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Statistical thermodynamics of straight rigid rods with nonadditive lateral interactions:
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The statistical thermodynamics of straight rigid rods of length k (k-mers) with nonadditive lateral interactions
was developed on a generalization in the spirit of the lattice-gas model and the classical Bragg-Williams
approximation (BWA) and the quasichemical approximation (QCA). The new theoretical framework is obtained
by combining (i) the exact analytical expression for the partition function of noninteracting linear k-mers adsorbed
in one dimension and its extension to higher dimensions, and (ii) a generalization of BWA and QCA in which
the adsorbate can occupy more than one adsorption site. The traditional assumption of a strictly pairwise additive
nearest-neighbors interaction is replaced by a more general one, namely that the bond linking a certain atom
with any of its neighbors depends considerably on how many of them are actually present (or absent) on the
sites in the first coordination shell of the atom. The coverage and temperature dependence of the Helmholtz free
energy, chemical potential, configurational entropy, and differential heat of adsorption are given. The formalism
(i) reproduces the classical results for monomers, (ii) leads to the exact statistical thermodynamics of nonadditive
interacting k-mers adsorbed in one dimension, and (iii) provides a close approximation for two-dimensional
systems, taking into account multisite occupancy and nonadditive lateral interactions. Comparisons with Monte
Carlo simulations are performed in order to test the validity of the theoretical model. Significant quantitative
differences are shown and discussed. In all cases, the QCA appears to be the more accurate approach.
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I. INTRODUCTION

The adsorption of gases on solid surfaces is a topic of
fundamental interest for various applications [1,2]. From the
theoretical point of view, the process can be described in
terms of the lattice-gas model [3–8]. The lattice-gas model
is characterized by a division of the volume [or area in the
two-dimensional (2D) case] into cells such that the number
of cells is larger than the number of particles. Each cell is
centered at one site of a lattice. For the interaction energy, the
following assumption is made: the potential energy between
two particles is +∞ if they are in the same cell, w if they are
in a pair of neighboring cells, and zero otherwise.

Over the years, numerous generalizations of the standard
lattice-gas theory have been proposed to describe chemisorbed
or physisorbed monolayers at crystalline surfaces [9–11].
However, in all cases, the models preserve a fundamental
statistical property, the well-known symmetry particle
vacancy [12].

For several experimental arrangements, the behavior of the
thermodynamic quantities and the phase diagram of the system
have shown clear signals of the nonequivalence between parti-
cles and vacancies. In fact, adsorption isotherms for methane,
ethane, and others adsorbed on AlPO4-5 and SAPO-5 are
clearly unsymmetrical around half-coverage [13–17]. These
phenomena are also visible in the isosteric heat of adsorption.
Surface restructuring is another example of a system that
differs significantly from that which can be predicted by using
a standard lattice-gas model.

The two main routes to break the symmetry particle vacancy
are the following: (i) to introduce some sort of local correlation,

*antorami@unsl.edu.ar.

such as particles that occupy several k contiguous lattice
sites; and (ii) to consider nonpairwise (nonadditive) lateral
interactions between the adsorbed molecules. The properties
(i) and (ii) have been recognized in several experimental
systems. In fact, even the simplest nonspherical molecules
such as N2, O2, and CO may adsorb on more than one site
depending on the surface structure [18–21]. Larger linear
molecules such as CnH2(n−1) (n-alkanes) adsorbed on solid
surfaces should be regarded under the light of a multisite
adsorption model [22–24] in order to properly account for
the effects of configurational entropy (adsorbate size and
flexibility) on the thermodynamics of the adlayer.

On the other hand, nonadditive ad-ad interactions have been
observed in several experimental systems: H on Pd(100) [25],
O on W(110) [26], H on Fe(110) [27], and the Ga-Pb alloy [28],
just to name a few. In addition, the presence of nonadditivity in
the interactions has been observed in the study of monolayer
growth in a heteroepitaxial system with the presence of hetero-
geneities [Ag/Au(100), Ag/Pt(100), Au/Pt(100), Au/Pd(100),
Au/Ag(100), Pt/Ag(100), Pt/Au(100), and Pd/Au(100)]
[29–31] and in the electrochemical phase formation [Ag on
Au(111) and Au(100)] [32–34].

From a theoretical point of view, the consequences of
considering nonadditive interactions in the adsorption thermo-
dynamics have been studied for a long time. In fact, statistical
mechanics of adsorbed monolayers has been the subject of
analytical treatment by means of the Bragg-Williams approx-
imation (BWA) [35–37], the quasichemical approximation
(QCA) [38], and Monte Carlo simulations [39–41]. In all cases,
one fundamental feature is preserved. This is the assumption
that an adsorbed molecule occupies one adsorption site.

In summary, despite over three decades of intensive work,
there exists a lack of systematic studies of adsorption systems
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in the presence of both nonadditive lateral interactions and
multisite occupancy. The objective of this paper is to provide
a thorough study in this direction. For this purpose, a new
theoretical formalism is presented based upon (i) the exact
analytical expression for the partition function of noninter-
acting straight rigid rods of length (k-mers) adsorbed in
one dimension and its extension to higher dimensions; [42]
and (ii) a generalization of the classical BWA and QCA
[12,43], in which the lateral interactions are nonadditive and
the adsorbate can occupy more than one adsorption site. In
addition, Monte Carlo (MC) simulations are performed in
order to test the validity of the theoretical model. The new
theoretical scheme allows us (i) to identify and characterize
the most prominent features of the effect of the nonadditive
interactions on the adsorption thermodynamics of straight
rigid molecules; (ii) to develop an improved approximation
for two-dimensional adlayers, taking into account multisite
occupancy and nonadditive interactions; and (iii) to provide a
simple model from which experiments may be reinterpreted.

