A RTl C L E W) Check for updates

The Archaeal Proteome Project advances
knowledge about archaeal cell biology
through comprehensive proteomics
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While many aspects of archaeal cell biology remain relatively unexplored, systems biology
approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid
advances. Unfortunately, the enormous amount of MS data generated often remains
incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific
biological expertise for data interpretation. Here we present the initiation of the Archaeal
Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal
proteomes. Starting with the model archaeon Haloferax volcanii, we reanalyze MS datasets
from various strains and culture conditions. Optimized peptide spectrum matching, with strict
control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a
median protein sequence coverage of 51%. These analyses, together with expert knowledge
in diverse aspects of cell biology, provide meaningful insights into processes such as N-
terminal protein maturation, N-glycosylation, and metabolism. Altogether, ArcPP serves as an
invaluable blueprint for comprehensive prokaryotic proteomics.
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ARTICLE

rchaea are ubiquitous, play crucial roles in ecological

processes, have impactful applications in biotechnology,

and are more closely related to eukaryotes than are
bacterial2. Yet, our understanding of archaeal cell biology is
lacking behind eukaryotes and bacteria. Recently, the importance
of proteomics as a tool for addressing specific biological questions
in archaea has become readily apparent3-13, However, such
limited analyses typically leave valuable information buried in the
raw data. Fortunately, deposition of proteomic raw data in public
repositories, such as PRIDE!4 or jPOST!> is common practice. In
the case of Homo sapiens, the Human Proteome Project (HPP)
has demonstrated how the combination and reanalysis of pro-
teomic datasets can lead to a more comprehensive map of the
proteome, an improved genome annotation as well as substantial
improvements in the understanding of biological and molecular
functions!6-21; however, comparable community efforts for pro-
karyotes have been lacking thus far.

While large-scale datasets for various prokaryotes exist, they
are limited in their proteome coverage, analysis of various bio-
logical conditions, large-scale integration of multiple datasets
and/or straightforward extensibility. The integration of multiple
proteomics datasets for an archaecon was pioneered by the
Halobacterium salinarum PeptideAtlas?2. Despite the identifica-
tion of 63% of the H. salinarum proteome, biological conclusions
were scarce since only few culture conditions were analyzed and
comparability between datasets was not given. Similarly, a Pacific
Northwest National Laboratory library includes an impressive
amount of bacterial and some archaeal proteomics raw files, but
their analysis is mainly limited to peptide and protein identifi-
cations?3. In regard to bacteria, large spectral libraries were
generated, e.g. for Staphylococcus aureus*»%> and Mycobacterium
tuberculosis2®, with the latter being based on synthetic peptides,
and facilitated the quantitative analysis of biomedically relevant
samples. However, the application of spectral libraries is limited
to similar instrumental setups and does not allow for discovery-
driven approaches, which are crucial, e.g., for the analysis of post-
translational modifications (PTMs). A concentrated effort of
Schmidt et al. led to the development of Escherichia coli pro-
teomics datasets that provided deep coverage of the proteome
from different culture conditions2’. But in all these examples, the
combination of different datasets is largely missing, leading to a
lack of comparisons between different strains and culture con-
ditions. In addition, the extensibility of these collections is often
not straightforward, as open-source analysis pipelines are not
provided. Furthermore, the interdisciplinary expertise that is
needed for the detailed analysis of proteomics datasets in regard
to a multitude of biological questions, is enhanced through the
involvement of research communities.

With the initiation of the ArcPP as a community project, we
aim to shift prokaryotic proteomics toward a more comprehen-
sive (re-)analysis of MS datasets. The ArcPP includes an increase
in scale (by roughly an order of magnitude) of the combined
datasets, extensive bioinformatic analysis of the detected proteins,
the achieved depth of proteome sequence coverage as well as the
comparison of datasets in regard to technical and biological
aspects. Taken together, insights into archaeal cell biology are
gained through this combined reanalysis of proteomic datasets,
supported by interdisciplinary expertise.

Results and discussion

Optimized large-scale reanalysis of diverse datasets. H. volcanii
is a halophilic archaeon and, facilitated by a wide range of genetic
and molecular biology tools?8, it is the model of choice to study a
variety of cellular processes, leading to the most extensive pro-
teomic studies completed amongst archaea thus far

(Supplementary Table 1). Therefore, we chose to perform our
initial reanalysis on 12 diverse H. volcanii MS datasets comprising
more than 23 million spectra (Fig. 1). These reanalyses facilitated
not only a deep coverage of the proteome but also revealed dif-
ferential protein identification dependent on culture conditions, as
we show here. In addition, differences in protein digestion, peptide
fractionation and MS measurements enabled comparisons
regarding optimal sample processing. Notably, various datasets
used different quantitative approaches, allowing for the future
integration of protein dynamics across multiple experiments.

For the unified, large-scale analysis of all datasets, we used the
Python framework Ursgal?®. Key aspects of this reanalysis
include: (i) an initial optimization of search parameters like
precursor and fragment ion mass tolerances, (ii) the use of the
most recent protein database derived from an updated genome
annotation, and (iii) the use of three protein database search
engines. In addition, the use of multiple search engines allowed to
apply a combined posterior error probability (PEP) approach??-30,
which rescores peptide spectrum matches (PSMs) based on their
overlap between the different search engines, thereby taking
advantage of an increased confidence in shared PSMs. Each of
these steps aimed to increase the number of correct PSMs while at
the same time reducing the number of false positives. A
comparison of the results from this reanalysis to the original
search results showed for six datasets an increased number of
PSMs and/or identified peptide sequences by more than 10%,
while for only three datasets a slight decrease in identifications
was noted (Fig. 2a). Decreases could be attributed to peculiarities
in the experimental setup or analysis details of these datasets
(Supplementary Note 1). The optimization of search parameters
and the combined PEP approach demonstrated their usefulness
in all cases (exemplified in Fig. 2a, bottom). Importantly, these
results were achieved while tightly controlling the PEP (<1%),
which is a more conservative approach to error rate control than
is the use of false discovery rates (FDRs)®l. Therefore, this
approach provided a unified and optimized large-scale analysis of
all available H. volcanii datasets.

Combining datasets for increased proteome coverage. When
aggregating results from multiple large datasets, FDRs must be
controlled on both the peptide and protein level to avoid the
accumulation of false positives as the overall dataset size
increases?1>32. We monitored FDR distributions for peptides as
well as proteins and used recently established approaches to
ensure identifications with high confidence. For peptides, we
observed a bias toward higher FDRs for small (<10 amino acids)
and large peptides (Fig. 2b, for peptide length distribution see
Supplementary Fig. 1a). Therefore, we adopted the approach used
by the MassIVE Knowledge Base?! to calculate FDRs for groups
of peptides with the same lengths. On the protein level, a picked
protein FDR approach was applied, which calculates FDRs based
on a comparison of targets with their corresponding decoys. This
approach had been shown to be applicable to large datasets and
provides a more accurate FDR estimation2. When applied to the
ArcPP, this strategy resulted in a better separation between tar-
gets and decoys, and even allowed to increase analysis stringency
by reducing the FDR threshold to 0.5% instead of the common
1% without decreasing the number of identified proteins sub-
stantially (Fig. 2c). Finally, the identification of a peptide
sequence or protein was considered highly confident only if it was
based on a minimum of two spectra, further improving separa-
tion between targets and decoys especially on the peptide level
(Supplementary Fig. 1b, c).

Using these strict criteria, a total of 40,877 peptide sequences
corresponding to 2930 proteins were identified (Fig. 3a),
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Fig. 1 Summary of ArcPP datasets comprising a total of more than 23 million spectra. A diverse array of MS datasets for H. volcanii has been compiled
for the initial reanalysis by the ArcPP. For each dataset, strains (separated by comma), cellular fractions (Mem, membrane; Cyt, cytosol; SN, culture
supernatant, TCE, total cell extract), growth conditions (stat, stationary; exp, exponential growth phase), enzyme(s) used for protein digestion, and
fractionation methods on peptide (SCX, strong cation exchange chromatography; high pH, high pH reversed-phase chromatography) or protein level (gel,
SDS-PAGE; CsCl, CsCl gradient) with the number of fractions indicated in parentheses, quantification methods (iTRAQ, isobaric tags for relative and
absolute quantitation; SILAC, stable isotope labeling with amino acids in cell culture; SWATH, sequential window acquisition of all theoretical fragment ion
spectra), instruments employed, corresponding PRIDE IDs with references and the sum of all spectra are noted. Experiments were performed by five
different laboratories. For more details see Supplementary Tables 2-4 and Supplementary Data 1-2. Source data are provided as a Source data file.

representing 72% of the predicted 4074 proteins encoded by the
H. volcanii genome (45,533 peptide sequences and 3010 proteins
if identifications based on a single PSM and FDR<1% were
included, Supplementary Fig. 1d). Furthermore, the high number
of identified peptides also resulted in a remarkably high median
protein sequence coverage of 51% (Fig. 3b). This coverage is the
most comprehensive draft of an archaeal proteome achieved thus
far, and this work illustrates the value of combining multiple
datasets, as the identifications and sequence coverage resulting
from this reanalysis greatly exceed the numbers for each
individual dataset.

