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Random sequential adsorption of k-mers of different sizes and shapes deposited on two types of fractal
surfaces (deterministic and statistical) is studied. These kinds of substrates present intrinsic heterogeneities. As
a consequence, the average coordination number depends on the topology that characterizes the adsorbent. For
discrete models, at the late stage the surface coverage evolves according to θ (t) = θj − A exp[− t

σ
], where θj is

the jamming coverage while A and σ are fitting parameters. A detailed analysis of how these main quantities
[θj , σ ] depend on the relationship between the geometry of the adsorbate and the adsorbent is presented. The
results obtained suggest that the symmetry of the substrate may exert a decisive influence on the adsorption
kinetics of polyatomic species.
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I. INTRODUCTION

Random sequential adsorption (RSA) is one of the simplest
and most efficient approaches to analyze sequences of irre-
versible events. A number of processes in physics, chemistry,
and biology where the microscopic events occur irreversibly
on the time scales of the experiments can be studied as RSA on
a lattice. The approach of RSA has been used, among others, in
models for reactions on polymer chains [1,2], chemisorption
on crystal surfaces [3], adsorption in colloidal systems [4,5],
random growth in surface physics [6], growth processes in
three-dimensional (3D) solid-state physics [7,8], technology
of composites [9], granular matter study [10], and disordered
systems [11], and also in the wider context of ecology [12] or
sociology [13].

RSA or irreversible deposition is a process in which the
objects of a specified shape are randomly and sequentially
deposited onto a substrate. The focus is on the monolayer
deposition where depositing objects are not allowed to overlap.
The adsorbed particles are permanently fixed at their spatial
positions. Once an object is placed, it affects the geometry
of all later placements, so the dominant effect in RSA is
the blocking of the available substrate area. The deposition
process ceases when all unoccupied spaces are smaller than
the size of an adsorbed particle. The system is then jammed
in a nonequilibrium disordered state for which the limiting
(jamming) coverage θj is less than the corresponding density of
closest packing. The kinetic properties of a deposition process
are described by the time evolution of the coverage θ (t), which
is the fraction of the substrate area occupied by the adsorbed
particles. This dependence has been an object of analysis
during recent decades. In previous theoretical studies of
RSA, which include Monte Carlo approaches [14–18], series
expansion [16,19,20], rate equations [15,17,21], etc., both
continuous and discrete models were analyzed. In such studies,
it was established that the late-stage deposition kinetics
follows either a power law (for continuous models) or an
exponential function (for discrete models) approach toward the
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jamming limit. Thus, for discrete models, one writes for long
times,

θ (t) = θj − A exp

[
− t

σ

]
, (1)

where θj is the jamming coverage while A and σ are fitting
parameters. In particular, σ determines how fast the lattice is
filled up to the jamming coverage.

From a practical point of view, the problem of particle
deposition on heterogeneous surfaces seems to be especially
interesting. Recently, much interest has been focused on
heterogeneous surfaces bearing patterned surface features of
a regular shape. Theoretical calculations have been performed
for the ring-shaped patterned surfaces using the limiting
trajectory [22] and the convective-diffusion approach [23].
Other contributions have studied RSA on the Cayley tree
[24], while the kinetics of adsorptions of large spherically
shaped molecules on nanopatterned substrates has been
modeled by employing generalized versions of the RSA
model [25].

Also, experimental measurements have been done for
surface features having the form of circles and dots [26–28],
squares [29–31], rectangles and stripes [32–37], and others
[38]. Most real solid surfaces present a combination of two
types of heterogeneities: (i) energetic heterogeneity manifested
through the variation of adsorption energy from one site to
another, and (ii) geometric heterogeneity associated with the
existence of irregularities in the lattice of depositing sites.
In the case of solids that present geometric heterogeneities,
the use of fractals as depositing lattice has the advantage
not only because their intrinsic self-similarity makes the
problem more amenable to an exact approach, but also because
these lattices as such may serve to model porous media.
In most of the cases treated in the literature, the surface
where the particles are deposited has been considered to
be chemically homogeneous and smooth. However, (i) for
many real systems, the most important physical properties
depend on the detailed geometry of the substrate, and (ii) in
contrast to the statistics for simple particles, the degeneracy
of arrangements of polyatomic species is strongly influenced
by the structure of the lattice space. On the other hand, RSA
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of particles of different sizes and shapes on solid surfaces
is a subject of considerable practical importance [39,40]. In
[19,41] and [42], the percolation behavior of an RSA of linear
segments with different size and the percolation of dissociative
dimers have been studied, respectively. More recently, the
percolation of k-mers with different structures and shapes
deposited on a square lattice has been discussed [43–46]. In
the cases above, the dependency of the percolation threshold
with the parameters of the problem and the universality of the
phase transition present in the system have been discussed. In
particular, it is interesting to note that for different k-mers,
the spanning cluster has the same fractal dimension, df .
However, the percolation clusters present morphological dif-
ferences according to the percolating species from which they
originated.