The paper is organized as follows: In Sec. II, the lattice-
gas model for nonadditive interacting rods is presented. In
addition, the basis of the Monte Carlo simulation scheme in
the grand-canonical ensemble is given. In Sec. III, the ana-
lytical form of the main adsorption thermodynamic functions
(adsorption isotherm, configurational entropy, and differential
heat of adsorption) is derived from the BWA and the QCA.
The results of the theoretical approaches are presented in
Sec. IV, along with a comparison with Monte Carlo simulation
data corresponding to interacting dimers adsorbed on one-
dimensional and square lattices. Finally, the conclusions are
drawn in Sec. V.

II. BASIC DEFINITIONS: ADSORPTION MODEL
AND MONTE CARLO SIMULATION

A. Model

Here, we address the general case of adsorbates assumed
to be straight rigid rods containing k identical units, each
one occupying a site on a lattice of M = L × L sites and
connectivity γ . Small adsorbates with spherical symmetry
would correspond to the monomers limit (k = 1). The distance
between k-mer units is assumed in registry with the lattice
constant a; hence exactly k sites are occupied by a k-mer
when adsorbed. Under these considerations, the Hamiltonian
of the system can be written as

H = 1

2

M∑
i,j=1; i �=j

(Wi,j ci cj fi,j ) + U0

M∑
i

ci , (1)

where ci is the occupation variable, which can take the
following values: ci = 0 if the corresponding adsorption site
i is empty and ci = 1 if the site is occupied; fi,j is defined
to take either the value 0 if the sites i and j are occupied
by units belonging to the same k-mer or 1 if the sites i and
j are occupied by units belonging to different k-mers1; U0

1Because the present model assumes straight rigid adsorbates,
intramolecular interactions (interactions of pairs of units belonging
to the same molecules) are not included in Eq. (1).

FIG. 1. Snapshot corresponding to a given configuration of
dimers adsorbed on a square lattice. Solid circles (joined by
thick lines) and empty circles represent dimers and empty sites,
respectively. In this case, m = 1 for the dimer 1, m = 1 for the dimer
2, m = 3 for the dimer 3, and m = 1 for the dimer 4. Accordingly,
the total lateral interaction energy of the configuration is equal to
1
2 (W1 + W1 + 3W3 + W1).

is the constant interaction energy between a k-mer unit and
an adsorption site (in the simulations, U0 is set equal to zero
without any lost of generality); and Wi,j is the nonadditive
lateral interaction energy, which is assumed to have different
values, Wm (m = 1,2, . . . ,λ),2 depending on the number m of
occupied first neighbors around a given k-mer. An example
illustrating how to obtain the total lateral interaction energy
corresponding to a configuration of adsorbed dimers is shown
in Fig. 1.

As mentioned above, Wm depends on the occupation state
of the surrounding of a given k-mer. This dependence is
usually not known and is expected to be different in specific
cases. Then, we consider the simplest model of nonadditive
interaction, where Wm varies linearly with m [37,39],

Wm

W
= Pλ − 1

λ − 1
− m

P − 1

λ − 1
. (2)

In the preceding equation, Wλ = W and P = W1/W is the
nonadditivity parameter, which represents the ratio of the
strongest to the weakest bonds possible in the system.

As can be observed from Eq. (2), when P = 1.0 the problem
reduces to the additive form, (W1 = W2 = · · · = Wλ). For
P < 1.0 (P > 1.0), each interaction is weaker (stronger) than
in the additive case. Then, P emerges as an important control
parameter for describing the problem.

B. Monte Carlo simulation of adsorption
in the grand-canonical ensemble

The problem has been studied by grand-canonical MC
simulations using a typical adsorption-desorption algorithm
[44]. The system chosen was a lattice gas of interacting
dimers (the dimer is the simplest case of a straight rigid
rod and contains all the properties of the multisite-occupancy
adsorption).

2λ = [2(γ − 1) + (k − 2)(γ − 2)] represents the number of NN
sites of an adsorbed k-mer.
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The simulation procedure is as follows. For a given
value of temperature T and chemical potential μ, an initial
configuration with N dimers adsorbed at random positions
(on 2N sites) is generated. Then, an adsorption-desorption
process is started, where a pair of NN sites is randomly chosen
and a random number ξ∈[0,1] is generated:

(i) If the two sites are empty, then adsorb a molecule if
ξ � R.

(ii) If the two sites are occupied by atoms belonging to the
same molecule, then desorb the molecule if ξ � R.

(iii) Otherwise, the attempt is rejected.
R = min{1, exp(−�H/kBT )} is the transition probability

given by the Metropolis [45] rule, where �H = Hf − Hi

is the difference between the Hamiltonians of the final and
initial states and kB is the Boltzmann constant. In addition,
displacement (diffusional relaxation) of adparticles to nearest-
neighbor positions, by either jumps along the dimer axis or
reptation by rotation around the dimer end, must be allowed
in order to reach equilibrium in a reasonable time. A MC
step (MCS) is achieved when M pairs of sites have been
tested to change its occupancy state. Typically, the equilibrium
state can be well reproduced after discarding the first r ′ =
5 × 105 MCS. Then, the next r = 2 × 105 MCS’s are used to
compute averages.