Comparison of MS sample processing approaches. By con-
sidering the number of confident identifications in light of the
different experimental setups, one can draw conclusions about
sample processing and MS methods, which in turn can improve
the design of future experiments. While technical aspects are
discussed in more detail in Supplementary Note 2, we want to
highlight some key findings here. As expected, identification rates
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were mainly dependent on the resolution and sensitivity of the
instrument (Supplementary Fig. 2). Interestingly the use of pep-
tide fractionation (PXD006877 and PXD011056) resulted in the
highest number of protein identifications, while the most peptide
identifications were obtained by using multiple, complementary
proteases (trypsin and GluC), even without fractionation
(PXD011012). Furthermore, by analyzing the characteristics of
identified and missing proteins, we revealed a strong decrease in
identification rates for proteins <13 kDa (Supplementary Fig. 3a).
This highlights that although small proteins recently gained
attention33-35, their identification still requires major improve-
ments. Similarly, the identification of integral membrane proteins
is generally challenging®. Here the identifications for hydro-
phobic proteins (grand average of hydrophobicity (GRAVY) >0,
Supplementary Fig. 3c) was less than for non-hydrophobic pro-
teins with solubilization by SDS showing a remarkable
improvement over, e.g, TRIzol extraction (Supplementary
Fig. 4a) for hydrophobic protein identification. In total, 55% of
predicted integral membrane proteins were identified (Fig. 3c).


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a «
180 3
o 160 |
T 140
§ 120
= 100 E
£ 80 — 2
@ 60 3
= 40
o 201 x 5 ~
o)) o =
s g T T
c -0 TR 3 g3
40 g ' :
— [{e} [aV] ~ [ee] © © [} [Te}
© < - N~ - — 0 o -
o o o [oe} [sV} — o N o
~ (] - © - [} - o -
o — — o — o — S —
o o o o o o o o o
a a a a a [a] a a a
x x x x x x x x x
o o o o o o o o o
PRIDE ID
o 160
(<)
< 140
g 120
S 100
B 80
£ 60
S 40
T 20
0
PXD006877 PXD011218

PXD011050

PSMs Peptide FDR based on
M Peptides PSM scores
5 @ Peptides scores
4
X3
£ h
5
22
1 o o e o e —
s 3 = 0 -
5 8§ 3 0 10 20 30 40 50
« .
5 b & Peptide length
e 2 =2
o o < c
51 Protein FDR based on
PSM scores
41 @ Peptides scores
X 3 |
. £
Original v o
Three engines | 2 Q 2
[l Optimized o
Original Py 1
Three engines % ——————————————————————————————————————————
[l Optimized ] 0 - - ‘ -
0 500 1000 1500 2000 2500 3000

Accepted proteins

Fig. 2 Optimized reanalysis of datasets and strict control of FDRs. a A unified dataset reanalysis was performed with Ursgal?®, including search
parameter optimization (parameter sweep iterating through all combinations of a set of four different precursor mass tolerances, four fragment mass
tolerances and ten instrument offsets) as well as a combination of three protein database search engines. Results were compared with the original
identifications reported for each dataset and differences are given for the number of PSMs (orange) and identified peptide sequences (blue) on a
percentage basis (height of the bar, 0% corresponds to the original results) and as absolute numbers (indicated above/below each bar) for each dataset.
For two exemplary datasets, the effects of using three protein database search engines and an optimized reanalysis, including optimization of search
parameters, as well as the combined PEP approach29:39, are shown in comparison to the original results (normalized to 100%) in the bottom panel. b For
each peptide length, the FDR for all peptide sequences within this group was determined after (i) including all PSMs with a PEP <1% (orange) and (ii)
adjusting the FDR on peptide level (blue). ¢ Protein FDRs are shown for the number of accepted proteins (ranked by protein g-value) after (i) including all
PSMs with a PEP < 1% (orange) and (ii) adjusting the FDR on protein level using the picked protein FDR approach3! (blue). It should be noted that filtering
for identifications based on at least two PSMs removed all decoy hits on the peptide level (resulting in a theoretical FDR of 0%), while it did not
substantially affect the target-decoy distribution on protein level (Fig. S1). Source data are provided as a Source data file.

While this is still lagging behind the identification rates for
cytosolic proteins (>75%), it is nevertheless a notable improve-
ment over previous studies for this challenging
subproteome”37-38,

N-terminal protein processing and cell surface homeostasis.
Furthermore, the high protein sequence coverage achieved within
the ArcPP allowed for the large-scale analysis of N-terminal
protein maturation in H. volcanii. The identification of 1085 N-
terminal peptides for 27% of all predicted proteins represents a
more than 6-fold increase compared with previous studies?40
and is even higher than the identification rate in a recent, dedi-
cated approach for Sulfolobus islandicus'0. Our data confirm that
cleavage of methionine occurs for the majority of proteins and
that N-terminal acetylation of cleaved and uncleaved termini is
common in H. volcanii (Fig. 3d)340, With the identification of a
broader range of substrates, ArcPP results suggest that N-
terminal protein maturation takes place similarly for cytosolic
and integral membrane proteins. Interestingly, while acetylation
of uncleaved methionine was reported for H. volcanii‘® as well
as the evolutionary distant S. islandicus'® and S. solfataricus*!,
it was not detected in the closely related H. salinarum and

4

Natronomonas pharaonis*?. A reanalysis of Natrialba magadii
proteomics data (PXD00911643) revealed acetylation of uncleaved
methionine as well. Taking this into account, the GCN5-related
N-acetyltransferases (GNAT) domain containing HVO_2604 is a
candidate for catalyzing the N-acetylation of methionine in H.
volcanii as it lacks an ortholog in H. salinarum and N. pharaonis,
but has an ortholog in N. magadii (Nmag_1976). Furthermore,
HVO_2604 is encoded adjacent to the signal peptidase gene
(seclla, HVO_2603) and methionine aminopeptidase
(HVO_2600) homologs in H. volcanii (but not in N. magadii).
Alternative GNAT candidates include H. volcanii HVO_1954 and
its N. magadii ortholog (Nmag_1596) as they share 3D-structural
homology and conserved active site residues with the S. solfa-
taricus SsArdl shown to catalyze the N-acetylation of diverse
protein substrates including those with methionine N-
termini!%41:44, We note that the deletion of SsArdI in S. islan-
dicus was shown to lead to growth defects!? while alterations in
N-acetylation of the 20S proteasomal alphal protein in H. vol-
canii affected growth and stress tolerance®’, both demonstrating
the importance of N-terminal acetylation. The identification of a
broad range of substrates within the ArcPP as well as GNAT
candidates now allow elucidating the cellular functions of this
modification in more detail.
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Fig. 3 Highly confident identification of 2930 proteins with a median sequence coverage of 51%. a The number of identified peptide sequences (blue)
and proteins (green), with a peptide FDR <1% and protein FDR < 0.5%, respectively, as well as at least two PSMs, is given for each dataset as well as the
combination of all datasets. b Box-plots for the sequence coverage of all confidently identified proteins (green, number of proteins for each dataset is given
in Fig. 3a) as well as the total proteome sequence coverage (black crosses) is given for each dataset and the combination of all datasets (center line,

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers). ¢ All H. volcanii proteins were grouped into localization
categories based on the integration of multiple prediction engines. The number of predicted (light green) and identified (dark green) proteins as well as the
identification rate (cross) is given (for more detailed data see Supplementary Fig. 4). d For these categories, based on 1085 identified N-terminal peptides,
the N-terminal protein maturation has been analyzed. The number of proteins with terminal methionine (dark purple) or cleaved N-terminus (up to one
amino acid, dark orange) as well as their acetylated counterparts (light purple and light orange, respectively) are given. In addition, the ratio of cleaved and
acetylated N-termini (black and gray cross, respectively) to the total number of identified N-termini in each category is indicated. Note that one protein can
be identified with different N-terminal peptidoforms and would be counted for each corresponding category. Source data are provided as a Source data file.