The main aims of the present paper are (i) to determine
how the RSA process is affected when the surface presents
a particular heterogeneity, i.e., the substrate considered is a
fractal, and (ii) to draw different criteria from characterizing
the fractal surface by means of the RSA process.

The remainder of this paper is organized as follows.
Section II describes the models and the substrates on which the
irreversible process is studied. Section III presents the results
and discussion of the simulations, while the conclusions are
provided in Sec. IV.

II. THE MODEL

The system consists of both extended particles and fractal
substrates on which those particles are being adsorbed. The
adsorbed particles are assumed to be composed of k identical
units arranged in two types of configurations: (i) as a linear
array of monomers, which is called linear k-mers, and (ii)
as L-shaped. The adsorption is random and sequential, which
means that at any time one particle may be positioned randomly
(at random position and orientation). The particles cannot
overlap, so when overlapping is detected, the trial of adsorption
of the given particle is rejected and the next position and
orientation are randomly generated (RSA standard model).
Once the particle lands in an empty space, it stays there forever.
Two different types of fractals are considered as a substrate:
(a) deterministic and (b) statistical; they are described below
in this section. The main quantities considered in this paper

are the jamming coverage, θj , and the temporal evolution
parameter, σ , for each case; they are calculated by considering
Eq. (1). Both quantities will be affected by the morphology
of the adsorbent that is characterized through the average
coordination number.

A. Deterministic fractals

Sierpinski carpets of different patterns are considered to
be deterministic fractals. They are a special kind of two-
dimensional fractals that are determined by a generator. This
generator is a square divided in L × L identical subsquares;
then, ld of these are removed and l′ = Ld − ld are kept
(d is the space dimension). In the next step of iteration, each
one of these kept squares (not removed) will be subdivided in
L × L identical subsquares, and the pattern of the generator
is repeated on these. This construction process is infinitely
repeated, generating Sierpinski carpets of fractal dimension
given by

df = ln(l′)
lnL

. (2)

Due to the simple generation rule, the Sierpinski carpet can be
built in different patterns with different fractal dimension (df )
and others properties. In Fig. 1, some patterns labeled SC(L,l)
are shown as an example of the fractals used in the present
work.

B. Statistical fractals

Here, it is shown how the statistical fractals used as
substrates are built. A periodic square lattice of linear size
N on which polyatomic species are deposited at random is
considered. For such particle deposition, the next scheme
is followed. If a polyatomic particle formed by h units is
considered for deposition, an h-uple of nearest-neighbor sites
is randomly selected; if it is vacant, the h-mer is then deposited
on those sites. Otherwise, the attempt is rejected. In any case,
the procedure is iterated until N ′ h-mers are deposited and
the desired concentration (given by p = hN ′/N2) is reached.
As is well known, an important goal of the percolation theory
is based on finding the minimum concentration p for which
a cluster (a group of occupied sites in such a way that each
site has at least one occupied nearest-neighbor site) extends

FIG. 1. Different patterns of the Sierpinski carpets used in the present work.
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FIG. 2. Percolation cluster generated from polyatomic species.
Inset in the figure is an enlargement of a small part of the spanning
cluster, which illustrates the variation of the coordination number (z)
in the fractal substrates.

from one side to the opposite side of the system [indeed,
there exists a finite probability of finding n(>1) spanning
clusters [47–50]]. This particular value of the concentration
rate is called the critical concentration or percolation threshold
(pc), and it determines a phase transition in the system. In the
random percolation model, a single site is occupied with prob-
ability p. In that case, a continuous phase transition appears
at pc that is characterized by well-defined critical exponents.
This mapping to critical phenomena made percolation a full
part of the theoretical framework of collective phenomena and
statistical physics [51–54]. The spanning clusters obtained by
using the standard Hoshen and Kopelman algorithm [55] were
used in the present paper as statistical fractals, while in [43,44]
details of the evolution of the percolation threshold with h were
presented.

