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SUMMARY

The first period-doubling bifurcation of a dc–dc buck converter controlled by a zero-average dynamic
strategy is studied in detail. Owing to the saturation of the duty cycle, this bifurcation is followed by a
border-collision bifurcation, which is the main mechanism to introduce instability and chaos in the circuit.
The multiparameter analysis presented here leads to a complete knowledge of the relatioship between
these two bifurcations. The results are obtained by using a frequency-domain approach for the study of
period-two oscillations in maps. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A dc–dc power converter is an electronic circuit for the purpose of modifying or controlling power
from one form to another, generally via a switching action. The basic topologies are known as
buck and boost converters. In a buck converter, the output voltage is smaller than the input voltage.
The opposite is true for the boost converter [1, 2].

Power converters are usually modeled by a set of ODEs with discontinuous right-hand side,
reflecting the ideal behavior of the electronic switches. Nowadays, most converters are designed
to operate periodically under a fixed frequency clock and the control signal (derived from voltage
and/or current measures) is the time lapse in which switches are opened or closed during that
period. This fixed-frequency PWM behavior makes it possible to find nonlinear maps that describe
the current state of the circuit as a function of the state in the previous period [3–5]. It has
been widely demonstrated in the literature [6–16] that these nonlinear discrete-time models are
more versatile to describe the appearance of different dynamical scenarios (e.g. period-doubling
bifurcations, Neimark–Sacker bifurcations, discontinuity-induced bifurcations and even chaos)
detected in the practice.

A buck converter controlled by a zero-average dynamic (ZAD) strategy is studied in this paper.
Fixing the desired output voltage, the control consists basically in obtaining the appropriate duty
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cycle of the switches by making zero in average certain surface of the system variables. First
proposed in [17], this strategy can be seen as a practical way to implement sliding-mode control
since it keeps robustness but operates at a fixed switching frequency. Owing to the inherited discon-
tinuities in their dynamics, the use of sliding-mode laws for controlling dc–dc converters implies
the operation at variable switching frequencies, leading to undesirable chattering phenomena.
Experimental results comparing the performance of these algorithms can be found in [18, 19].

The dynamical behavior of ZAD-controlled buck converter has been the subject of extensive
research [20–25]. It is well known that the operating point of the system becomes unstable and a
period-two orbit emerges around it with the variation of a parameter. In [21], it has been shown
that this first period-doubling bifurcation is very rapidly followed by a discontinuity-induced
bifurcation, known as a border-collision bifurcation, due to the saturation of the duty cycle. This is
the main mechanism for introducing chaos, which is observed for further values of the parameter.
In [23, 25], it is reported that the variation of an additional parameter leads to a complex bifurcation
scenario consisting of period-doubling bifurcations alternating with corner-collision bifurcations.
The change in the dynamics of a power converter when two parameters are varied has always
received considerable attention [4]. However, the behavior of these circuits is actually defined by
more than two parameters.

The aim of this paper is to study the first period-doubling bifurcation exhibited by the ZAD-
strategy-controlled buck converter, relating it to the appearance of border-collision bifurcations.
In this sense, the variation of four distinguish parameters is considered: namely, a normalized
switching period T , a normalized time constant �, a normalized output voltage reference x1ref
and a control gain ks . The discrete-time nonlinear model of the converter is studied by using the
frequency-domain method for the analysis of period-doubling bifurcations proposed in [26]. By
means of an equivalent input–output representation, it is possible to obtain analytical expressions
of both the critical bifurcation point and the stability index (noted as �) of the emerging period-two
orbits.

The results presented here enhance the previous contributions [21, 23, 24] derived for specific
T and � values and using state-space methods. Specifically, the analysis not only contemplates
variation of more parameters but also considers augmented ranges. Moreover, a physical interpre-
tation (through index �) of why the birth of period-doubling and border-collision bifurcations can
occur on extremely small parameter intervals is given. This detailed information could also help to
explain some of the characteristics of the two-parameter bifurcation diagrams exhibited by other
dc–dc converters [4].

