adjunction.

(dist0⇑r
) ⇑r 0S(S(SΨ)×Φ) −→⇑r 0S(SΨ×Φ). We have

⊢ 0S(S(SΨ)×Φ) : S(S(SΨ) × Φ)

⊢⇑r 0S(S(SΨ)×Φ) : S(Ψ × Φ)
and

⊢ 0S(SΨ×Φ) : S(SΨ × Φ)

⊢⇑r 0S(SΨ×Φ) : S(Ψ × Φ)

Then,

A categorical construction for the computational definition of vector spaces 37

US1 US((US)2Ψ × Φ) US((US)2Ψ × USΦ)

1

US1

US(USΨ × Φ) USUS(USΨ × Φ) USU(SUSΨ ⊗ SΦ)

US(USΨ × USΦ) USU(SΨ ⊗ SΦ) USUS(Ψ × Φ)

US(Ψ × Φ)

U0 U(Id×η)

USnη

η

U0

U(Id×η)

µ USUm

USn USUm

µ

This diagram commutes by the property of the map 0.
(dist0⇑ℓ

) ⇑ℓ 0S(Φ×S(SΨ)) −→⇑ℓ 0S(Φ×SΨ). Analogous to case (dist0⇑r
).

(neut⇑r) If u ∈ B, ⇑r u× v −→ u× v. We have

⊢ u : Ψ
⊢ u : SΨ ⊢ v : Φ
⊢ u× v : SΨ × Φ

⊢ u× v : S(SΨ × Φ)

⊢⇑r u× v : S(Ψ × Φ)

and

⊢ u : Ψ ⊢ v : Φ
⊢ u× v : Ψ × Φ

⊢ u× v : S(Ψ × Φ)

Then

1 ≈ 12 Ψ × Φ USΨ × Φ US(USΨ × Φ)

US(Ψ × Φ)

USUS(Ψ × Φ) US(U(SΨ ⊗ SΦ)) US(USΨ × USΦ)

u×v

η

η×Id η

U(Id×η)

US(η×Id)

US(η×η)
USηµ

USUm USn

(1)

(2)

(4)
(3)

1. Naturality of η.
2. Functoriality of product.
3. Remark that µ ◦ USη = Id.
4. η is a monoidal linear transformation.

(neut⇑ℓ) If v ∈ B, ⇑ℓ u× v −→ u× v. Analogous to case (neut⇑r).

(neut⇑0r) ⇑r 0S(S(Bn)×Φ) −→ 0S(Bn×Φ). We have

⊢ 0S(S(Bn)×Φ) : S(S(B
n) × Φ)

⊢⇑r 0S(S(Bn)×Φ) : S(B
n × Φ)

and ⊢ 0S(Bn×Φ) : S(B
n × Φ)

Then,

US1 US(USBn × Φ) US(USBn × USΦ)

1 USU(SBn ⊗ SΦ)

US1 US(Bn × Φ) USUS(Bn × Φ)

U0 U(Id×η)

USnη

η USUm

U0

µ

Remark that 0 = f ◦ 0 for any f .

(neut⇑
0ℓ) ⇑ℓ 0S(Φ×S(Bn)) −→ 0S(Φ×Bn). Analogous to case (neut⇑0r).

38 Alejandro Díaz-Caro, Octavio Malherbe

Contextual rules Trivial by composition law. ⊓⊔

Lemma 4.13 (Adequacy). If Γ ⊢ t : A and σ � Γ , then σt ∈ CA.

Proof We proceed by structural induction on the derivation of Γ ⊢ t : A.

– Γ B, x : Ψ ⊢ x : Ψ
Ax

Since σ � Γ B, x : Ψ , we have σx ∈ CΨ .

– Γ B ⊢ 0S(A) : S(A)
Ax0

By definition, σ0S(A) = 0S(A) ∈ CS(A).

– Γ B ⊢ |0〉 : B
Ax|0〉 By definition, σ |0〉 = |0〉 ∈ CB.

– Γ B ⊢ |1〉 : B
Ax|1〉 By definition, σ |1〉 = |1〉 ∈ CB.

–
Γ ⊢ t : S(A)

Γ ⊢ α.t : S(A)
αI

By the induction hypothesis, σt ∈ CS(A), hence, one of the following cases occur:
– t ∈ SCA, then t =

∑

i βiri with ri ∈ CA. Since α.
∑

i βiri −→
∗ ∑

i(α× βi)ri, we have
α.t ∈ CS(A).

– t −→∗ r with r ∈ SCA, then t ∈ SCA ⊂ CS(A).