Thermodynamic quantities such as mean coverage, θ , and
mean adsorption energy per site, u, are obtained as simple
averages:

θ = 2
〈N〉
M

, (3)

u = 1

M
〈H 〉. (4)

The differential heat of adsorption can be obtained from our
simulation as [46–48]

qd = − ∂u

∂〈N〉 , (5)

where the thermal average 〈· · ·〉 means the time average over
the Monte Carlo simulation run.

III. THEORY

From a theoretical point of view, when intermolecular
forces are introduced (in the present paper, NN denotes
nonadditive interactions), an extra term in the partition
function for interaction energy is required. With this extra
term, only partition functions for the whole system can be
written. Ising [49] gave an exact solution to the 1D monolayer
in 1925. All other cases are expressed in terms of series
solution [12,50], except for the special case of 2D monolayers
at half-coverage, which was exactly solved by Onsager [51]
in 1944. Close approximate solutions in dimensions higher
than 1 can be obtained, and the two most important of these
are the Bragg-Williams approximation (BWA) [12] and the
quasichemical approximation (QCA) [12,52]. These leading
models have played a central role in the study of adsorption
systems in the presence of lateral interactions between the
adatoms. Next, the BWA and the QCA will be applied to study
monolayer adsorption of nonadditive interacting straight rigid
rods.

A. Mean-field approximation for adsorbed k-mers

The Bragg-Williams approximation is the simplest mean-
field treatment for interacting adsorbed particles, even in the
case of nonadditive couplings and multisite occupancy. In this
context, the canonical partition function Q(M,N,T ,P ) for a
system of Nk-mers adsorbed on M sites at a temperature
T , considering NN lateral interactions characterized by a
nonadditivity parameter P , is given by

Q(N,M,T ,P ) =
∑
{Ek}

�(Ek)e−β[Ek (N,M,P )+NkU0], (6)

where �(Ek) is the total number of distinguishable configura-
tions of N k-mers on M sites with lateral interaction energy
Ek , NkU0 accounts for the k-mer–lattice interaction energy,
and β = (kBT )−1. If a mean-field approximation is introduced
at this point,

Q(N,M,T ,P ) = e−β[Ek (N,M,P )+NkU0]
∑
{Ek}

�(Ek)

= e−β[Ek (N,M,P )+NkU0]�(N,M,γ ), (7)

where �(N,M,γ ) is the number of configurations of Nk-mers
on a lattice with M sites and connectivity γ , and Ek(N,M,P )
is the mean lateral interaction energy of the system assuming
that the N k-mers are randomly distributed over M sites.
�(N,M,γ ) is calculated considering that the molecules are
distributed completely at random on the lattice and assuming
the arguments given by different authors [42,53,54] to relate
the configurational factor �(N,M,γ ) for any γ , with the same
quantity in one dimension, γ = 2. Thus,

�(M,N,γ ) = K(γ,k)N�(M,N,2), (8)

where K(γ,k) is, in general, a function of the connectivity
and the size of the molecules, and �(N,M,2) can be readily
calculated [42] giving

�(M,N,2) = [M − (k − 1)N ]!

N ![M − kN ]!
. (9)

In the particular case of straight rigid k-mers, it follows that
K(γ,k) = γ /2.

On the other hand,

Ek(N,M,P ) = N

2

λ∑
m=0

mWmPm, (10)

where λ = (γ − 2)k + 2 and Pm is the probability that a k-mer
will be surrounded by m NN occupied sites [and (λ − m)
NN empty sites], which can be written in terms of the mean
coverage θ = kN/M ,

Pm =
(

λ

m

) (
kN

M

)m (
1 − kN

M

)λ−m

. (11)

Then,

Ek(N,M,P ) = N

2

λ∑
m=0

mWm

(
λ

m

)(
kN

M

)m (
1 − kN

M

)λ−m

.

(12)
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From Eq. (12) and using the expression (2), one obtains

Ek(N,M,P ) = λWN

2

[
P

(
kN

M

)
+ (1 − P )

(
kN

M

)2 ]
.

(13)

Hence, the canonical partition function Q(N,M,T ,P ) can
be written as

Q(N,M,T ,P ) =
(

2

γ

)N (M − (k − 1)N )!
N !(M − kN )!

×e
−βλWN

2 [P ( kN
M

)+(1−P )( kN
M

)2], (14)

where U0 has been set equal to zero without any loss of
generality.

The Helmholtz free energy F (M,N,T ,P ) is given by

βF (N,M,T ,P )

= − ln[Q(N,M,T ,P )]

= − ln[(M − (k − 1)N )!] + ln N ! + ln[(M − kN )!]

−N ln

(
2

γ

)
+ βWλN

2

[
P

(
kN

M

)
+(1−P )

(
kN

M

)2 ]
.

(15)

The Helmholtz free energy per site can be obtained as a
function of coverage θ and temperature T ,

βf (θ,T ,P ) = βF (N,M,T ,P )

M

=
[(

k − 1

k

)
θ − 1

]
ln

[
1 −

(
k − 1

k

)
θ

]
+ θ

k
ln

[
θ

k

]
+ (1 − θ ) ln(1 − θ )

− θ

k
ln

(
2

γ

)
+ βWλθ

2k
[Pθ + (1 − P )θ2].

(16)

Then, all the equilibrium properties of the adlayer can be
deduced from Eq. (16) along with the differential form of F

in the canonical ensemble,

dF = −SdT − πdM + μdN, (17)

where S, π , and μ represent the entropy, the spreading
pressure, and the chemical potential, respectively.

Thus, the coverage dependence of the chemical potential,
μ[=(∂F/∂N)M,T ], arises straightforwardly from Eqs. (16) and
(17),

βμ = ln

{
2θ

[
1 − θ

(
k−1
k

)]k−1

γ k(1 − θ )k

}
+βWλ

2
[2Pθ + 3(1 − P )θ2].

