
CHAPTER SIX

Local Effective Hartree–Fock
Potentials Obtained by the
Depurated Inversion Method
Alejandra M.P. Mendez, Dario M. Mitnik1, Jorge E. Miraglia
Instituto de Astronomı́a y Fı́sica del Espacio (IAFE), CONICET-Universidad de Buenos Aires, Buenos Aires,
Argentina
1Corresponding author: e-mail address: dmitnik@df.uba.ar

Contents

1. Introduction 118
2. Theory 119

2.1 HF Nodes and Derivatives 119
2.2 Inverted Effective Potentials 122
2.3 The Depuration Method 126

3. Results 127
4. Conclusions 128
Acknowledgment 130
Appendix 130
References 131

Abstract

In this work we show the results of a numerical experiment performed on the Hartree–
Fock (HF) wave functions in order to understand the relationship between the positions
of the orbital nodes and the inflection points (zeros of their second derivative). This anal-
ysis is equivalent to investigating the existence of a physical one-electron local potential
representing the interactions between the electrons. We found that with successive
improvements in the quality of the numerical methods, the nodes and the inflection
points systematically become closer. When the nodes coincide exactly with the inflec-
tion points, the existence of an effective local potential would be proven. However, this
requirement cannot be fulfilled unless an explicit constraint (missing in the standard
method) is incorporated into the HF procedure. The depurated inversion method
(DIM) was devised to obtain detailed nl-orbital potentials for atoms and molecules.
The method is based on the inversion of Kohn–Sham-type equations, followed by a
further careful optimization which eliminates singularities and also ensures the fulfill-
ment of the appropriate boundary conditions. The orbitals resulting from these poten-
tials have their internal inflection points located exactly at the nodes. In this way, the
DIM can be employed to obtain effective potentials that accurately reproduce the
HF orbitals.
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1. INTRODUCTION

The Hartree–Fock (HF) method is one of the best known and most

commonly used approximation procedures to solve atomic, molecular, and

solid systems because it greatly simplifies the problem of many electrons

moving in a potential field. The method assumes, in accordance with the

independent particle approximation and the Pauli exclusion principle, that

the exact many-body wave function has the form of an antisymmetrized

product of one-electron orbitals. After a self-consistent variational approach

has been applied, a set of coupled equations for the orbitals is derived.

Besides the minimization of the energies, the orbitals defining the wave

function of the system are required to be orthonormal to each other. No

further restrictions are imposed on the solutions.

In the present work, we will focus on the nodes of the HF orbitals and

the radial location of their inflection points (the zeros of their second deriv-

ative). We will examine whether the orbital nodes can also be inflection

points. Our investigation is based on a numerical experiment that studies

in detail the influence of the methods employed for solving the HF equa-

tions on the radial location of the nodes and inflection points of the orbitals.

The relative positions of these zeros are very important, since if they were

not exactly at the same place, it would be impossible to obtain, through

inversion, physical effective local potentials representing the interaction

between the electrons. Based on our findings, we are tempted to postulate

that although it is not explicitly required in any HF procedure, the nodes of

the orbitals must also be turning points.

In a previous study,1 a depuration inversion method (DIM) was devised.

The method is based on the inversion of one-electron Kohn–Sham (KS)

equations, whose solutions have been replaced by HF orbitals and energies.

A further optimization procedure allows well-behaved effective potentials

to ensue which, in turn, reproduce the original HF solutions very accurately.

However, the new solutions have the advantage of having their internal

inflection points located exactly at the same place as their nodes. Thus,

our method can be considered as a means to introduce this additional con-

straint into the HF orbitals.

The chapter is organized as follows. In Section 2.1 the relative radial

positions of the nodes and inflection points of the HF orbitals and their rela-

tionship with the accuracy of the computational calculations are analyzed.

The origin of unphysical singularities in the effective potentials, due to
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the inversion procedure, is described in Section 2.2. The characteristics of

these features are also analyzed in terms of the accuracy of the numerical cal-

culations. In Section 2.3 the DIM method, conceived for handling the

numerical problems encountered in the inversion procedure, is briefly for-

mulated. Section 3 shows an example of how we are able to obtain local

effective potentials that accurately replicate the HFwave functions by apply-

ing the DIM method. Atomic units are assumed throughout, unless stated

otherwise.