This paper is organized as follows: In Section 2, the frequency-domain approach for the study of
period-doubling bifurcations is briefly reviewed. In Section 3, the ZAD-strategy-controlled dc–dc
buck converter and the proposed discrete-time model are described. The analytical expressions
obtained by using the frequency-domain approach are included in Section 4. The multiparameter
analysis of the bifurcations exhibited by the system is presented in Section 5. Finally, some
concluding remarks are given in Section 6.

2. PRELIMINARY CONCEPTS

Traditionally, period-doubling bifurcations in maps are studied by means of the center manifold
theorem and the normal form theory [27]. The technique presented in [26] is developed in the
frequency-domain employing engineering tools, such as the Nyquist stability criterion, harmonic
balance method and Fourier series analysis. The so-called frequency-domain method usually makes
it possible to simplify the involved calculations.

The approach is based on the system representation shown in Figure 1, consisting of a closed-
loop connection between a m×� linear transfer matrix G(·) and a smooth (Cr with r�3) nonlinear
function f :Rm →R�. In the figure, l∈Rs is the parameter vector, z is the complex variable of the
z-transform, vk ∈R� is the input (assumed to be 0) and yk ∈Rm is the output. The fixed points ŷ of
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Figure 1. Block diagram of a input–output discrete-time system.

this representation are obtained by solving ŷ=−G(1;l)f(̂y;l) and the dynamical behavior around
ŷ is studied via the linearized system G(z;l)J(l) where J(l)= Dy f (̂y;l).‡

It is well known that the necessary condition for the existence of period-two oscillations in a
state-space map is that one of its eigenvalues crosses the point (−1) in the unit circle for l=lo. In
a input–output representation, this is equivalent to the requirement that the Nyquist diagram of one
eigenvalue of matrix G(z;l)J(l), denoted as �̂(z;l), crosses the critical point (−1+ i0) for l=l0
and z =−1. Based on [26], if this condition is verified, the procedure for the characterization of
the oscillations consists of:

(A) Calculate the right and left eigenvectors associated with �̂(−1;l),

uTG(−1;l)J(l) = uT̂�(−1;l),
G(−1;l)J(l)v = �̂(−1;l)v.

(B) Evaluate matrix H(1;l)= [I+G(1;l)J(l)]−1G(1;l).
(C) Build matrices Q={qij} and L={lij} as

qij =
m∑

p=1
D2

yp y j
fi (̂y;l)vp,

lij =
m∑

p=1

m∑
q=1

D3
yp yq y j

fi (̂y;l)vpvq ,

where i =1, . . . ,�, j =1, . . . ,m and vp, vq , fi (·) are the components of v and f(·), respectively.
(D) Find vectors v0 =−H(1;l)Qv/2 and p(l)=Qv0 +Lv/6.
(E) Obtain �(l)=−uTG(−1;l)p(l)/(uTv).
(F) Find �R ∈R from �̂(−1;l)=−1+�(l)�2

R for lR �=l0. If the solution exists, go to Step G;
otherwise, end the procedure.

(G) Calculate Y0 =�2
Rv0, Y1 =�Rv, and approximate the orbit as yk = ŷ+Y0 +Y1e�ik .

(H) Evaluate the stability index

�=− uTG(−1;l0)p(l0)

uT DzG(−1;l0)J(l0)v
. (1)

(I) If �>0(�<0), the period-two orbit is stable (unstable) and the bifurcation is said to be
supercritical (subcritical). However, if �=0, the bifurcation degenerates and the global
behavior will be more complex [28].

A map xk+1 =Axk +Bg(xk;l) with xk ∈Rn , A∈Rn×n (which may be 0), B∈Rn×� and g :
Rm ×Rs →R� can always be transformed in a system of the form of Figure 1 by choosing
G(z;l)=C[zI−(A+BDC)]−1B and f(yk;l)=Dyk −g(yk;l) where yk =Cxk and C∈Rm×n , D∈
R�×m are arbitrary. The representation is not unique and with the proper selection of C and D,

‡For the sake of simplicity, Dyf(̂y; ·)ij ={� fi (y; ·)/�y j }|y=̂y with f(·)= [ f1(·) . . . f�(·)]T and y= [y1 . . . ym]T; similar
expressions will be used for higher-order derivatives.
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(a) (b)

Figure 2. (a) Circuit diagram of a PWM-controlled buck converter and (b) scheme of a centered PWM:
the control u is equal to +1 the first and last d/2 time units, and −1 in the central part of the period.

the dimensions m and � can generally be made smaller than n, leading to more compact results
whose derivation could be cumbersome in the time-domain setting.