These fractal surfaces (the spanning clusters) as well
as the deterministic ones introduced above present intrinsic
heterogeneities due to the fact that their coordination number
(z) depends locally on each sites of deposition. In Fig. 2,
a sample of such substrates can be observed in detail. As
a consequence, there exists an average coordination number
(〈z〉) that characterizes each fractal.

III. RESULTS AND DISCUSSIONS

A. Sierpinski carpet

RSA of linear and L-shaped k-mers of several sizes was
studied by Monte Carlo simulations on the patterns shown in
Fig. 1. The time evolution of coverage toward the jamming
state was calculated for each case. In Fig. 3, the functionality
of θ (t) for different k-mer sizes on SC(5,3) can be observed.
Other patterns present a similar behavior. It can be clearly
observed that the late-stage deposition kinetics on these kinds
of heterogeneous surfaces follows an exponential law, such as
the well-known simple deposition on homogenous substrates,
Eq. (1).

This behavior allows us to calculate σ , which gives
information in relation to the time of adsorption process for
each case. Thus, σ can be evaluated by a linear fit from the
slope of the curve ln[θj − θ (t)] as a function of t .
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FIG. 3. Coverage as a function of t for different linear k-mer sizes
on SC(5,3).

Mathematic fractals are obtained after an infinite number
of step iterations (K), while in the simulation, a fractal is made
by means a finite numbers of K . In the studied cases, due to the
computational requirements, different step iterations (K) have
been used for each pattern. These are summarized in Table I,
where N is the lattice linear size given to LK .

The results for the deposition process of linear k-mers
of different sizes on the substrate characterized by SC(3,1),
SC(4,2), SC(5,3), SC(6,4), and SC(7,5) will be presented. The
jamming coverage as a function of species size, k, for different
patterns is shown in Fig. 4.

It can be observed that θj decreases as the k-mer’s size
increases. However, note that k ∼= L (which characterizes the
pattern-generating cell), and θj presents a deep decrement that
is more evident in patterns with greater L, such as SC(6,4)
and SC(7,5) (Fig. 4). This behavior can be understood if one
considers that k-mers whose sizes are smaller than L are able
to fill up the lattice in a more dense way without leaving so
many holes. In contrast, when the size of the species is greater
than or equal to L, these require more free sites for deposition,
and the final result is a distribution that is less dense, with more
empty sites found.

The results obtained by calculating the σ−1 parameter for
the different cases studied are presented in Fig. 5. Unlike
the behavior found so far, it appears that the value of σ−1

presents an oscillation when this is plotted as a function
of the species size. It is interesting to note that for each
pattern studied, minimum values appear, as indicated in

TABLE I. Patterns, step iterations, and linear size of Sierpinski
carpets used in the present paper.

Pattern Step iteration (K) Linear size N

3 SC(3,1) 7 2187
4 SC(4,2) 5 1024
5 SC(5,3) 4 625
6 SC(6,4) 4 1296
7 SC(7,5) 4 2401
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FIG. 4. Jamming coverage as a function of linear k-mer size on different patterns as indicated (the lines are simply a guide for the eyes).

Fig. 5 (gray dots), only in multiples of L (which characterizes
each pattern). For example, for the surface characterized by
L = 3, minima occur when the linear species take the values

k = 3, 6, 9, 12, etc. For these k-mers, the time evolution toward
the jamming state is longer than that for the other species
size.
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FIG. 5. σ−1 as a function of k for different Sierpinski carpets as indicated (the lines are simply a guide for the eyes).
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FIG. 6. σ−1 as a function of both (a) the fractal dimension of the
surface and (b) the mean coordination number of the carpet for k = 3
and 4 as indicated. The vertical lines reflect the cases in which k is a
multiple of L.