2. THEORY

2.1 HF Nodes and Derivatives
In this section we study the nodes of HF orbitals and their inflection points.

The analysis is supported by using an example (the 2s orbital of the magne-

sium atom), however, the conclusions are valid for all the atoms, for any

level. The orbital uHF
2s and its second derivative uHF00

2s (multiplied by 0.1)

are shown in Fig. 1 with solid and dashed lines, respectively. The orbital

has one node and two inflection points. One of them, the external, is placed

at r � 0.9 a.u. corresponding to the classical turning point. Beyond that

point, the orbital decreases exponentially. The internal inflection point

(r� 0.18 a.u.) is located, at first glance, at the same radius as the orbital node.
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Fig. 1 Hartree–Fock orbital uHF2s (solid line) and scaled (�0.1) second derivative uHF
00

2s
(dashed line) corresponding to the ground state of magnesium atom.
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A question arises concerning the coincidence of the location of these

points: is this the consequence of a restrictive condition of the HF method

or is it just a fortuitous outcome? The later possibility is discarded since the

same results are found systematically in all the orbitals of any atom. How-

ever, if this is a strict requirement, one should expect an explicit constraint

in the HF procedure, forcing that. Moreover, a more meticulous inspection

of the calculated orbital (see inset of Fig. 1) shows that the inflection point

(dashed line) is not located exactly at the node position. Defining Δr as the
distance between the node of the orbital uHF

nl ðrÞ and the closest zero of the

corresponding second derivative uHF00
nl ðrÞ, there is a distance of Δr ¼ 10�3 a.u.

between these zeros in the 2s orbital example. We found about the same Δr
in many other cases. Of course this distance can be considered negligible

but there is no constraint within the HF procedure, imposing the exact

coincidence of both positions.

In spite of that, one could expect that both zeros (orbital and second

derivative) must coincide exactly, i.e., the nodes must also be internal

inflection points. More precisely, one may be inclined to think that Δr
should be exactly zero. If this hypothesis is proven to be true, it could

be added as a constraint when performing HF calculations. The numerical

experiment designed to scrutinize this hypothesis consists in performing

variousapproximations with successive improvements of their accuracy,

examining the behavior of the correspondingΔr. The quality of the numer-

ical methods for solving the HF equations can be evaluated through the var-

iation of the numerical algorithm accuracy order and by changing the

density of points of the numerical grids. In the present work we used the

linear multistep Adams–Moulton method for the differential equations

and the Lagrangian differentiation method for the derivatives. The method-

ology proposed is implemented by modifying the NRHF code by Johnson

(see Ref. 2 for further details), which uses eighth-order approximations as

default. Nevertheless, the same results and conclusions were obtained with

other codes, for example, the HF code by Fischer.3

Fig. 2 shows the HF orbitals uHF
2s (solid lines) and their second derivative

uHF00
2s (dashed lines) in the proximity of the node. The least accurate calcu-

lation, in which all numerical methods are taken at their first order, is shown

in Fig. 2A. In this calculation we used a numerical grid with 200 points—the

minimum number needed to achieve convergence. This gave the biggest

value for Δr ¼ 8 � 10�3. Increasing the grid density to 400 points, this dis-

tance decreases significantly, Δr ¼ 4 � 10�3, as shown in Fig. 2B. The best
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calculation performed is shown in Fig. 2C. In this case, an eighth-order

approximation was considered in all the computational methods and a

numerical grid of 1000 points was used. This arrangement led to the smallest

difference Δr¼ 1� 10�3. We were unable to obtain further improvements

by increasing the number of points.

We performed an additional calculation using the optimized effective

potential (OEP) method,4,5 developed by Talman.6 Fig. 2C also depicts

the orbital uOEP
2s near the node with dot-dashed line. However, because

of the local character of the potential, its second derivative uOEP00
2s —dotted

line—is zero at the node.