(18)

The configurational energy per site, u, can be calculated as

u = Ek(N,M,P )

M
= λWθ

2k
[Pθ + (1 − P )θ2]. (19)

Finally, the differential heat of adsorption qd is defined as

qd

kBT 2
=

(
∂βμ

∂T

)
θ

= − Wλ

2kBT
[2Pθ + 3(1 − P )θ2]. (20)

In the case of k = 1 [and K(γ,k = 1) = 1], the present
results reproduce those of Milchev and Paunov [35]. Namely,

u = γWθ

2
[Pθ + (1 − P )θ2] (21)

and

βμ = −βγW

2
[3(1 − P )θ2 + 2Pθ ] + ln

(
θ

1 − θ

)
. (22)

On the other hand, if P = 1, Eqs. (16), (18), and (20) reduce
to the corresponding thermodynamic functions obtained by
Ramirez-Pastor et al. [55] for additive interacting chains:

βf (θ,T ,P ) =
[(

k − 1

k

)
θ − 1

]
ln

[
1 −

(
k − 1

k

)
θ

]
+θ

k
ln

(
θ

k

)
+ (1 − θ ) ln(1 − θ )

−θ

k
ln

(
2

γ

)
+ βWλθ2

2k
, (23)

βμ = ln

{
2θ

[
1 − θ

(
k−1
k

)k−1 ]
γ k(1 − θ )k

}
+ βWλθ, (24)

and

qd

kBT 2
= −Wλθ

kBT
. (25)

B. Quasichemical approximation for straight rigid rods

In this section, we describe the quasichemical approach. As
was demonstrated in previous work [43], the QCA leads to an
approximation significantly better than the BWA and, at the
same time, mathematically manageable.

As is well known, the essence of the QCA is that pairs of
nearest-neighbor sites are treated as independent of each other.
Then, in order to apply the configuration-counting procedure
of the QCA, it is convenient to write Eq. (26) in terms of the
number of pairs of nearest-neighbor sites. Thus,

Q(N,M,T ,P ) =
∑
N11

�(N,M,N11)e−β[Ek (N,M,N11,P )+NkU0],

(26)

where q is the partition function for a single adsorbed
molecule, N11 is the number of pairs of NN units belonging
to different k-mers, Ek(N,M,N11,P ) is the lateral interaction
energy corresponding to N k-mers on M sites with N11 pair
of occupied sites, and �(N,M,N11) is the number of ways to
array N k-mers on M sites with N11 pair of occupied sites.

As is usual in the case of single-site occupation, it is
convenient to write the canonical partition function as a
function of N01, where N01 is the number of pairs formed
by an empty site adjacent to an occupied site. For this purpose,
the relations between N11, N01, and N00 (N00 being the number
of pairs of empty NN sites) are calculated:

2N11 + N01 + 2N (k − 1) = γ kN, (27)

2N00 + N01 = γ (M − kN ), (28)
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where “number of 01 pairs” = “number of 10 pairs” = N01/2.
In the case of k = 1, the well-known relations for single-site
occupation are recovered [12].

Now, the canonical partition function can be written in
terms of N01,

Q(N,M,T ,P ) =
∑
N10

�(N,M,N10)e−β[Ek (N,M,N10,P )+NkU0].

(29)

In addition, the configurational energy can be written as

Ek(N,M,N10,P ) = N

2

λ∑
m=0

mWmPm, (30)

where U0 has been set equal to zero without any loss of
generality.

To obtain Pm [probability that a k-mer will be surrounded
by m NN occupied sites and (λ − m) NN empty sites], we use
a generalization of the standard QCA procedure for monomers
[38]. Since there are N k-mers on the surface, a total of λN/2
(the factor 1/2 avoids double counting the pairs) pairs of sites
may either be of the type N11 or of the type N10. Then, the
probability of a single pair to be of the type N11 or N10 (or N01)
is N11/(λN/2) or (N10/2)/(λN/2), respectively . According to
the QCA, these probabilities are considered to be independent,
and, consequently, Pm can be written as

Pm =
(

λ

m

)[
N11
λ
2 N

]m [
N10

λN

]λ−m

. (31)

Introducing Eq. (31) in Eq. (30), using the relation N11 =
λN/2 − N10/2 [see Eq. (27)], and denoting the concentration
of N10 pairs by X = N10/(λN), we have

Ek(N,M,N10,P ) = N

2

λ∑
m=0

m

(
λ

m

)
Wm(1 − X)m(X)λ−m.

(32)

By simple algebra, Eq. (32) may be put down in a more
convenient form as a λth degree polynomial in X,

Ek(N,M,N10,P ) = N

2

λ∑
h=0

αhX
h (33)

with

αh =
h∑

n=0

(λ − h + n)

(
λ

λ − h + n

)(
λ − h + n

λ − h

)
× (−1)λ−nWλ−h+n. (34)

From Eqs. (33) and (34) and using expression (2), we obtain

Ek(N,M,N10,P )

= N

2
(α0 + α1X + α2X

2)

= N

2
[λWλ(−1)λ+{λ(λ − 1)Wλ−1(−1)λ+λ2Wλ(−1)λ−1}X]

+N

2

[{
λ(λ − 1)(λ − 2)

2
Wλ−2(−1)λ

+λ(λ − 1)2

2
Wλ−1(−1)λ−1

}
X2

]
+N

2

[{
λ2(λ − 1)

2
Wλ(−1)λ−2

}
X2

]
. (35)

We shall now calculate the configurational factor. By using
the standard formalism of the QCA, the number of ways of
assigning a total of [γM/2 − N (k − 1)] independent pairs3

to the four categories 11, 10, 01, and 00, with any number 0
through [γM/2 − N (k − 1)] per category consistent with the
total, is

�̃(N,M,N10) =
[

γM

2 − N (k − 1)
]
!