In addition to cytosolic and integral membrane proteins, 70% used trypsin for proteolytic digestion. Results were compared
of the proteins predicted to be transported across the membrane  with signal peptide cleavage sites (CS) predicted by SignalP
and N-terminally processed by different secretion pathways 5.048. For 11 and two substrates of the Sec and Tat pathway,
were identified (Fig. 3¢ and Supplementary Fig. 4b). Notably, respectively, the predicted signal peptidase I (SPI) CS could be
1045 C-termini were identified in total covering a large confirmed (Supplementary Fig. 4e). In addition, for three and
percentage of these secreted proteins (Supplementary Fig. 4c), one protein(s) of the same secretory pathways, respectively, the
but almost none of the N-termini of the secreted proteins were CS could be refined. This approximately doubles the number of
detected (Supplementary Fig. 4d). These data suggest the confirmed processing sites identified for archaea so far
presence of signal peptides, supporting the results of the (Supplementary Fig. 4f). Together with proteins, for which fully
corresponding prediction engines. However, these programs enzymatic peptides show evidence of a false positive signal
thus far are trained on a very limited number of experimentally peptide prediction (Supplementary Note 3), these results will
verified archaeal processing sites*>~48. Therefore, taking advan-  allow for the optimization of archaeal prediction programs and
tage of the extensive data available within the ArcPP, semi- hence improve the identification of protein processing and
enzymatic database searches were performed for datasets that subcellular localization. This finding is invaluable for an
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improved understanding of archaeal cell surface biogenesis,
a crucial aspect for the interaction of archaea with their
environment.

Another important aspect of cell surface homeostasis are
membrane-associated proteases like LonB and rhomboid protease
Rholl. The former is involved in the regulation of cell shape and
carotenoid biosynthesis in H. volcanii while a knockout of the
latter affected the N-glycosylation of the S-layer glycoprotein with
a sulfoquinovose-containing oligosaccharide®>”134% The data-
sets PXD007061/PXD013046 and PXDO011218 originally char-
acterized the proteomes of a conditional LonB mutant and
a Rholl knockout mutant, respectively. The reanalysis of these
datasets within the ArcPP has now identified four additional
integral membrane proteins as probable Rholl targets as well as
three previously undescribed potential LonB substrates (Supple-
mentary Note 4), which can help to deepen our understanding of
the biological roles of Rholl and LonB, respectively.

Proteins identified across a variety of growth conditions. In
order to gain further insights into cell biological aspects in
archaea, we focused on the comparison of datasets with regard to
commonly or uniquely identified proteins. Seven of the datasets
used in our reanalysis (PXD007061, PXD013046, PXD011012,
PXD006877, PXD011218, PXD009116, and PXD011056), com-
prising 2912 protein identifications, were suitable for such a
comparison since they analyzed either total cell extracts or a
combination of membrane and cytosolic fractions and can
therefore be regarded as covering the complete proteome.
Approximately half of the proteins are included in at least six of
the seven datasets (Fig. 4a), indicating that these proteins have
crucial functions under vastly distinct conditions. In line with this,
out of 60 genes that are considered essential, because corre-
sponding deletion mutants could not be generated in H. volcanii
so far (Thorsten Allers and the Haloferax community, personal
communication), 47 were identified in at least six datasets. This
includes translation initiation factors (Ttifla, Tif2c)%0, the
membrane-associated LonB protease’! and secretory pathway
proteins such as SRP54°2 and TatCt>3. Similarly, more than 80%
of homologs to essential genes identified by transposon tagging
(TnSeq data) in S. islandicus>* (excluding small proteins <15 kDa)
were detected in most whole-cell datasets. In contrast to genetic
analyses, the proteomic approach presented here can also indicate
crucial functions of proteins for which corresponding individual
genes are dispensable. For example, thermosome (Ths1/2/3) and
proteasome (PsmA1/2) components could be deleted individually
but not altogether, while PsmB, another proteasome component,
was demonstrated essential based on a conditional lethal
mutation;*>°0 these proteins were identified in at least six datasets.
Our findings are also consistent with an enrichment of arCOG
classes®” representing core physiological functions like translation
or nucleotide and energy metabolism (Fig. 4b and Supplementary
Fig. 5), which had been shown to contain high numbers of
essential genes .

Also present in all datasets were the highly abundant S-layer
glycoprotein, the sole subunit of the H. volcanii cell envelope, and
nearly all known components of the two known H. volcanii N-
glycosylation pathways (AgIB- and Agll5-dependent pathways,
Fig. 4b)°8, illustrating the importance of N-glycosylation in H.
volcanii. Notably, however, the Agl15-dependent N-glycosylation
pathway was proposed to be active only under low salt
conditions®®®0. Our metaproteomic finding raises the question
as to whether Agll15-dependent N-glycosylation occurs under
additional culture conditions or is regulated in activity post-
translationally. Interestingly, both the membrane proteases Rholl
and LonB, which were identified in all whole proteome datasets,

are thought to be implicated in the regulation of the protein

glycosylation process in H. volcanii*4°.

Protein identifications unique to specific growth conditions.
Conversely, identification of proteins in only one dataset can
provide valuable insights into the possible functions of these
proteins, such as roles in acclimation to specific stresses or in
regulatory processes. Differences in sample processing and MS
acquisition techniques can also influence protein identification
between datasets. However, the frequent detection of proteins
with common physicochemical properties (see above) or even
multiple proteins of the same pathway within a distinct dataset
strongly suggests that they play important roles under specific
conditions. For example, multiple subunits of urease (UreA,
UreB) and associated maturation proteins (UreE, UreF) were only
detected in the dataset PXD006877, the only dataset in which
glycerol minimal medium (GMM) was used. Ureases are
important in nitrogen cycles including the conversion of fertili-
zers to ammonia gas, yet, urease activity was suggested to be rare
in halophiles®’:%2. This presumed restriction in activity is in
contrast to predicting urease gene homologs in many haloarchaea
in operons similar to those of the Thaumarchaeota (Supple-
mentary Fig. 6A, B), for which urease activity is widely
distributed®3-64, Within the ArcPP, UreE and UreF, important for
Ni2™ insertion into the urease active site, were only identified in
GMM. Together with the increased transcription of corre-
sponding genes in GMM®, this suggests that urease expression in
halophiles is linked to specific environmental conditions includ-
ing carbon sources. To test this hypothesis, a phenol-hypochlorite
method, compatible with hypersaline conditions, was used to
assay the catalytic generation of ammonia from urea (Supple-
mentary Fig. 6C). This approach showed the hydrolysis of urea in
cell lysates of H. volcanii grown to log phase in GMM (Supple-
mentary Fig. 6D). The temperature optimum was determined to
be around 60 °C, which is 15°C above the growth temperature
optimum of H. volcanii®® and similar to the temperature opti-
mum of the urease activity detected in Haloarcula hispanica®?. In
contrast, the urease activity of H. volcanii cells grown on complex
media (CM) was undetectable (Supplementary Fig. 6D). This
finding indicates that the mass spectrometrically detectable pre-
sence of urease subunits is indeed correlated with urease activity
and regulated by metabolic status. These findings have implica-
tions for determining urea turnover in hypersaline environments.

Regarding the biosynthesis of type IV pili, the ATPase PilB3
was reliably identified in all total proteome datasets. This is
consistent with an inability of H. volcanii to form detectable pili
and a significant reduction of surface adhesion when pilB3 and
PpilC3 are deleted®”. However, H. volcanii contains five pil operons
and encodes multiple pilins and their biological roles are yet
largely unknown®7-%8, Interestingly, PilBl and PilB4 are only
found in cells grown with GMM, thereby providing experimental
conditions to study the roles of these PilB paralogs and their
corresponding pili.