3. ZAD-STRATEGY-CONTROLLED DC–DC BUCK CONVERTER

The simplified diagram of the buck converter under study is depicted in Figure 2(a). The switches
supply the LC low-pass filter with voltages +E and −E during intervals of time governed by a
fixed-frequency PWM. The signal vref corresponds to the required output voltage on the load R.
Since only the regulation problem will be analyzed, vref is considered as a parameter.

Using the normalized variables x1 =vc/E , x2 = iL E−1√L/C , t =�/
√

LC and introducing
parameters �= R−1√L/C , x1ref =vref/E and T =Tc/

√
LC (where Tc stands for the switching

period), the state-space equations of the converter are given by

ẋ=Ax+Bu (2)

with

A=
[−� 1

−1 0

]
, B=

[
0

1

]
.

Since the switches are operated by a centered PWM (see Figure 2(b)), signal u is defined as

u =

⎧⎪⎨⎪⎩
+1 if kT �t�kT +d/2,

−1 if kT +d/2<t�kT +(T −d/2),

+1 if kT +(T −d/2)<t�kT +T .

(3)

where ratio d/T (0�d�T ), known as duty cycle, is the control variable used to make the output
x1 equal to the reference x1ref.

The ZAD-strategy used here to derive the switching time of the control signal u was first
proposed in [17] and studied in more detail in [20]. It can be considered as a modified version of
sliding mode control. Given a dynamical system ẋ= f(x) and a switching surface s(x)=0, sliding-
mode control is based on making the trajectories evolve on s(x)=0. Thus, s(x)=0 is fulfilled
while the system is on the sliding surface. In a ZAD-strategy, however, s(x)=0 is fulfilled only
in average.§ Mathematically, ET (s(x))=0, where

ET (s(x))= 1

T

∫ T

0
s(x(t))dt. (4)

§The ZAD-strategy can be seen as a weak version of sliding-mode. Certainly, if s(x)=0 then ET (s(x))=0 but not
conversely.
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Ideal sliding-mode is not directly implemented in discontinuous systems since it can result in an
infinite frequency operation. The ZAD-strategy responds to a practical way of using sliding-mode
control where the switching frequency is fixed a priori through parameter T .

Surface s(x) is considered here as in [29–31], i.e.

s(x)= (x1 −x1ref)+ks(ẋ1 − ẋ1ref) (5)

where ks is the time constant associated with the first-order dynamics on the surface s(x)=0.
The calculation of (4) with s(x) defined as (5) in each switching period involves the treatment
of a transcendental equation. The dynamical scenario obtained by using the analytical solution of
(4)–(5) is presented in [25]. Since it can be extremely complicated to implement such an expression
in the practice, it is preferable to consider a piecewise-linear approximation of the error surface, as
explained in [18, 20]. Hence, the duty cycle is computed in terms of the system states as d[kT ]/T
where

d[kT ]= T

2
− 	1x1[kT ]−x1ref+	2x2[kT ]

ks
(6)

with

	1 =1−ks�+ T

2
(ks�

2 −�−ks), 	2 =ks + T

2
(1−ks�)

and x1[kT ] and x2[kT ] as the state values at the beginning of each cycle [21]. Finally, taking
into account that d[kT ] should always belong to the interval [0, T ], it will be set d[kT ]=T if
d[kT ]�T or d[kT ]=0 if d[kT ]�0.