N11!(N10!)2N00!

=
[

γM

2 − N (k − 1)
]
!

(N10!)2
(

γ (M−kN)
2 − N01

2

)
!
(

λN
2 − N01

2

)
!
.

(36)

This cannot be set equal to �(N,M,N01) in Eq. (29),
because treating the pairs as independent entities leads to some
unphysical configurations (see Ref. [12], p. 253). Thus, �̃

overcounts the number of configurations. To take care of this,
we must normalize �̃ as

�(N,M,N10) = C(N,M)�̃(N,M,N10) (37)

and

�(N,M) =
∑
N10

�(N,M,N10) = C(N,M)
∑
N10

�̃(N,M,N10),

(38)

where �(N,M) is the number of ways to arrange Nk-mers
on M sites. In general, �(N,M) depends on the spatial
configuration of the k-mer and the surface geometry. Even
in the simplest case of linear k-mers, there does not exist
an exact form of �(N,M) in two (or more) dimensions.4

However, different approximations have been developed for
�(N,M) [56], which allow us to obtain C(N,M).

By operating as in Ref. [43], we obtain

C(N,M) = �(N,M)

{[
M − 2(k − 1)N

γ
− λN

γ

]
!
(

λN
γ

)
![

M − 2(k − 1)N
γ

]
!

}
.

(39)

Now, ln Q(N,M,T ,P ) can be written as

ln Q(N,M,T ,P )

= ln

{∑
N10

C(N,M)�̃(N,M,N10)e−β[Ek (N,M,N10,P )]

}
.

(40)

3The term N (k − 1)is subtracted since the total number of NN pairs,
γM/2, includes the N (k − 1) bonds belonging to the N adsorbed
k-mers.

4In the case c = 2 (one-dimensional lattice), it is possible to write
�(N,M) = [M − (k − 1)N ]!/[N !(M − kN )!], which is an exact
result.
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In order to solve Eq. (40), we replace
∑

N01
C(N,M)�̃(N,M,N01) exp [−βEk(N,M,N10,P )] by the maximum term in the
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where N∗∗
01 is obtained from the maximization condition[
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with

A = λ(λ − 1)Wλ−1(−1)λ + λ2Wλ(−1)λ−1 (43)

and

B = λ(λ − 1)(λ − 2)

2
Wλ−2(−1)λ + λ(λ − 1)2

2
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2
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Following the scheme in Eqs. (15)–(20), the chemical potential μ, the configurational energy per site u, and the differential
heat of adsorption qd can be calculated in terms of the intensive variables θ and δ = N∗∗

01 /2M . Then,
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and
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where (∂δ/∂T )θ is obtained from Eqs. (42):(
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Two well-known limit cases can be obtained from Eq. (45):
(i) for k = 1, Eq. (45) reproduces previous results for nonaddi-
tive monomers [38]; and (ii) for P = 1, Eq. (45) reduces to the
expression of the adsorption isotherm of additive interacting
k-mers in the QCA framework [43].

IV. RESULTS

In the present section, the main characteristics of the
thermodynamic functions given in Eqs. (18)–(20) and

Eqs. (45)–(48) will be analyzed in comparison with simulation
results for a lattice gas of interacting dimers5 on one- and
two-dimensional lattices.

The computational simulations have been developed for
one-dimensional chains of 104 sites and square L × L lattices
with L = 144 and periodic boundary conditions. With this

5The dimer is the simplest case of a straight rigid rod and contains
all the properties of the multisite-occupancy adsorption.

061142-6



STATISTICAL THERMODYNAMICS OF STRAIGHT RIGID . . . PHYSICAL REVIEW E 84, 061142 (2011)

(a)

(b)

FIG. 2. (a) Adsorption isotherms and (b) differential heat of
adsorption (for homonuclear dimers adsorbed on a one-dimensional
lattice) with attractive NN interactions (W/kBT = −2) and different
values of the nonadditivity parameter, P , as indicated. Symbols
represent Monte Carlo simulations and solid lines correspond to
theoretical results from QCA. Inset: comparison between MC
simulation (symbols) and BWA (dotted line) for the two limit cases
P = 0.2 and 1.4.

lattice size, we verified that finite-size effects are negligible.
Note, however, that the linear dimension L has to be properly
chosen such that the adlayer structure is not perturbed.

For comparison purposes and even though the problem of
k-mers adsorbed on a line could be solved by using the transfer-
matrix technique, it is instructive to begin by discussing the
behavior of the one-dimensional case (Figs. 2 and 3), where
two k-mers interact through their ends. From an experimental
point of view, numerous studies of gas adsorption on nanotube
bundles suggest that the admolecules form one-dimensional
systems or lines when adsorbed within interstitial channels
[57,58] or along the groove sites [59–61]. There have also
been reports of the one-dimensional character of adsorption in
grooves of surface crystal planes of TiO2 [62] and adsorption
of alkane binary mixture in zeolites [63].

Figure 2 shows (a) the adsorption isotherms and (b) the dif-
ferential heat of adsorption for homonuclear dimers adsorbed
on a one-dimensional lattice with attractive NN interactions

(a)

(b)

FIG. 3. As Fig. 2 for repulsive NN interactions (W/kBT = 5).

(W/kBT = −2) and different values of the nonadditivity
parameter, P .