We have recently developed the DIM1 that enables one to acquire effec-

tive potentials which, in turn, reproduce the HF wave functions and ener-

gies very accurately. As we will see in the following section, the DIM

potentials are physical, i.e., they have no singularities and they have the

appropriate boundary conditions. The resulting orbitals have nodes that

are also inflection points, a characteristic missing from the original HF

orbitals. Unlike the OEP, the DIM effective potentials are orbital specific.

This allows to obtain orbital inner shells energies much more accurately.
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Fig. 2 Hartree–Fock orbital uHF2s and uHF
00

2s (solid and dashed lines) when using (A) 200,
(B) 400 points grid, and first-order approximations; (C) 1000 points grid and eighth-order
approximation, uOEP2s and uOEP

00
2s (dot-dashed and dotted line).
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2.2 Inverted Effective Potentials
There are several methods to obtain effective potentials that describe a

many-electron system. In principle, there is a direct way of calculating such

potentials when the wave function is known, by inversion of the

corresponding Schr€odinger equations. The inversion scheme has been

applied in different frameworks, from the density functional theory7–9 to

exact soluble models.10 The procedure has been also applied in the calcula-

tion of atomic polarizability11,12 and photoionization processes of atoms13,14

and molecules.15–17

In our methodology,1 we assume that the HF is turned into a set of

KS-type equations, whose solutions are the HF orbitals and energies:

�1

2

d2

dr2
+
lðl +1Þ
2r2

+VHF
nl ðrÞ

� �
uHF
nl ðrÞ¼ εHF

nl uHF
nl ðrÞ : (1)

The direct inversion of Eq. (1) leads to effective nl-specific inverted

potentials,

VHF
nl ðrÞ¼�1

2

uHF00
nl ðrÞ
uHF
nl ðrÞ

+
lðl+1Þ
2r2

�εHF
nl : (2)

The direct computation of this equation is known to pose serious

numerical problems.18 The presence of genuine nodes in the orbitals can

lead to the existence of poles and unphysical features around them. From

Eq. (2) it is clear that the requirement ofΔr¼ 0 is an unavoidable imposition

in order to allow the existence of an effective potential free of singularities.

An additional difficulty arises at large radii. If the exponential decay of the

orbitals is not rigorously reproduced by the second derivatives, the effective

inverted potentials may diverge.

Both problems are illustrated in Fig. 3. In this figure we show the effec-

tive potential VHF
2s ðrÞ corresponding to the 2s orbital of Mg (in dashed line).

The figure shows that the inverted potential exhibits a singularity at r� 0.18

a.u., which corresponds to the genuine node of uHF
2s . As discussed above, the

radial position of the inflection point is not located exactly at the node of the

orbital (they are separated by Δr). This distance remains nonzero, even

within a calculation at the highest order of accuracy, preventing complete

cancellation of the node in the denominator of Eq. (2), and is responsible

for the unphysical pole. The other unphysical divergence of the potential

at r > 3 a.u. (inset) is a consequence of the asymptotic exponential decay

of the orbital, unbalanced by its second derivative.
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A physical effective potential will allow generation of the corresponding

structure of the system in a simple way. For example, for scattering process

calculations it is convenient that the bound and continuum states should be

computed on an equal footing. Nonetheless, requiring the existence of such

a physical effective potential is not merely a demand of the atomic collision

community. This requirement would be equivalent to imposing a Δr ¼ 0

constraint in the HF procedure.

In the following, we will repeat the analysis performed above, but now

the accuracy of the numerical methods involved in the calculations will be

related to the appearance of the singularities of the effective potentials. To

avoid handling the natural divergence due to the nucleus at the origin, we

defined an effective inverted charge,

ZHF
nl ðrÞ¼�rVHF

nl ðrÞ : (3)

The effective charge around the node located at r� 0.18 a.u. is shown in

Fig. 4. The least accurate calculation, using only first-order approximations

and 200 points in the numerical grid (dotted line), produces a relatively wide

pole (its width is about 0.3 a.u.). By increasing the accuracy of the numerical

methods and the density of points in the grid to eighth order and 1000 points

(dashed line), respectively, we are able to reduce this width by an order of

magnitude. A pole-less physical potential would allow to obtain, by solving
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Fig. 3 Inverted VHF
2s (dashed line) and depurated inverted VDIM

2s (solid line) potential of the
2s orbital of magnesium atom.
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the corresponding Schr€odinger equation, orbitals having the internal inflec-
tion points at exactly the same location as its nodes.