Finally, the majority of non-identified proteins (69%) has
physicochemical properties (small, alkaline, hydrophobic) asso-
ciated with reduced identification rates. However, we detected
four genomic islands with a low protein identification rate,
among them two predicted proviruses (Supplementary Note 5).
Another region with mostly lacking protein identifications
(HVO_B0160 to HVO_B0181) includes genes linked to respira-
tory nitrate reductase (HVO_B0161 HVO_B0166) which is only
transcribed under anaerobic conditions®. This finding highlights
that H. volcanii has not been proteomically analyzed under
anaerobic conditions so far and hints at further proteins that
might play a role in the response to anoxia.
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Fig. 4 Comparison of whole proteome datasets revealing ubiquitous presence of N-glycosylation pathway enzymes. a The overlap in protein
identifications between seven datasets that analyzed samples of whole proteomes has been determined. The number of proteins identified in the given
number of datasets (1-7, green to orange, throughout this figure) is represented as a bar plot. For proteins that were not identified (O, gray), all ArcPP
datasets were taken into account. b For each arCOG class (sorted by ArcPP identification rate), the identification rate for all proteins belonging to that class
is given based on all proteins identified within the ArcPP (black), proteins not detected within the ArcPP, and proteins that are part of 1-7 whole proteome
datasets. ArCOG classes are as follows: J, translation, ribosomal structure and biogenesis; U, intracellular trafficking, secretion, and vesicular transport;
F, nucleotide transport and metabolism; H, coenzyme transport and metabolism; O, post-translational modification, protein turnover, chaperones; Q,
secondary metabolites biosynthesis, transport and catabolism; |, lipid transport and metabolism; V, defense mechanisms; E, amino acid transport and
metabolism; C, energy production and conversion; L, replication, recombination and repair; T, signal transduction mechanisms; R, general function
prediction only; D, cell cycle control, cell division, chromosome partitioning; P, inorganic ion transport and metabolism; K, transcription; M, cell wall/
membrane/envelope biogenesis; G, carbohydrate transport and metabolism; S, function unknown; N, cell motility; X, mobilome. ¢ The known steps of the
two described N-glycosylation pathways in H. volcanii (top and bottom, AgIB- and Agl15-dependent, respectively, based on refs. 58.74113) are schematically
shown with their corresponding enzymes colored according to the number of datasets in which they have been identified. Interestingly, while almost all
known enzymes were identified in at least six datasets, AgIR and AglS were not identified in these datasets at all. Notably, these are involved in the addition
of the final mannose to the AglB-dependent glycan and N-glycopeptides with and without the final mannose attached have been readily identified
previously86114, Source data are provided as a Source data file.

Enabling further insights and community contributions. While mechanisms underlying specific regulatory processes and stress
these examples give early indications of how important infor- responses in H. volcanii. At the same time, increased efforts are
mation can be harvested from peptide and protein identifications, required to unravel the function of large parts of archaeal pro-
naturally, quantitative analyses of suitable datasets within the teomes”?, since 15% of proteins present in all whole-cell datasets
ArcPP will eventually lead to even deeper insights into the are of unknown function and even 40% of proteins unique to one
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dataset (Supplementary Fig. 5). Moreover, the exceptionally high
protein sequence coverage achieved here enables proteogenomic
analyses that will lead to an improved genome annotation”!72,
We already identified eight proteins that were annotated as
nonfunctional, providing evidence for the existence of these
proteins (Supplementary Note 6). Similarly, ArcPP is ideal for the
validation of gene models based on transcriptomics and ribosome
profiling data’3. Finally, given the low abundance of many types
of PTMs, high protein sequence coverage is essential to the
identification of peptides decorated by these. While the presence
of some PTMs has been confirmed in H. volcanii*®74-76 and
other archaea®’’, comprehensive analyses are still lacking.

In conclusion, we have illustrated that the reanalyses
performed by the ArcPP have proven suitable for providing
valuable insights into archaeal cell biology. Furthermore, the
ArcPP allows for informed decisions about approaches to answer
emerging biological questions. Since this resource provides
invaluable information for the archaeal community, we have
made our results available through a searchable web database at
https://archaealproteomeproject.org. In addition, the most recent,
annotated H. volcanii protein database, the meta data for all
experimental datasets and summary files for all highly confident
identifications on PSM, peptide and protein level are accessible at
https://github.com/arcpp/ArcPP. Since the number of proteomic
datasets available for H. volcanii continues to grow, analysis
scripts are provided that will facilitate a straightforward
reproduction and extension of results, which can be easily
contributed and integrated into the ArcPP through GitHub. This
workflow is especially important for the community-driven
extension of this approach toward other archaeal species, for
many of which large-scale proteomics datasets already exist
(Supplementary Table 1). Finally, the ArcPP can serve as a
blueprint for comprehensive bacterial proteomics with even
greater availability of public datasets.

Methods

Datasets collected for H. volcanii. All datasets reanalyzed here were originally
uploaded to PRIDE!* through ProteomeXchange’8 or jPOST!® and are accessible
via their corresponding PRIDE ID (Supplementary Data 3). Details about the
analyzed strains, experimental conditions, MS instruments and settings can be
found in Supplementary Note 7, Supplementary Table 2, Supplementary Data 1-2
as well as the corresponding publications (if available). Therefore, only a short
summary of each dataset will be given here. The following datasets are considered
analyses of whole proteomes: PXD006877, PXD007061, PXD009116, PXD011012,
PXD011056, PXD011218, and PXD013046. For reference, the theoretical pro-
teomes that had been exported from HaloLex”® and were used in some of the
previous analyses have now been made available via Zenodo, together with the
proteome that was used for all analyses within the ArcPP. The set of proteomes is
available at https://doi.org/10.5281/zenodo.3565580. It should be noted that all
used strains are direct descendants of the type strain DS2, which was used for
genome sequencing and thus for the reference proteome.

Dataset PXD000202. This dataset has been previously published by Miranda
et al.80. Sampylation is a mechanism of ubiquitin-like protein modification in
Archaea’®. H. volcanii encodes three ubiquitin-like small archaeal modifier proteins
(SAMP1-3) that are covalently attached to target proteins by a mechanism that
requires the El-like activating enzyme UbaA3081, To map the sites of samp3yla-
tion, in which the SAMP3 C-terminal Gly is covalently linked to the €-amino
group of lysine residues of target proteins, the following strategy was used. Sam-
p3ylated proteins were purified by a-Flag chromatography from cells expressing
SAMP3 with an N-terminal Flag-tag. To improve the MS-based mapping of
samp3ylation sites, the alanine residue (Ala90) immediately N-terminal to the
diglycine motif of SAMP3 was modified to a lysine residue (A90K). This amino
acid exchange allowed for scanning for GG-footprints derived from SAMP3 on
tryptic peptides of the target protein by detecting mass increases of +114 Da.
Samp3ylated proteins were purified from wild-type and compared with an isogenic
E1 mutant (AubaA) deficient in the ability to activate the SAMPs for ubiquitin-like
modification or sulfur mobilization. This latter strain enabled us to establish that
the sites identified by MS analysis were dependent upon the E1 enzyme. H. volcanii
strains were grown to stationary phase in ATCC974 complex medium (200-ml
cultures). Clarified cell lysates were applied to equilibrated a-Flag columns, washed,
and eluted with 100 pg ml~! 1X Flag peptide and collected in nine fractions. Wild-

type and AubaA mutant strains expressing Flag-SAMP3A90K were analyzed in
biological triplicate and duplicate, respectively. Proteins purified by a-Flag chro-
matography were separated by 15% nonreducing SDS-PAGE. Each gel lane was cut
into 10 gel pieces and digested with trypsin. Peptide fragments were subjected to
reversed-phase column chromatography operated on an Easy-nLC II connected to
an LTQ Orbitrap-Velos mass spectrometer. Acquired MS/MS spectra were ori-
ginally searched against a Uniprot H. volcanii DS2 proteome using the Sorcerer-
SEQUEST platform®2. Cysteine carbamidomethylation, methionine oxidation, and
diglycyl-lysine were set as variable modifications.