In the case P = 1, the corresponding curve reduces to
the rigorous adsorption isotherm of interacting dimers ad-
sorbed flat on a one-dimensional lattice (additive case). The
weaker the nonadditivity parameter, the steeper the adsorption
isotherm for attractive dimers becomes. This behavior can be
understood considering Wm(P ) as shown in Eq. (2). For P < 1
(and W < 0), W2 < W1, and consequently (i) each adparticle
prefers to have its two neighboring sites occupied, and (ii) the
slope of the adsorption isotherm increases. On the other hand,
W2 > W1 as P > 1 (and W < 0), and a sequential adsorption,
increasing the number of nearest neighbors, is observed. The
differential heat of adsorption as a function of coverage [part
(b) of Fig. 2] follows the behavior of the adsorption isotherms.

With respect to the theoretical approximations, MC simu-
lations in the grand-canonical ensemble (symbols) fully agree
with the predictions from the QCA (solid lines). In the inset,
the limit cases in Fig. 2 (P = 0.2 and 1.4) are compared with
results from the BWA. As can be observed, the disagreement
between MC and the BWA turns out to be significantly large.
For P = 0.2, a characteristic van der Waals loop is observed in
the theoretical adsorption isotherm, and the BWA incorrectly
predicts a phase transition in one dimension.
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The behavior of repulsive interacting dimers (Fig. 3)
is completely different. In order to understand the basic
phenomenology, we consider in the first place P = 1, where
the model reduces to the additive interaction scheme. In this
case, dimers avoiding configurations with nearest-neighbor
repulsive heads order in a structure of alternating dimers
separated by an empty site at θ = 2/3. The width of the step
is directly proportional to the energy per dimer necessary to
alter such an ordered structure.

Two different behaviors are observed according to the value
of P : (a) P < 1.0 and (b) P > 1.0. For P < 1 (and W > 0),
W2 > W1 and the sequential filling of the lattice smooths the
plateau at θ = 2/3.

For P > 1 (and W > 0), W2 < W1. Then, each incoming
adparticle adsorbs on the surface avoiding the formation
of isolated pairs of dimers. This reinforces the plateau at
θ = 2/3 in the adsorption isotherm (step in the differential
heat of adsorption) and produces a jump in the coverage
when the fraction of NN dimers changes abruptly from 0
(isolated dimers and θ = 2/3) to 1 (each dimer possesses
two neighbor dimers and θ = 1). Consequently, the isotherms
show the characteristic appearance of attractive interactions.
This striking behavior is indicative that, even in the presence
of only repulsive interactions, marked jumps in the adsorption
isotherms can be observed for nonadditive interactions.

As in Fig. 2, results from the QCA fully agree with the
MC data. With respect to the BWA, the curves in the insets of
Figs. 3(a) and 3(b) show that appreciable differences can be
seen between simulation and mean-field theoretical results.

Figures 2 and 3 allow us to validate the theory and the MC
scheme. Hereafter, we present the analysis of the adsorption
thermodynamics of nonadditive interacting dimers on two
dimensions.

For the analysis of two-dimensional systems, the adsorption
on square lattices is studied. For such a geometry, each
dimer has six nearest-neighbor sites, and consequently m

Eq. (2) varies between 1 and 6. We analyze the system
for two cases: attractive and repulsive interactions. For the
first case, Fig. 4 shows the adsorption isotherms at several
values of P and W/kBT = −1. Symbols represent MC data
and solid lines correspond to theoretical results from the
QCA. As discussed in Fig. 2, the slope of the MC curves
increases as the nonadditivity parameter P decreases. In the
case of the figure, for values of P below P ≈ 0.6, the system
undergoes a first-order phase transition (with a clustering of the
adparticles), which is observed in the clear discontinuity in the
adsorption isotherms. In this situation, which has been reported
experimentally in numerous systems, the only phase that one
expects is a lattice-gas phase at low coverage, separated by a
two-phase coexistence region from a “lattice-fluid” phase at
higher coverage.

One important conclusion can be drawn from the study
in Fig. 4: the critical temperature characterizing the gas-
fluid phase transition occurring in the system depends on
the nonadditivity parameter P . In other words, an effect of
nonadditivity is to modify the critical point of the system.

Both theoretical approximations present the characteristic
van der Waals loop at a critical regime, with the QCA being the
most accurate for all cases. This situation is clearly reflected in
the inset of Fig. 4, where a comparison between MC (symbols),

FIG. 4. Adsorption isotherms for homonuclear dimers adsorbed
on a square lattice with attractive NN interactions (W/kBT = −1)
and different values of the nonadditivity parameter, P , as indicated.
Symbols represent Monte Carlo simulations and lines correspond
to theoretical results from QCA. Inset: Comparison between MC
simulation (symbols), QCA (solid lines), and BWA (dashed lines)
curves for the limit cases corresponding to P = 0.2 and 1.6.

QCA (solid lines), and BWA (dashed lines) results is shown
for the limit cases corresponding to P = 0.2 and 1.6.