The other feature of the potential considered above, related to its

unphysical divergences at large distances (as a consequence of the different

decreasing behavior between the wave functions and its second derivatives),

can also be analyzed in terms of the accuracy of the numerical algorithms. In

Fig. 5 we show the three calculations discussed previously. The least accurate

calculation, corresponding to the first order in the numerical approximations

(dotted line), shows a starting divergence at r� 2 a.u. Still, the best results for

the effective inverted charge (dashed line) begin to diverge beyond 3 a.u.

We noticed an additional problematic feature in the HF solutions: the

solutions may have oscillations (and therefore, spurious nodes) at the large

r or “tail” region of the functions. These oscillations have already been

pointed out by Fischer.3 This failure to properly represent the orbitals is

not caused by the numerical procedure but it is inherent to the method.

Probably, due to the nonlocal character of the HF wave functions in which

the behavior of a particular orbital depends on all others, these nodes may be

attributed to surviving long-range exchange effects. Noticeably, we found

the same spurious nodes at the same radial location even in calculations per-

formed by using different numerical codes. As a general rule, the spurious

nodes appear at very long distances, in regions where the amplitude of

the orbital is very small. Therefore, their existence has no practical conse-

quences and they can be effectively ignored in general.
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Fig. 4 Effective inverted charges around the node of uHF2s of Mg when different orders in
the numerical method and grid densities are used.
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For example, the 1s orbital of the argon atom is nodeless, and it becomes

practically zero for r � 0.5 a.u. However, a closer inspection shows a spu-

rious node in the very large r region (at r� 1.08 a.u. as seen in Fig. 6A). Since

the amplitude of the oscillation (see inset) is of the order of 10�4, it passes

generally unnoticed. Nonetheless, within the inversion scheme, the spuri-

ous node produces devastating effects. Evidence of this is the huge peak of
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Fig. 5 Effective inverted charges computed with different orders in the numerical
method and grid densities in the uHF2s of Mg atom.
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Fig. 6 (A) Hartree–Fock orbital uHF1s and (B) effective inverted charge ZHF
1s of the 1s orbital

of argon.
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the effective charge ZHF
1s ðrÞ, as seen in Fig. 6B. As a matter of fact, the sin-

gularity is so big that it affects a broad range and causes the abrupt divergence

of the effective charge for r� 0.3 a.u. This is really spectacular since a priori,

there is no reason to suspect that a negligible oscillation in the tail of the wave

function would produce such a big drawback at small distances. As a rule of

thumb, we found that atoms with nuclear charge ZN � 13 have spurious

nodes, generally, in their most inner shells.

2.3 The Depuration Method
In order to deal with the problems of the inversion, we developed a com-

plementary procedure. The depuration method consists, first, in erasing the

unphysical poles and divergences from the inverted charges. Then, a para-

metric ad hoc formula is proposed in order to produce an analytic approx-

imation to the charges. The physically correct boundary conditions are

imposed through the proposed formula. The resulting effective potentials

are thenwell behaved, without any singularity or divergence. A further opti-

mization of the depurated potential is carried out. By solving iteratively the

corresponding Schr€odinger equation, orbitals uDIM
nl , and energies εDIM

nl are

obtained. Meanwhile, the fitting parameters are adjusted until the potential

VDIM
nl reproduces the original HF solutions with high accuracy.