–
Γ,ΞB ⊢ t : S(A) ∆,ΞB ⊢ u : S(A)

Γ,∆,ΞB ⊢ (t + u) : S(A)
+I

By the induction hypothesis, σ1σt, σ2σu ∈ CS(A), where σ1 � Γ , σ2 � ∆, and σ � ΞB.
By definition σ1σt + σ2σu = σ1σ2σ(t + u) ∈ CS(A).

–
Γ ⊢ t : A Γ ⊢ r : A
Γ ⊢ ?t·r : B ⇒ A

If

By the induction hypothesis, σt ∈ CA and σr ∈ CA. Hence, for any s ∈ CB, s?σt·σr reduces
either to σt or to σr, hence it is in CA, therefore, ?σt·σr ∈ CB⇒A.

–
Γ, x : Ψ ⊢ t : A

Γ ⊢ λx:Ψ.t : Ψ ⇒ A
⇒I

Let r ∈ CΨ . Then, σ(λx:Ψ.t)r = (λx:Ψ.σt)r → (r/x)σt. Since (r/x)σ � Γ, x : Ψ , we have,
by the induction hypothesis, that (r/x)σt ∈ CA. Therefore, λx:Ψ.t ∈ CΨ⇒A.

–
∆,ΞB ⊢ u : Ψ Γ,ΞB ⊢ t : Ψ ⇒ A

∆, Γ,ΞB ⊢ tu : A
⇒E

By the induction hypothesis, σ1σu ∈ CΨ and σ2σt ∈ CΨ⇒A, where σ1 � ∆, σ2 � Γ , and
σ � ΞB. Then, by definition, σ1σtσ2σr = σ1σ2σ(tr) ∈ CA.

–
∆,ΞB ⊢ u : SΨ Γ,ΞB ⊢ t : S(Ψ ⇒ A)

∆,Γ,ΞB ⊢ tu : S(A)
⇒ES

By the induction hypothesis σ1σt ∈ CS(Ψ⇒A) = SCΨ⇒A and σ2σu ∈ CSΨ = SCΨ , where

σ1 � Γ , σ2 � ∆, and σ � ΞB. Let σ1σt −→∗ ∑

i αiti with ti ∈ CΨ⇒A and σ2σu −→
∑

j βjuj , with uj ∈ CΨ . Then σ1σ2σ(tu) = (σ1σt)(σ2σu) −→∗ ∑

ij αiβjtiuj with tiuj ∈

CA, therefore, σ1σ2σ(tu) ∈ CS(A).

–
Γ ⊢ t : A

Γ ⊢ t : S(A)
SI

By the induction hypothesis, σt ∈ CA ⊆ SCA ⊆ CS(A).

–
Γ,ΞB ⊢ t : Ψ ∆,ΞB ⊢ u : Φ

Γ,∆,ΞB ⊢ t× u : Ψ × Φ
×I

By the induction hypothesis, σ1σt ∈ CΨ and σ2σu ∈ CΦ, hence, σ1σt× σ2σu = σ1σ2σ(t×
u) ∈ CΨ × CΦ ⊆ CΨ×Φ.

–
Γ ⊢ t : Bn n>1

Γ ⊢ head t : B
×Er

By the induction hypothesis, σt ∈ CBn = CB × C
Bn−1 = {u | u −→∗ u1 × u2 with u1 ∈

CB and u2 ∈ C
Bn−1}. Hence, σ(head t) = head σt −→∗

head(u1 × u2) −→ u1 ∈ CB.

–
Γ ⊢ t : Bn n>1

Γ ⊢ tail t : Bn−1
×El

By the induction hypothesis, σt ∈ CBn = CB × C
Bn−1 = {u | u −→∗ u1 × u2 with u1 ∈

CB and u2 ∈ C
Bn−1}. Hence, σ(tail t) = tail σt −→∗

tail(u1 × u2) → u2 ∈ C
Bn−1 .

–
Γ ⊢ t : S(SΨ × Φ)

Γ ⊢⇑r t : S(Ψ × Φ)
⇑r

By the induction hypothesis, we have that σt ∈ CS(SΨ×Φ). Therefore, σt ∈ S(SCΨ × CΦ).
Hence, σt −→∗ ∑

i αi((
∑

ji
βijiriji)× ui) with ui ∈ CΦ and riji ∈ CΨ .

Hence, ⇑r t −→∗ ∑

ji
(αiβiji) ⇑r (riji × ui) ∈ CS(Ψ×Φ).

A categorical construction for the computational definition of vector spaces 39

–
Γ ⊢ t : S(Ψ × SΦ)

Γ ⊢⇑ℓ t : S(Ψ × Φ)
⇑ℓ Analogous to previous case. ⊓⊔

	1 Introduction
	2 The calculus Lambda-S*
	3 A categorical construction for algebraic manipulation
	4 Denotational semantics
	5 Conclusion
	A Detailed proofs