Dataset PXD006877. This dataset has been previously published by McMillan
et al.%. Multiplex quantitative stable isotope labeling in cell culture (SILAC) was
used to monitor the changes in the H. volcanii proteome during hypochlorite
stress. A double auxotroph for lysine and arginine (LM08) was generated and used
to fully incorporate the heavy amino acids 13C/!°N-lysine (+8 Da) and 13C-
arginine (46 Da) into each peptide. Cells were grown in GMM supplemented with
the heavy vs. light amino acids (0.3 mM each). At late-log phase, cells were treated
for 20 min with the oxidizing agent (2.5 mM NaOCl) vs. a mock (ddH,0) control.
After treatment, harvested cell pellets of control and treatment groups were mixed
at a 1:1 ratio (n = 4 biological replicates with a label swap). Proteins were extracted
with TRIzol and solubilized in buffer (7 M urea, 2 M thiourea and 4% (w/v)
CHAPS). After reduction with tris-(2-carboxyethyl) phosphine (TCEP), cysteine
side chains were blocked by methyl methanethiosulfonate (MMTS) treatment.
Digestion with trypsin was followed by desalting on a C18 reverse phase mini-
column. Eluted peptides were lyophilized and fractionated into 14 fractions by
strong cation exchange chromatography (SCX). SCX fractions were analyzed one at
a time on an Easy-nLC 1200 system coupled to a Q Exactive Plus mass spectro-
meter. The original peptide identification and quantification was performed with
Proteome Discoverer 2.1 using the Uniprot H. volcanii DS2 proteome. Methylthio
was included as fixed modification and lysine + 8, arginine + 6, proline + 5,
methionine oxidation, N-terminal acetylation, and diglycine remnant on lysines as
variable modifications.

Dataset PXD007061. This dataset has been previously published by Cerletti

et al.%. The whole proteome turnover was examined in the H. volcanii condi-
tional LonB mutant (HVLON3) under reduced (—Trp) and nearly physiological
(+Trp) LonB levels. HVLON3 was grown in Hv-Min medium containing 14NH,Cl
as nitrogen source in absence of Trp and then switched to 1°N-medium with and
without Trp (+Lon) to monitor 1°N-label incorporation into newly synthesized
proteins over time. In parallel, the degradation of 1¥N-labeled proteins was esti-
mated by comparing different time points with an internal standard grown on 13C-
glucose. Membrane and cytoplasm proteins were prepared and processed by SDS-
PAGE, digested with trypsin and analyzed by LC-MS/MS (nanoACQUITY gra-
dient UPLC pump system coupled to an LTQ Orbitrap Elite mass spectrometer).
Proteins were originally identified with Sequest embedded in Proteome Discoverer
1.4 searching against the HaloLex H. volcanii DS2 proteome (version 24-SEP-2013;
https://doi.org/10.5281/zenodo.3565581). Protein turnover as well as statistical
analyses were achieved with the online platform QuPE (https://qupe.cebitec.uni-
bielefeld.de/QuPE/app). In addition, an in vivo cross-linking assay coupled to
immunoprecipitation with a-LonB antibody was performed in the H. volcanii H26
wt strain to detect interactions between LonB and its endogenous targets. The
quantitative proteomics experiment was performed as a biological triplicate, while
the immunoprecipitation was done with four biological replicates.

Dataset PXD009116. In this dataset, previously published by Cerletti et al.*3, the
proteomes of two halophilic archaea, H. volcanii H26 and N. magadii ATCC 43099,
during exponential and stationary growth were compared. Cultures were grown at
42 °C, shaking at 200 rpm, in rich medium (MGM and Tindall medium, respec-
tively) and membrane and cytoplasm fractions were obtained. Protein samples
were processed, digested with trypsin, and subjected to LC-ESI-MS/MS using a
nanoACQUITY gradient UPLC pump system (Waters) and an LTQ Orbitrap Elite
mass spectrometer. Proteins were originally identified and quantified with Max-
Quant (version 1.5.3.17)83 using the LFQ algorithm searching against the HaloLex
H. volcanii DS2 proteome (version 24-SEP-2013; https://doi.org/10.5281/
zen0do.3565581) and the HaloLex N. magadii ATCC 43099 proteome (January
2017; https://doi.org/10.5281/zenodo.3571186; contains 4295 entries, while 4023
were claimed). While N. magadii samples were included in the reanalysis for
comparative purposes, only the raw data corresponding to samples from H. vol-
canii were used for the combined ArcPP dataset, comprising three and six biolo-
gical replicates for the cytoplasm and membrane fractions, respectively.

Dataset PXD010824. This dataset has been previously published by Abdul Halim
et al.34 and focuses on the analysis of HVO_0405. In order to test if HVO_0405 is a
Tat substrate, its twin arginine was mutated to a twin lysine. For cells over-
expressing either the WT HVO_0405 or the mutated sequence lacking the twin
arginine sequence (both in a Ahvo_0405 background), membrane and cytosolic
fractions of cells were isolated. After tryptic digestion, samples were analyzed with
a Q Exactive Plus mass spectrometer after chromatographic separation on an
UltiMate 3000 RSLCnano system and results were originally searched against the
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Uniprot H. volcanii DS2 proteome (UP000008243) employing Ursgal and allowing
semi-enzymatic cleavage. For each sample, two biological replicates were
performed.

Dataset PXDO011012. This dataset was generated as part of the presented work.
The proteome of planktonic and sessile cells at different stages of biofilm devel-
opment are compared in this dataset. H. volcanii H53 liquid cultures were shaken
at 250 rpm and grown to an ODgg of 0.3. After taking samples, the petri dishes
were filled with 10 ml of the culture and incubated statically. After 24, 48, and 72 h,
samples were taken from the planktonic phase, the remaining culture was dis-
carded and the sessile cells (biofilm) were washed with 18% (w/v) salt water before
scraping off the cells with a razor blade and collecting them in 18% (w/v) salt water.
In addition to ODgg 0.3, samples from the shaking culture were taken at ODgpg
0.08 and ODgg 0.8. All samples were snap-frozen and stored at —80 °C. Each
sample was transferred into 0.5 ml centrifugal filter units (Millipore) and lysed with
400 pl pure H,O containing protease inhibitors (1 mM PMSF and 1 mM benza-
midine). The lysis step was repeated once with H,O and twice with 2% (w/v) SDS
in 10 mM Tris/HCI pH 7.6 containing protease inhibitors as well, in order to
solubilize membrane proteins. Proteins were digested separately with Trypsin and
GluC using 50 pg each and following the FASP protocol®®, modified according to
Esquivel et al.3°. Multiple, complemental proteases were chosen for increased
protein identification and sequence coverage®’. After digestion, peptides were dried
and then labeled with iTRAQ (4plex Applications Kit, AB Sciex) following the
manufacturer’s protocol. Samples were mixed in combinations that allow for the
analysis of proteomic changes over time in the planktonic phase, in the biofilm and
between planktonic phase and biofilm.

Mass spectrometric analysis was performed as described* with minor
modifications. Briefly, samples were desalted on a C18 trap column and peptides
were separated on a 50-cm C18 column (2 h gradient, 2-40% (v/v) acetonitrile)
directly coupled to a Q Exactive Plus mass spectrometer (Thermo Scientific).
MSI1 scan parameters were as follows: resolution 70,000, automatic gain control
(AGC) target 1 x 10%, maximum IT 50 ms, scan range 375-2000 m/z. The top 12
peaks were triggered for HCD fragmentation with a normalized collision energy of
30. MS2 scan parameters were as follows: resolution 17,500, AGC target 1 x 10°,
maximum IT 125 ms, fixed first mass 100 m/z. A dynamic exclusion list (20 s) was
used and charge states 1 and >6 were excluded.

The results were originally analyzed with Ursgal employing the search engines
X! Tandem?8, MS-GF+%%, MS Amanda®® and MSFragger®!. The database consisted
of the UniProt H. volcanii DS2 proteome (UP000008243) and the following
modifications were included: carbamidomethylation of cysteine (fixed),
iTRAQ4plex of any N-terminus (fixed), iTRAQ4plex of tyrosine and lysine
(optional), oxidation of methionine (optional). The experiment has been
performed as biological triplicates.

Dataset PXDO11015. In this dataset, previously published by Esquivel et al.3¢, the
N-glycosylation of pilins and flagellins was characterized. For this purpose, fla-
gellins and pilins were isolated from the supernatant by cesium chloride fractio-
nation. After digestion with GluC, samples were chromatographically separated on
an UltiMate 3000 RSLCnano system and analyzed with a Q Exactive Plus mass
spectrometer. Two different methods were used: (i) in-source collision-induced
dissociation (IS-CID) was applied, leading to the fragmentation of glycans before
the MSI scan, and precursor ions were selected for HCD fragmentation based on
mass differences corresponding to monosaccharides; (ii) without IS-CID, the 12
most intense precursor ions were selected for HCD fragmentation. Results were
originally analyzed with Proteomatic®?, searching against the Uniprot H. volcanii
DS2 proteome (UP000008243) and including known H. volcanii N-glycans as
potential modifications. The H53 wild-type was compared against a knockout
strain of the oligosaccharyltransferase AglB and measurements were performed as
biological triplicates for both strains.