Wemanaged to constrain the potentials to have the right-boundary con-

ditions by forcing the depurated inverted charge to behave as follows:

ZDIM
nl ðrÞ��rVDIM

nl ðrÞ ! ZN as r! 0

1 as r!∞

�
(4)

whereZN is the nuclear charge. Once the charge is determined at the bound-

aries, we can obtain a smooth analytic expression for ZDIM
nl ðrÞ by fitting

ZHF
nl ðrÞ in the largest possible range, except at the regions where the charge

has unphysical behavior (see Appendix for more details). This can be

accomplished by enforcing the effective DIM charge to adjust the follow-

ing analytical expression:

ZDIM
nl ðrÞ¼

X
j

Zje
�αj r +1 : (5)

The asymptotic behavior defined by Eq. (4) is naturally fulfilled. In order to

comply with the boundary condition at the origin, a further condition,

ΣZj ¼ ZN � 1, is required for the fitting parameters.
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The minimization of the adjustment parameters, Zj and αj, must be done

carefully. Special attention should be paid to the adjustment region and the

initial seeds chosen for the parameters. The fitting region is manually deter-

mined, that is, many points belonging to the original HF wave function

should be discarded during the inversion procedure. Only the regions of

the inverted charge with physical behavior must be preserved and consid-

ered, in such a way that ZDIM
nl overlaps the inverted ZHF

nl over a wide range.

The unphysical behavior of the singularities and divergences are discarded.

As the amplitude of the wave function becomes too small, the inversion

must stop. Otherwise, the procedure diverges.

The most used optimization quantity in variational density functional

approximation methods is the energy (some others consider the density).

Although the minimization of the energy is a very important criterion, it

is only one of the many observables that characterizes a quantum state. It

has been proven that different functions (with different shapes) can produce,

through a variational procedure, the same final energy. For instance

Bartschat et al.19,20 showa case inwhich twodifferent potentials (onehaving

exchange, the other neglecting it) led to very similar and accurate energies of

the Rydberg series in several quasi-one-electron systems. However, a fur-

ther examination of these potentials shows large discrepancies in scattering

calculations.21 Therefore, in addition to the energy, we have added the

mean values of the orbitals as parameters in our variational procedure. This

is achieved by optimizing the mean values h1/ri (which characterize the

quality of the wave function near the origin), and hri (probing it at longer
distances).

3. RESULTS

We denoted as uDIM
nl and εDIM

nl the solutions obtained when the

Schr€odinger equation is solved with the depurated inverted potential VDIM
nl .

In previous work,1 the DIM was applied to ground state HF orbitals of

several noble gases (He, Ne, Ar, and Kr) and the nitrogen atom. The poten-

tials VDIM
nl obtained reproduce wave functions and energies that agree with

the HF ones with great accuracy. As a result of applying the depurated pro-

cedure, the singularities and divergences of the inverted potentials have been

completely removed, and theVDIM
nl potentials attained give a physically cor-

rect description of the problem.
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Continuing with the example discussed in the previous section, a com-

parison between the DIM uDIM
2s and the HF uHF

2s orbitals of magnesium (and

their corresponding second derivatives) is given in Fig. 7. The figure

reproduces the inset of Fig. 1, additionally showing the DIM results (the

corresponding VDIM
2s potential is depicted in Fig. 3 with solid line). As stated

above, the distance Δr, computed with eighth-order numerical approxima-

tions, between the nodes of uHF
2s —dotted line—and the zero of its second

derivative uHF00
2s —dashed line—was found to be 1 � 10�3. On the other

hand, by using the VDIM
2s potential, we obtained that the DIM second deriv-

ative uDIM00
2s —dotted line—is zero exactly at the radius where the wave func-

tion uDIM
2s —dash-dotted line—has a node.

As indicated previously, the conclusions reached here are general. They

are valid for any other atom and for any level. We present the results for two

additional atoms, boron and magnesium, in Table 1. The fitting parameters

Zj and αj, defining the DIM charges (Eq. 5), allow to obtain orbital-specific

potentials that, by solving the corresponding Schr€odinger equation, replicate
the original HF solutions within 1% and fulfill the Δr ¼ 0 constraint.