In Fig. 5, we present the results of the adsorption isotherms
for repulsive interactions. The notation is as in Fig. 4. At
the additive situation (P = 1), the MC curve shows the
formation of two well-defined and pronounced steps. The first
step appearing at θ = 1/2 corresponds to a (4 × 2) ordered
structure, characterized by alternating files of dimers separated
by two adjacent empty sites. The (4 × 2) phase resembles the
well-known c(2 × 2) structure for adsorbed monomers with
repulsive nearest-neighbor interactions [43]. The second step
at θ = 2/3 corresponds to the so-called zigzag structure. In

FIG. 5. As Fig. 4 for repulsive NN interactions (W/kBT = 5).
Upper-left inset: Adsorbate-adsorbate interaction Wm as a function
of the nonadditivity parameter P . Lower-right inset: Comparison
between MC simulation (symbols), QCA (solid lines), and BWA
(dashed lines) curves for the limit cases corresponding to P = 0.2
and 1.6.
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this case, the dimers are adsorbed forming domains of zigzag
one-dimer-width strips at ±45 from the lattice symmetry axes,
separated from each other by single-site empty channels. The
periodicity of the zigzag varies from 1 to L [43].

The (4 × 2) and zigzag structures are also present for
nonadditive interactions. For P < 1 (P > 1), the structure at
coverage 1/2 (2/3) is weakened (reinforced). In other words,
the first (second) plateau at θ = 1/2 (θ = 2/3) is less (more)
wide upon decreasing (increasing) P . In the limit conditions,
the plateau at coverage 1/2 (2/3) disappears for P = 0.2
(P = 1.6).

An unusual feature is observed for values of the non-
additivity parameter larger than 1. Under these conditions,
the adsorption isotherms exhibit discontinuities, i.e., jumps
of the surface coverage. These discontinuities correspond
to first-order phase transitions between surface phases at
low and high densities. This phenomenon, which has also
been reported in the adsorption of nonadditive monomers
[39–41], can be explained by considering Wm(P ) as it is
shown in the upper-left inset of the figure. For P > 1 (and
W > 0), W6 < Wi (i = 1,2,3,4,5) and the system prefers to
condensate in such a way that each adsorbed dimer possesses
six nearest-neighbor occupied sites in contrast with a se-
quential adsorption increasing the number of nearest-neighbor
occupied sites upon raising the chemical potential, as occurs
for P < 1.

There exists a wide range of P ’s (0.2 � P � 1), where the
QCA (solid lines) provides an excellent fit to the simulation
data. For P > 1.0, the QCA presents a typical van der Waals
loop, in correspondence with the condensation observed at
high densities.

To complete the description of Fig. 4, the lower-right inset
shows a comparison between MC simulation (symbols), QCA
(solid lines), and BWA (dashed lines) curves for the limit cases
corresponding to P = 0.2 and 1.6. The differences between
the QCA and the BWA are very appreciable, and the BWA does
not predict the existence of structures in the adsorbate, nor the
phenomenon of condensation. These findings (i) show that
the QCA represents a qualitative advance in the description
of the adsorption of nonadditive k-mers with respect to the
existing theories based on the mean-field approximation; and
(ii) suggest the potentiality of the model proposed in
supporting the interpretation of experimental data in
the presence of multisite occupancy and nonadditive
interactions.

The differences between numerical and theoretical results
can be rationalized with the help of the absolute error, εa(θ ),
which is defined as

εa(θ ) = |μMC − μtheory|θ , (49)

where μMC (μtheory) represents the chemical potential obtained
by using the MC simulation (analytical approach). Each pair
of values (μMC, μtheory) is obtained at fixed θ .

For attractive interactions and different values of P , it can
be concluded that, in all cases, the QCA leads to apprecia-
bly better results than the BWA. In the case of repulsive
interactions, the differences between the QCA and the BWA
are largely enhanced. These findings can be visualized more
easily by using the integral error εi , which takes into account

(b)

(a)

FIG. 6. Integral error in kBT units, βεi , vs the nonadditivity
parameter for attractive [part (a)] and repulsive [part (b)] NN
interactions. Full and open symbols correspond to comparisons with
QCA and BWA, respectively.

the differences between theoretical and simulation data in all
ranges of coverage. It can be defined by

εi(θ ) =
∫ 1

0
εa(θ )dθ. (50)

Thus, the integral error is shown in Fig. 6 for all studied
cases: attractive interactions, part (a); repulsive interactions,
part (b). In all cases, the QCA gives a much better description
of the MC adsorption isotherms than the BWA. In the particular
case of repulsive interactions, the disagreement between MC
and the BWA turns out to be significantly large, while the QCA
appears to be the simplest approximation capable of taking
into account the main features of the existence of nonadditive
lateral interactions.

Beyond the quantitative discrepancies between the QCA
and the BWA, there exist qualitative differences between both
approximations. Thus, while the BWA does not predict the
existence of ordered phases in the adsorbate, QCA isotherms
present a pronounced plateau as the temperature lowers.
Therefore, the QCA not only represents a qualitative advance
in the description of the adsorption nonadditive k-mers with
respect to the BWA, but it also gives a framework and
compact equations to consistently interpret thermodynamic
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adsorption experiments in the presence of multisite occupancy
and nonadditive interactions.

V. CONCLUSIONS

A generalization of the Bragg-Williams and quasichemical
approximations for nonadditive interacting straight rigid rods
on homogeneous surfaces has been presented. The main
thermodynamic functions of adsorption (adsorption isotherm,
configurational energy, isosteric heat of adsorption, and
configurational entropy of the adlayer) have been calculated
and compared with MC simulation data for a lattice gas of
nonadditive interacting dimers on one-dimensional and square
lattices.

The new formalism leads to exact results in one dimension,
provides a close approximation for two-dimensional systems
taking into account multisite occupancy and nonadditive
lateral interactions, and shows the asymmetry observed in
many experimental phase diagrams. From the comparison
with MC simulations, the differences between QCA and BWA
are very appreciable, QCA being the most accurate for all
cases.