Dataset PXD011050. This dataset, generated as part of this work, was aimed at
the characterization of ArtA-dependent protein processing. On the one hand, the
dataset used AartA deletion mutants overexpressing either the wild-type version or
site-directed mutants of ArtA in order to determine the active site of ArtA%3. The
plasmids that were transformed into the AartA deletion mutant AF103 to generate
the overexpression strains are listed in Supplementary Data 4. For these strains, the
S-layer glycoprotein was purified from the supernatant of exponentially grown
cultures by cesium chloride fractionation as described previously’*. On the other
hand, ArtA-dependent processing was compared for H53, AartA, and ApssA. The
ApssA mutant FH54 was generated by transforming H53 cells with pFH38 as
previously described?. In this case, the supernatant and/or membrane fraction of
exponentially grown cells have been isolated and used for protease digestion
without further fractionation.

All samples were digested with Trypsin and/or GluC following the FASP
protocol®® with minor changes®48. Peptides were reconstituted in 2% (v/v)
acetonitrile, 0.1% (v/v) formic acid in H,O and separated on a C18 PepMap 100
column (15 or 50 cm), coupled to a Q Exactive plus mass spectrometer (Thermo
Scientific). MS1 spectra were acquired from 350 to 1600 m/z (or 375-2000 m/z) at
a resolution of 70,000 with an injection time of 50-100 ms and an AGC target of

1 x 10 to 3 x 10°. The 12 most intense ions were selected for HCD fragmentation
with a normalized collision energy of 27 and fragment ions were analyzed in MS2
at 17,500 resolution, 55-120 ms injection time and 5 x 104 to 1 x 10> AGC target.
Charge states 1 and >5 were rejected. Results were originally analyzed with Ursgal
employing the engines X!Tandem®8, MSFragger®!, and MS-GF+® in a search
against the Uniprot H. volcanii DS2 proteome (UP000008243). Semi-enzymatic
cleavage was allowed in order to identify processing sites.

Dataset PXD011056. This dataset was previously published by Jevtic et al.” and
analyzed the proteomic response to environmental stress conditions. The chosen
standard conditions refers to growth at 45 °C in Hv-YPC medium with 18% (w/v)
salt water and was compared with high and low salt conditions, with 23 and 15%
(w/v) salt water, respectively, as well as low and high temperature conditions at 30
and 53 °C, respectively. Total cell extracts were prepared by sonication, solubili-
zation with sodium taurodeoxycholate (0.006% (w/v)) and ultracentrifugation of
insoluble material. After digest, a spectral library was generated from pooled
peptide aliquots from (i) standard conditions and (ii) all stress conditions. The
pooled samples were fractionated into eight fractions by high-pH/reversed-phase
separation and each fraction was analyzed using DDA on a TripleTOF 5600+ mass
spectrometer after chromatographic separation on an Eksigent nanoLC 425. In
addition, for quantitative analyses, unfractionated samples from each condition
were analyzed using SWATH acquisition. Protein identification was originally
performed using the Paragon search engine v5.0.0.0 implemented in ProteinPilot
v5.0 build 4769 against the HaloLex H. volcanii DS2 proteome (version 19-NOV-
2015; https://doi.org/10.5281/zenodo.3565619). For the reanalysis within the
ArcPP, only the samples measured by DDA have been used, i.e., the pooled
standards and stress conditions, which have been performed as biological
duplicates.

Dataset PXD011218. This dataset has been previously published by Costa et al.”.
To address the impact of the intramembrane protease Rholl on H. volcanii phy-
siology, the proteomes of MIG1 (Arholl) and the parental H26 strains were
compared by shotgun proteomics. Cultures were grown in MGM medium (18%
salt water) at 42 °C and samples were taken at exponential and stationary growth
phases. Membrane, cytoplasm, and supernatant protein samples were prepared and
digested with trypsin. In addition, membrane proteins from exponential phase
were fractionated by SDS-PAGE into four sections (PROTOMAP assay). A
nanoACQUITY gradient UPLC pump system was used coupled to an LTQ
Orbitrap Elite mass spectrometer. Protein identification was originally performed
by SEQUEST algorithm embedded in Proteome Discoverer 1.4 searching against
the HaloLex H. volcanii DS2 proteome (version 24-SEP-2013; https://doi.org/
10.5281/zenodo.3565581) The experiment was performed with six biological
replicates. This dataset includes files that are part of the dataset PXD009116. In
order to avoid duplications, these files were not included here (but only in
PXD009116) for the reanalysis.

Dataset PXD013046. In this dataset, previously published by Cerletti et al., the
impact of the membrane-associated LonB protease on the proteome of H. volcanii
was examined. To this end, the proteomes of the wild-type strain (H26) and the
conditional mutant (HVLON3) with reduced LonB protease levels were com-
pared. As a control, the proteome of strain HVABI, a deletion mutant of the
downstream gene abi, was analyzed in parallel. These strains were grown in Hv-
Min in the absence of Trp and samples were taken for four biological replicates at
the exponential and stationary growth phases. Membrane and cytoplasm proteins
were prepared, digested with trypsin and analyzed by LC-MS/MS. A nanoAC-
QUITY gradient UPLC pump system was used coupled to an LTQ Orbitrap XL
(cytoplasm samples) or a LTQ Orbitrap Elite (membrane samples) mass spec-
trometer. Protein identification was originally performed by SEQUEST®? and MS
Amanda®® algorithms embedded in Proteome Discoverer 1.4 searching against the
HaloLex H. volcanii DS2 proteome (version 24-SEP-2013; https://doi.org/10.5281/
zenodo.3565581).

Dataset PXD014974. This dataset was generated as part of the presented work.
With the aim to analyze the protein translation landscape, whole-cell extracts of
H26 cells (ODgg of 0.6) were prepared by resuspending snap-frozen cell pellets
in 500 pL extraction buffer (150 mM NaCl, 100 mM EDTA, 50 mM Tris pH 8.5,
1 mM MgCl,, 1% (w/v) SDS) and boiling them for 13 min at 95 °C. The cooled-
down whole-cell extract was clarified by centrifugation (16,000 x g for 10 min), and
the clarified supernatants were collected. Proteins were reduced by addition of B-
mercaptoethanol (2% (v/v) final concentration) for 1h in the dark. Proteins were
precipitated by addition of acetone (80% (v/v) final concentration) for 1h at
—20°C. After centrifugation (10 min 16,000 x g at 4 °C) the protein pellets were
washed with acetone and centrifuged again. The obtained pellets were dissolved at
room temperature in 1 ml solubilization buffer (25 mM Tris-HCI, pH 7.1, 6 M urea,
3 M thiourea, 50 mM KCI, 70 mM DTT) and stored overnight at 4 °C. Fifteen
micrograms of resolubilized pellet were alkylated with 2-iodoacetamide (30 mM)
for 30 min in the dark in a total volume of 110 pl complemented with 50 mM
ammonium bicarbonate buffer. Three hundred microliters of urea buffer (8 M urea,
100 mM Tris pH 8.5) and 2 ul 1 M DTT were added and samples were incubated
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for 5 min at room temperature. Samples were further processed following the FASP
protocol®”. Digestion was performed overnight at 37 °C using 1 pg trypsin and the
digested peptides were eluted with 30 pl of 50 mM ammonium bicarbonate buffer
containing 5% (v/v) acetonitrile. Eluates were acidified with 2 pl

trifluoroacetic acid.