4. CONCLUSIONS

The nodes and inflection points of the HF orbitals have been studied

in detail. The influence of the quality of the numerical method used in the

HF procedure was investigated. This was evaluated through the variation of

the accuracy of the numerical algorithms and by changing the density of

points in the numerical grids. The study showed that as the numerical quality

0.179 0.18 0.181 0.182
r (a.u.)

−0.01

0

0.01

Δr

Fig. 7 Hartree–Fock orbital uHF and corresponding second derivative uHF
00
(solid and

dashed lines), DIM solved uDIM and uDIM
00
(dot-dashed and dotted lines) for 2s orbital of

magnesium.

128 Alejandra M.P. Mendez et al.



is improved, the distance Δr between the nodes of the HF orbitals and their

inflection points became smaller. Further studies, considering higher orders

in the numerical approximations, will allow one to perform an even more

exhaustive inspection of these distances.

Therefore, one may propose the following hypothesis regarding these

points: the nodes must be also inflection points. The similarities between

Table 1 Fitting Parameters for the Effective Charges of B and Mg Atoms
for the Analytic Expression (5)

nl Z α

B 1s 0.753400 6.14048

1.43216 0.867257

1.81444 0.905245

2s 1.86154 1.10868

0.153402 0.112430

1.77713 2.40745

0.207928 8.91487

2p 1.69748 0.708184

2.26098 3.54786

0.041540 0.111029

Mg 1s 7.17402 1.31135

3.38548 5.56370

0.440500 1.26701

2s 8.05058 3.30677

2.74598 0.437365

0.203440 22.3945

2p 7.48607 2.78041

1.28841 9.84139

2.22552 0.475696

3s 4.07701 6.01398

6.18574 1.78888

0.73725 0.665093
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the OEP and the HF orbitals would suggest a way to endorse this premise.

The conjecture may or may not prove to be true. Subsequent work should

be done in order to settle this, one way or the other. If the conjecture is true,

it could be added as a constraint when performing the HF calculations. This

would also imply that there exists a local potential that generates the HF

orbitals.

The DIM, briefly reviewed here, allows effective potentials to be

obtained that, by solving the corresponding Schr€odinger equation, generate
orbitals and energies that agree with the HF solutions with great accuracy.

The method consists in considering the direct inversion of KS-type equa-

tions with HF solutions, and a further optimization. The depuration method

imposes physically correct boundary conditions and a specific analytical

expression for the inverted potentials.

We asserted that there is a direct relationship correlating the distances

between the nodes and the inflection points and the unphysical behavior

of the inverted potentials. We concluded that by generating the physically

DIM effective potentials, we are able to obtain (after its diagonalization)

orbitals that comply the hypothesis and reproduce the HF solutions very

accurately.
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APPENDIX

The adjusting procedure consists in minimizing the function

βðxiÞ¼ yðxiÞ� f ðxi,λ1,λ2,…,λmÞ, (A.1)

which is the difference between the curve to be adjusted, y(r), and the

adjusting function, f(r). In the depurated inversion scheme, yðrÞ¼ZHF
nl ðrÞ

corresponds to the inverted charge, and f ðrÞ¼ZDIM
nl ðrÞ corresponds to

the analytical form we have set up for it (Eq. 5). In order to minimize

β(xi) respect to the m parameters λj that determine f, we define the matrix

elements Aij,

Aij � dβðxiÞ
dλj

¼ df ðxi,λ1,λ2,…,λmÞ
dλj

(A.2)
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Then, we obtain the system of equations

dβðx1Þ
dβðx2Þ

⋮
dβðxnÞ

2
664

3
775¼

A11 A12 ⋯ A1m

A21 A22 ⋯ A2m

⋮ ⋮ ⋱ ⋮
An1 An2 ⋯ Anm

2
664

3
775

dλ1
dλ2
⋮
dλm

2
664

3
775: (A.3)

By multiplying both sides of the equation with transpose matrix [A]T,

A½ �T A½ � dλ½ � ¼ A½ �T dβ½ �, (A.4)

we are able to get a system of equations that can be solved with standard

numerical routines. The solution [dλ] allows one to obtain the best param-

eters that minimizes [β].
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