To make more evident the connection between the geo-
metric aspect of the depositing particles and the substrate,
the behavior of the parameter that describes the RSA
process (σ−1 and the jamming coverage) is plotted as a
function of both the fractal dimension of the surface and
the mean coordination number of the carpets. The fractal
dimension is determined as in Fig. 1. The mean number
zeff(ld ; Nocc; K) of nearest neighbors per site with periodic
boundary conditions provides a convenient measure of the
mean local topology of these structures and their convergence
speed toward the thermodynamic limit. It can be shown
that [56–58]

zeff(l
d ; Nocc; K) = NI

Nocc − NS

[
1−

(
NS

Nocc

)K ]
+

(
NS

Nocc

)K

d,

(3)

where NS is the number of occupied sites on each hypersurface
of the generating cell, NI is the number of its internal bonds,
l is the size of the generating cell, d is the dimension of
embedding space, and Nocc is the number of occupied sites in
the generating cell. The lattice is generated by enlarging the
(K − 1)th iteration one by replacing each occupied site by the
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FIG. 7. Jamming coverage θj as a function of both (a) the fractal
dimension of the surface and (b) the mean coordination number of
the carpet for k = 3 and 4 as indicated. The vertical lines reflect the
cases in which k is a multiple of L.

whole generating cell. Strictly speaking, a Sierpinski lattice is
not a true fractal except that K tends to infinity.

Figures 6(a) and 6(b) shows that σ−1 grows upon decreasing
the fractal dimension and the mean coordination number
(here, only the cases k = 3 and 4 are shown). However, it
is important to emphasize that σ−1 presents relative minima
when the depositing species coincides with a multiple of L,
which characterizes each pattern. For the studied cases, the
minima appear for L = 3 and L = 6 (L = 4) in the case of
k = 3 (k = 4), which are shown by vertical lines in the figures.
Similar conclusions can be drawn from Figs. 7(a) and 7(b),
where the jamming coverage is plotted for the same conditions
as in Fig. 6. Both graphics show that the kinetic parameters
that determine the properties of the RSA of polyatomic species
on fractal structures are strongly influenced by both the main
characteristic of the surface where the particles are deposited
and the size of the k-mers.

1. L-shaped deposition

One may now be interested in studying how the k-mer–
geometry relation affects the RSA process. For this purpose,
the L-shaped deposition on Sierpinski carpets is analyzed by
calculating the main parameters θj and σ for different patterns.
In Figs. 8 and 9, the results obtained for all cases studied are
shown.
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The RSA of L-shaped deposition on this kind of deter-
ministic fractal presents the same behavior as that of linear
k-mers. However, notice that a significant decrease of jamming
coverage occurs when the k-mer sizes are greater than L, unlike
the linear case in which θj declines just for the k-mer size ∼= L.

The results for σ−1 obtained after properly fitting from
ln[θj − θ (t)] versus t/(N2) by Monte Carlo simulation are
presented in Fig. 9. An oscillating behavior can be observed for
the σ−1 parameter as a function of k-mer size. While minima
were observed for linear species, maxima appear when the size
of the species is just a multiple of L. It should be noted that the
kinetics of deposition depends on the degree of freedom of the
species, and L-shaped k-mers have a different dynamics [59]
from that of the linear particles. The increase in the value of the
parameter σ−1 indicates that the processing times are shorter
in these cases.

B. Spanning clusters of polyatomic species

Here, a similar analysis as discussed before will be per-
formed on statistical fractals. In this study, spanning clusters of
polyatomic species are used as substrates for the RSA process
of linear k-mers. As was mentioned above, these surfaces that
have been studied in previous works [43,44] are generated
from the random deposition process of polyatomic species.
In this study, our goal is to explore how the RSA process is
modified by the symmetry of a substrate.

Also considered is the study of RSA for linear h-mers on
a spanning cluster formed by linear and tortuous h-mers [self-
avoiding random walk (SAW) of length h)] for a given size h.
For clarity, h has been designated to identify the size of the
species that have formed the substrate, and k has been reserved
to refer to the size of the species involved in the process of
RSA on those surfaces.

The time evolution of the surface coverage in these
kinds of fractals presents the exponential behavior given by
Eq. (1). This dependence allows us to calculate, as was done
previously, the σ parameter from an appropriate linear fit.