For analysis of the tryptic peptides, a Q Exactive HF mass spectrometer
(Thermo Scientific) coupled to an RSLC system (Ultimate 3000, Dionex,
Sunnyvale, CA) was used, similar to ref. °. Approximately 1 pg of sample was
automatically loaded on the HPLC system, which was equipped with a nano trap
column (300-um inner diameter x 5 mm, packed with Acclaim PepMap 100 C18,
5um, 100 A; LC Packings, Sunnyvale, CA). After 5 min, the peptides were eluted
from the trap column and separated using reversed-phase chromatography
(Acquity UPLC M-Class HSS T3 Column, 1.8 pm, 75 pm x 250 mm; Waters) using
a gradient of 7-27% (v/v) acetonitrile at a flow rate of 250 nl min—! over a period of
90 min, followed by two short gradients of 27-41% (v/v) acetonitrile (15 min) and
41-85% (v/v) acetonitrile (5 min). After 5 min at 85% (v/v) acetonitrile, the
gradient was set back to 3% (v/v) acetonitrile over a period of 2 min and allowed to
equilibrate for 8 min. All acetonitrile solutions contained 0.1% (v/v) formic acid.
Eluting peptides were analyzed in DDA mode which consisted of an MS1 spectrum
at a resolution of 60,000 acquired in the Orbitrap ranging from 300 to 1500 m/z
with AGC target set to 3 x 10°. From this high-resolution MS scan, the ten most
abundant peptide ions were selected for fragmentation if they exceeded an intensity
of at least 2 x 10# counts and if they were at least doubly charged. MS/MS spectra
were recorded in the Orbitrap at a resolution of 15,000 with a maximum injection
time of 50 ms. The precursor ion isolation window was 1.6 m/z. Normalized
collision energy was set to 28 and dynamic exclusion was set to 30s.

The results were originally analyzed using MaxQuant (version 1.6.6.0)83 using
standard parameters and the Uniprot H. volcanii DS2 proteome (UP000008243).
Two biological replicates were performed.

General workflow for the reanalysis within the ArcPP. MS raw data files were
downloaded from PRIDE! or jPOST!?, converted into the unified HUPO Pro-
teomics Standards Initiative standard file format mzML%7 using the Thermo-
RawFileParser (for RAW files from Thermo Scientific)® or msConvert (for SCIEX
WIEF files, with --filter peakPicking true 1- and --filter zeroSamples removeExtra)
included in ProteoWizard®. For all subsequent file conversions, all protein data-
base searches, as well as all statistical post-processing (if not indicated otherwise)
that were performed within the ArcPP, the Python framework Ursgal (versions
0.6.5 and 0.6.6)2° has been used. The protein database was derived from the most
recent Gold Standard Protein based annotation of the H. volcanii genome (version
06-JUN-2019, https://doi.org/10.5281/zenodo.3565631)1%, consisting of 4186
proteins (including 79 spurious annotations and 33 duplicates, all of which were
not counted for the final size of the proteome: 4074 proteins). The annotation of
this genome (and others from haloarchaea) included extensive efforts to minimize
the number of missing protein-coding gene annotations (including small protein-
coding genes), e.g., applied algorithms did not include a size cutoff for genes,
extensive manual curation was performed!?! and regions not assigned as coding
were systematically screened to detect and resolve missing gene calls!%2. The H.
volcanii database was supplemented with contaminants from the common Repo-
sitory of Adventitious Proteins (https://www.thegpm.org/crap/). For all proteins,
decoys were generated by peptide shuffling, dependent on the protease used for the
digest. Protein database searches were then performed against the merged target-
decoy database. Results from different search engines were unified within Ursgal,
statistically post-processed using Percolator!%3 (version 3.4.0) and combined using
the combined PEP approach?®30. More details, including the initial parameter
optimization as well as the combination of multiple datasets are described below.

Parameter optimization for protein database searches. For each dataset, pro-
tein database searches with X!Tandem® have been performed using all combi-
nations of four different precursor mass tolerances (5-20 ppm), five fragment mass
tolerances (5, 7.5, 10, 20, 40 ppm for high-resolution MS; 0.1, 0.2, 0.4, and 0.8 Da
for low resolution MS) and ten instrument offsets (—10 to 10 ppm). In order to
speed up this process, only every second to fifth MS2 spectrum was used for the
search. After statistical post-processing, parameter combinations with the highest
number of total identified peptides were selected and the best-performing instru-
ment offset was chosen for each MS raw file separately.

Protein database search for the reanalysis within the ArcPP. The following
protein database search engines, implemented in Ursgal (version 0.6.5 to 0.6.6),
were used for all datasets: X!Tandem8® (version Vengeance), MS-GF+8 (version
2019.04.18), MSFragger®! (version 20190222). These search engines were chosen
based on their speed and their availability in Ursgal. Besides the precursor and
fragment ion mass tolerance and instrument offset determined by parameter
optimization (see above), Ursgal’s default parameters have been used with the
following modifications: oxidation of methionine and N-terminal protein acet-
ylation, both as variable modifications, carbamidomethylation (or methylthio
modification, or none, depending on the dataset) of cysteine as fixed modification.
For PXD011012, iTRAQ4plex was included as fixed modification of the protein
N-terminus and variable modification of lysine and tyrosine. For PXD006877,

Label:13C(5) on proline, Label:13C(6)15N(2) on lysine, and Label:13C(6) on
arginine were included as variable modifications. A maximum of two and three
missed cleavages was allowed for datasets using Trypsin and GluC as protease,
respectively. If samples were fractionated, results from one engine for all fractions
were merged before statistical post-processing. Results from multiple search
engines were afterward combined using the combined PEP approach?® and filtered
by a combined PEP < 1%. In case of discrepant identifications for the same spec-
trum by different database search engines, results were sanitized. To this end, the
best PSM for each spectrum was chosen if there was no ambiguity or if the best
PSM had a combined PEP that was an order of magnitude better than other
identifications. Otherwise, all PSMs for that spectrum were rejected.

Comparison with original search results. Results from the original analysis were
obtained from PRIDE, jPOST or provided by the individual research groups. This
also applies to datasets that have not been published previously; they had been
analyzed (as described above) independently of the ArcPP by the corresponding
research group. In order to allow for a fair comparison, original search results were
filtered by PEP < 1% and sanitized as well. Furthermore, peptides smaller than six
or larger than 50 amino acids were excluded. Finally, modifications other than the
ones included in the reanalysis were removed as well.

Protein inference and calculation of peptide and protein FDR. The most recent
annotation of the H. volcanii genome contained 19 sequences that had one or more
identical duplicates. In total, 52 sequences were merged into 19 new protein names
by randomly choosing one of the corresponding HVO IDs as representative and
indicating the number of duplicates for each group. Besides this removal of
identical sequences, identified peptide sequences that are part of multiple proteins
were handled by a simplistic protein inference model, since their number is rela-
tively small in H. volcanii. Non-proteotypic peptides were assigned to one protein
if, out of the group of proteins that contain this peptide, only one protein was
identified by other peptides in the same sample. Otherwise, the identification was
kept as a protein group. Protein groups mapping on multiple proteins identified by
other peptides were not taken into account for further analysis (total protein
number, etc.). Protein groups not mapping onto any other protein were regarded as
a single protein for further analyses.

Peptide and protein FDRs were calculated for each dataset separately as well as
for the combination of all datasets. In both cases, the picked protein FDR
approach3? was used similar to Wang et al.?l. On the peptide level, the best (lowest)
Bayes PEP (from the combined PEP function in Ursgal) for each peptide sequence
was chosen. After sorting, the list was traversed from top to bottom and the
cumulative number of decoys was divided by the number of cumulative targets,
yielding an empirical g-value. A second traversal from bottom to top, changing
q-value from the first traversal to the minimum g-value observed so far, ensured
monotonicity. For the estimation of protein FDRs, a score for each protein was
calculated as the sum of —log;, transformed minimal Bayes PEPs from all
identified sequences of that protein. Only peptide sequences with a peptide FDR <
1% were taken into account. The protein scores were sorted, and g-values were
calculated by traversing the list from top to bottom and bottom to top, as done for
peptide g-values.

Peptides and proteins were regarded as confidently identified if their
corresponding FDR was smaller than, or equal to, 1% and 0.5%, respectively. In
addition, they were required to be supported by at least two PSMs. The effects of
this filtering are described in Fig. S1 and the elimination of all decoy peptide hits
with a peptide FDR <1% highlights the usefulness of this approach. We rejected the
commonly used threshold to require two identified peptides because that interferes
with identification of smaller proteins and has previously been shown to not be
suitable for distinction between correct identifications and false positives!?4.

It should be noted that calculations of peptide and protein FDRs have been
performed for the combination of all datasets as well as for each individual dataset
separately. The number of identifications reported for individual datasets, as well as
for the comparison between datasets (Fig. 4) correspond to dataset-specific FDR
calculations, while the overall identifications correspond to the FDR calculations
for the combination of all datasets. This leads to a small number of proteins being
identified only in the combined dataset but not in any individual dataset and
vice versa.