Beyond the quantitative discrepancies between QCA and
BWA, there exist qualitative differences between both ap-
proximations. Thus, BWA does not predict the existence
of structures in the adsorbate or the phenomenon of con-
densation (sharp discontinuities in the adsorption isotherms)

in the presence of repulsive interactions. This unusual
finding, which is a clear signal of the existence of non-
additive lateral interactions, reinforces the validity of the
proposed QCA to describe nonadditive k-mers adsorption
thermodynamics.

In summary, the proposed model is simple and seems to
be a promising way toward a more accurate description of
the adsorption thermodynamics of nonadditive k-mers. In this
sense, future efforts will be directed to (i) study the critical
behavior of the system for attractive and repulsive interactions;
(ii) extend the calculations to kinetic properties as a diffusion
coefficient, thermal desorption, etc.; and (iii) consider different
forms for g(N,M) in Eq. (38), analyzing its influence on the
thermodynamic functions.

ACKNOWLEDGMENTS

This work was supported in part by CONICET (Argentina)
under Project No. PIP 112-200801-01332, Universidad Na-
cional de San Luis (Argentina) under Project No. 322000,
and the National Agency of Scientific and Technological
Promotion (Argentina) under Project No. PICT-2010-1466.
The numerical work was done using the parallel cluster BACO
of Universidad Nacional de San Luis, Argentina. This facility
consists of 60 PC’s each with a 3.0 GHz Pentium-4 processor
and 120 PC’s each with a 2.4 GHz Intel Core 2 Quad processor.

[1] B. Crittenden and W. J. Thomas, Adsorption Technology and
Design (Butterworth-Heinemann, Oxford, 1998).

[2] J. U. Keller and R. Staudt, Gas Adsorption Equilibria:
Experimental Methods and Adsorptive Isotherms (Springer
Science, New York, 2005).

[3] W. A. Steele, The Interaction of Gases with Solid Surfaces
(Pergamon, New York, 1974).

[4] J. G. Dash, Films on Solid Surfaces (Academic, New York,
1975).

[5] J. G. Dash and J. Ruvalds, Phase Transitions in Adsorbed Films
(Plenum, New York, 1980).

[6] S. K. Shina, Ordering in Two Dimensions (Elsevier, New York,
1980).

[7] K. Binder and D. P. Landau, Surf. Sci. 61, 576
(1976).

[8] A. Patrykiejew, S. Sokolowski, and K. Binder, Surf. Sci. Rep.
37, 207 (2000).

[9] V. P. Zhdanov, Elementary Physicochemical Processes on Solid
Surfaces (Plenum, New York, 1991).
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[24] F. Romá, J. L. Riccardo, and A. J. Ramirez-Pastor, Langmuir

21, 2474 (2005).
[25] K. Binder and D. P. Landau, Surf. Sci. 108, 503 (1981).
[26] W. Y. Ching, D. L. Huber, M. G. Lagally, and G.-C. Wang, Surf.

Sci. 77, 550 (1978); K. Kaski, W. Kinzel, and J. D. Gunton,
Phys. Rev. B 27, 6777 (1983); P. A. Rikvold, K. Kaski, J. D.
Gunton, and M. C. Yalabik, ibid. 29, 6285 (1984).

[27] R. Imbihl, R. J. Behm, K. Chritmann, G. Ertl, and T. Matsushima,
Surf. Sci. 117, 257 (1982).

061142-10

http://dx.doi.org/10.1016/0039-6028(76)90068-6
http://dx.doi.org/10.1016/0039-6028(76)90068-6
http://dx.doi.org/10.1016/S0167-5729(99)00011-4
http://dx.doi.org/10.1016/S0167-5729(99)00011-4
http://dx.doi.org/10.1142/S0217979206035734
http://dx.doi.org/10.1142/S0217979206035734
http://dx.doi.org/10.1016/0009-2614(94)00123-5
http://dx.doi.org/10.1016/0009-2614(94)00123-5
http://dx.doi.org/10.1021/jp953393a
http://dx.doi.org/10.1103/PhysRevLett.79.2847
http://dx.doi.org/10.1103/PhysRevLett.79.2847
http://dx.doi.org/10.1021/jp981256i
http://dx.doi.org/10.1021/jp981256i
http://dx.doi.org/10.1021/la960755c
http://dx.doi.org/10.1103/PhysRevLett.78.1504
http://dx.doi.org/10.1103/PhysRevLett.78.1504
http://dx.doi.org/10.1016/0039-6028(95)00968-X
http://dx.doi.org/10.1051/jp1:1994235
http://dx.doi.org/10.1051/jp1:1994235
http://dx.doi.org/10.1016/0039-6028(92)90226-V
http://dx.doi.org/10.1016/0039-6028(92)90226-V
http://dx.doi.org/10.1016/0144-2449(94)00008-G
http://dx.doi.org/10.1021/ie980696t
http://dx.doi.org/10.1021/ie980696t
http://dx.doi.org/10.1021/la047447w
http://dx.doi.org/10.1021/la047447w
http://dx.doi.org/10.1016/0039-6028(81)90562-8
http://dx.doi.org/10.1016/0039-6028(78)90140-1
http://dx.doi.org/10.1016/0039-6028(78)90140-1
http://dx.doi.org/10.1103/PhysRevB.27.6777
http://dx.doi.org/10.1103/PhysRevB.29.6285
http://dx.doi.org/10.1016/0039-6028(82)90506-4


STATISTICAL THERMODYNAMICS OF STRAIGHT RIGID . . . PHYSICAL REVIEW E 84, 061142 (2011)

[28] B. Grosdidier, S. M. Osman, and A. Ben Abdellah, Phys. Rev.
B 78, 024205 (2008).
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