1. Percolation clusters from linear polyatomic species

The jamming coverage was calculated for different surfaces
originating from linear h-mer deposition characterized by
h = 4, 5, 6, 7, and 9. In Fig. 10, θj is presented as a function
of k (where k refers to the species involved in the RSA
process). A well-defined maximum can be observed when
the k-mer size coincides with the size of the species that
formed the surface. The same behavior was observed above for
deterministic fractals, and it demonstrates a clear dependence
on the adsorbent structure.

The calculated values of σ−1 are presented in Fig. 11.
An oscillating behavior was again found as a function of the
adsorbed k-mer size, analogous to Sierpinski carpets. The gray
dots indicate peaks in σ−1 values, which emphasize that these
are produced, such as in the Sierpinski carpets, when the k-mer
size is a multiple of the h-mer generator.

It should be noted that these fractal surfaces have the
same fractal dimension, df , as in the case of a percolation
of monomers [43]. It is, therefore, of great interest to be able
to find quantities to describe them.
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FIG. 12. (a) Jamming coverage as a function of k for linear k-mers

deposited on spanning clusters formed from SAW species of h size.
(b) σ−1 as a function of k for different substrate characterized for h.
The lines are simply a guide for the eyes.

From the analysis of the quantities presented in the present
paper, it can be observed that this type of surface with well-
defined geometry has a significant effect on the irreversible
deposition process, which is reflected in both the limiting
jamming, θj , and the time of deposition, σ .

2. Percolation clusters from SAW polyatomic species

The behavior observed in both deterministic and statistical
fractals (formed from linear h-mers) shows a clear dependence
between the geometry of the adsorbent and the adsorbate. To
gain a deeper understanding of this behavior, the deposition of
linear k-mers on percolation clusters formed by SAW species
is studied. The results obtained for the jamming coverage are
presented in Fig. 12(a), where h indicates that the surface
was generated from species including all possible shapes of a
determinate size.

From this analysis, it can be observed that the jamming
coverage, θj , is independent of the adsorbent where the
deposition takes place, and it presents a monotonic decrease
as the size of the adsorbed species increases. Therefore, a
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measure of this quantity provides poor information about the
adsorbate as well as the adsorbent.

In Fig. 12(b), the values obtained for σ−1 are presented for
each case. A clear linear dependence can be observed for σ−1

as a function of the size of the adsorbed species. Although this
linear behavior presents different fitting parameters for clusters
formed from various SAW h-mer sizes, it does not provide
enough information to characterize the species involved in the
process. All of the reported dates were obtained by Monte
Carlo simulation as a result of an average performed on 103

samples of percolation clusters generated, for each case (size
and shape of h-mer), on square lattices of linear size N = 1000.
In these spanning clusters, 5 × 103 independent runs were
realized for each deposition.

IV. CONCLUSIONS

The study of random sequential and irreversible deposition
was performed on two types of fractal substrates: deterministic
and statistical. As deterministic fractals, several Sierpinski
carpets characterized by different fractal dimensions and
topologies were used. Percolation clusters formed from poly-
atomic species of different shapes and sizes (linear and SAW)
were selected as statistical fractals, which have the same fractal
dimension as in the simple percolation case [43,44].

The main results were as follows: (a) The jamming cover-
age, θj , presents a significant decrement when the deposited
linear k-mer size coincides with L (which characterizes the
generator cell), and for the L-shaped case it decreases when
the species size is greater than L. The same behavior is found

for spanning clusters formed from linear h-mers (>h). (b) The
time evolution parameter σ−1 presents oscillations (minima
and maxima) as a function of the adsorbed particle size.
These minima (maxima) appear when the size of the particle
is a multiple of L (L in the L-shaped k-mers case and h

for linear spanning clusters). (c) In the case of percolation
clusters formed from SAW h-mers, the main parameters
(θj and σ−1) provided very poor information with regard to
the substrate-adsorbate geometry.

The results mentioned in points (a) and (b) allow us to
conclude that the RSA process on heterogeneous surfaces,
which introduce symmetry (such as deterministic or statistical
fractals formed from species that introduce symmetry to the
surface), enables us to identify either the substrate (when the
adsorbed particle is known) or the adsorbed species (when
the adsorbent is known). In addition, these results suggest a
strategy for the identification and characterization of surfaces
or the deposited particles by means of experiments.
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