MW, pl and hydrophobicity calculation. Molecular weight, pI, and hydro-
phobicity were computed by custom PERL scripts. For molecular weight, mono-
isotopic masses were used (as, e.g., listed in Expasy (https://web.expasy.org/
findmod/findmod_masses.html#AA)). Computation of pI values is based on the
pK values for amino acids at internal, N-terminal, and C-terminal positions!%°. For
hydrophobicity, the GRAVY index was computed, based on the hydropathy index
of amino acids!%°.

Prediction of signal peptides and transmembrane domains. The H. volcanii
proteome was analyzed using TMHMM 2.0!97 for TM domains, SignalP 5.048
(organism group: archaea) for predictions of the Sec pathway, FlaFind“® for pre-
dictions of pilins, processed by SPIII (PibD), TatFind*® for Tat substrates, LipoP
1.0198 for lipobox-containing proteins, and TatLipo?” for Tat substrates containing
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a lipobox, which involves cleavage by an as of yet unidentified bacterial SPII analog.
Using these predictions, each protein was assigned to a single category based on
positive predictions in a sequential decision tree as follows: TatLipo (Tat (lipo-
box)) — LipoP (Sec (lipobox)) — TatFind (Tat (SPI)) — FlaFind (Pil (SPIII)) —
SignalP (Sec (SPI)) — TMHMM (TM) — Cyt. Proteins with at least two TM
domains are considered integral membrane proteins, while proteins with one TM
domain were categorized into TM N-term and TM C-term if their TM domain was
within the first and last 50 amino acids, respectively. For some analyses (Fig. 3¢, d),
the categories Tat (lipobox), Sec (lipobox), Tat (SPI), Pil (SPIII), and Sec (SPI) were
summarized as secreted proteins.

Semi-enzymatic protein database search. Protein database search for semi-
enzymatic peptide has been performed using the same workflow as described above
with the following exceptions. The Ursgal parameter semi_enzyme has been set to
True. Furthermore, before statistically post-processing the results with Percolator,
PSMs were grouped based on fully enzymatic and semi-enzymatic peptides and
PEP calculations were performed for each group separately. This grouped valida-
tion approach results in more accurate FDRs on PSM level!0. Results were merged
and peptide and protein FDRs were calculated as described above. Since the
increased search space in a semi-enzymatic search can nevertheless lead to higher
FDRes, the results from this search were not taken into account for the final number
of identified proteins and peptides, but were only used for the comparison with
signal peptide prediction engines. Furthermore, samples digested with GluC were
excluded from the comparison, because a high number of semi-enzymatic peptides
was identified, indicating a reduced site specificity of the enzyme. Results from
immunoprecipitations and PXD000202 were excluded as well. In addition, for
increased confidence, a minimum of five PSMs was required for the identification
of semi-tryptic peptides. Finally, proteins with more semi- than fully-tryptic pep-
tides were not taken into account, since increased proteolytic cleavage instead of a
defined signal peptide cleavage was assumed.

Results were compared with predictions for Sec (SPI), Tat (SPI), and Sec (SPII)
processing from SignalP 5.0, because it was shown to be the only prediction engine
to accurately predict this variety of signal peptide CS in archaea®®. Since SignalP 5.0
has not been trained on Tat substrates containing a lipobox, results from TatLipo*’
were used to override Tat (SPI) predictions from SignalP 5.0 with Tat (lipobox). If a
semi-tryptic peptide starting at the predicted CS was identified, the predictions was
regarded as correct. If a semi-tryptic peptide starts within a range of plus/minus
three amino acids, the predicted CS was refined. If both cases were not fulfilled but
a fully enzymatic peptide was identified starting at least three amino acids N-
terminal of the predicted CS, the prediction was regarded as incorrect. Proteins, for
which tryptic cleavage sites around the predicted CS prevented theoretical peptides
with a length of 5-50 amino acids, or for which an N-terminal lipid modification
was predicted, were counted but not classified as correct/incorrect, since an
identification of semi-tryptic peptides for the predicted CS would not be possible
through the employed methods.

Genomic islands with low protein identification rates. The analysis was per-
formed separately for each replicon. Proteins were ordered serially along the
replicon, based on the start of the coding region (which corresponds to the N-
terminus for proteins encoded on the forward strand and to the C-terminus for
proteins encoded on the reverse strand). For each gene, the corresponding protein
identification rate was computed, considering 25 genes on each side, thus covering
51 genes. The circularity of all replicons was taken into account. Identification rates
were in the range of 14 (27.5%) to 48 (94.1%). Closely spaced genes with a low
identification rate (up to 20 identifications, 39.2%) are reported as low identifica-
tion islands. Two islands with low identification rates correspond to prophages
according to PhySpy!10:111,

Statistical analysis of arCOG classes. For three groups ((i) proteins present in all
seven whole proteome datasets, (i) proteins only identified in one whole proteome
dataset, (iii) proteins not identified within the ArcPP), the distribution of arCOG
classes®” was analyzed in comparison to their background distribution within the
whole H. volcanii proteome. Significance was evaluated using Fisher’s exact test,
considering for each group of proteins: (a) the number of identified proteins that
belong to an arCOG category and (b) the number of identified proteins which do
not belong to that arCOG category; equivalent numbers (within arCOG category;
outside arCOG category) are computed for the background (whole theoretical
proteome). A Bonferroni correction for multiple testing was applied on resulting
p-values.

Urease activity assay. H. volcanii H26 was grown in GMM (Hv-Min medium
with 20 mM glycerol as the carbon source and 10 mM NH,CI as the nitrogen
source) or CM (ATCC974 medium composed of 2.14 mM NaCl, 246 mM MgCl,,
28.7 mM K,SOy4, 0.9 mM CaCl,, 0.5% tryptone (Bacto™) and 0.5% yeast extract
(Oxo0id™), adjusted to pH 6.8 with 1 M KOH). Cells were grown in 50 ml cultures
(in 250 ml Erlenmeyer baffled flasks) at 42 °C with rotary shaking at 200 rpm.
Urease activity was monitored by detection of NH,™ production by the phenol-
hypochlorite method as previously described!!? with the following modifications.
Cells were harvested in log phase (ODggo of 0.3-0.6) by centrifugation (F14-6x250

LE rotor, 2500 x g, 5 min, room temperature). Cell pellets (8 ODgo units total)
were washed with 10 ml of buffer A (20 mM Tris-HCl buffer pH 7.2 supplemented
with 2 M NaCl) by similar centrifugation. Cell pellets were resuspended to a final
volume of 0.2-0.25 ml in buffer A and transferred to a 1.8 ml microfuge tube on
ice. Samples were mixed with disruptor beads (0.2 g, 0.1 mm diameter, Chemglass)
and vortexed (5 x 1 min with 2 min breaks on ice). Samples were centrifuged at
12,500 x g for 5 min at 4 °C and the cell lysate supernatant was transferred to a new
1.8-ml tube on ice. The protein concentration of the cell lysate was determined by
Bradford Assay (BioRad) with NaOH included as 20 pl of 0.1 N NaOH stock per
200 pl assay to facilitate protein solubility. Bovine serum albumin (BSA) was used
as the protein standard. Cell lysate (1.5-5 mg protein per ml) was used for the
urease assay. Reactions (75 pl final volume), consisting of 65 pl cell lysate and 10 ul
of 10% urea (w/v) in buffer A or 10 ul buffer A for the background control, were
incubated at 25, 37, 42, 60, and 80 °C. Aliquots (10-15 pl) of the reaction were
removed over time (0, 1 h, 2 h, and 3 h) and immediately assayed for NH,* by the
phenol-hypochlorite method!!? using (NH,4),SO, as the standard.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support this works are available from the corresponding author upon
reasonable request. The raw files of all new proteomic datasets are available on PRIDE
with the following identifiers: PXD011050, PXD011012, and PXD014974. The annotated
proteome of H. volcanii is deposited at https://doi.org/10.5281/zenodo.3565580. PSMs
and summarized result files for all datasets are deposited at https://doi.org/10.5281/
zenodo.3825856. Furthermore, all main result files and all meta data is available at
https://github.com/arcpp/ArcPP. The source data underlying Figs. 1, 2a-c, 3a-d, 4a, b,
and Supplementary Figs 1a-d, 2a, b, 3a-c, 4a-f, 5 and 6d are provided as a Source data file.

Code availability
Only freely available software has been used as described in the Methods. Analysis scripts
that allow reproduction of the results are available at https://github.com/arcpp/ArcPP.
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