The aim of this paper is to characterize analytically the period-doubling bifurcations exhibited by
the system for different parameter values and under the condition 0<d[kT ]<T . For that purpose, a
nonlinear map modeling the state of the circuit at t = (k+1)T as a function of its state at t =kT will
be used. Integrating the linear equations resulting from (2)–(3) over a switching period, applying
some matrix properties and noting xk+1 =x[(k+1)T ], xk =x[kT ] and dk =d[kT ], the so-called
Poincaré map is given by

xk+1 =eAT xk +(eAT −I)A−1B−2eAT/2(eA(T −dk )/2 −e−A(T −dk )/2)A−1B. (7)

Based on the expression of matrix A and assuming that �<2, the following results

eAx =
[


12(x) 
2(x)

−
2(x) 
12+(x)

]
, (8)

(eAx −I)A−1B=
[

1−
12+(x)

�−�
12+(x)+
2(x)

]
, (9)

where 
12(x)=
1(x)−�
2(x)/2, 
12+(x)=
1(x)+�
2(x)/2, 
1(x)=e−1/2�x cos(�x/2),

2(x)=2e−1/2�x sin(�x/2)/� and �=

√
4−�2.

As the third term of (7) reveals, the variable dk appears on the argument of the exponential
matrices making the theoretical bifurcation analysis significantly difficult. This can be simplified
by considering the series expansion

eAx =I+
∞∑

n=1

1

n!
Anxn.

Thus, the terms in (7) depending on dk can be rewritten as

eA(T −dk )/2 −e−A(T −dk )/2 =2
∞∑

n=0

1

(2n+1)!
A2n+1 (T −dk)2n+1

22n+1
. (10)

The error in the computation of (10) when using a finite number of terms is analyzed in Appendix A.
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Then, substituting (8)–(9) into (7) and considering the terms up to the third order of (10), the
proposed map modeling the states of the ZAD-controlled buck converter for each period is given by

[
x1

k+1

x2
k+1

]
=

[

12(T ) 
2(T )

−
2(T ) 
12+(T )

][
x1

k

x2
k

]
+

[
1−
12+(T )

�−�
12+(T )+
2(T )

]

−2

⎡⎢⎢⎢⎣

2

(
T

2

)

12+

(
T

2

)
⎤⎥⎥⎥⎦ (T −dk)+ 1

12

⎡⎢⎢⎢⎣
�
12

(
T

2

)
+
2

(
T

2

)

12

(
T

2

)
⎤⎥⎥⎥⎦ (T −dk)3 (11)

dk = T

2
− 	1x1

k −x1ref +	2x2
k

ks
.

4. FREQUENCY-DOMAIN FORMULAE

The state-space system (11) can be recast as described in Section 2 choosing

A =
[


12(T ) 
2(T )

−
2(T ) 
12+(T )

]
, B=

[
1 0

� 1

]
,

C =
[

1 0

0 1

]
, D=

[
0 0

0 0

]
,

g(d̂k) =

⎡⎢⎢⎣ 1−
12+(T )−2
2

(
T

2

)
d̂k + 1

12

[
�
12

(
T

2

)
+
2

(
T

2

)]
d̂3

k


2(T )−2
12

(
T

2

)
d̂k + 1

12

[
(1−�2)
12

(
T

2

)
−�
2

(
T

2

)]
d̂3

k

⎤⎥⎥⎦ ,

d̂k = T

2
+ 1

ks
[	1 	2]yk− x1ref

ks
,

where d̂k =T −dk and yk =xk . Thus, one of the input–output equivalent representation of the
ZAD-controlled buck converter is given by

G(z) = q(z)−1

[
z−
12(T ) 
2(T )

�z−�
12(T )−
2(T ) z−
12(T )

]
,

f(yk) = −g(yk),

with q(z)= z2 −2
1(T )z+
1(T )2 +�2
2(T )2/4.
As mentioned before, fixed points ŷ can be obtained by solving the nonlinear equation

ŷ=−G(1)f(̂y). Since it is expected that the control strategy makes the output voltage equal to
x1ref, it is directly assumed that ŷ= [x1ref �x1ref]T . The linearization of f(·) in a neighborhood of
this fixed point is

J(ks)= 1

ks

[
J1

J2 −�J1

]
·[	1 	2]
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where

J1 = 2
2

(
T

2

)
− T 2

16

[

2

(
T

2

)
+�
12

(
T

2

)]
(1−x1ref)

2,

J2 = 2

[

12

(
T

2

)
+�
2

(
T

2

)]
− T 2

16

12

(
T

2

)
(1−x1ref)

2.

Since det[G(z)J(ks)]=0, the unique nontrivial eigenvalue of the system is

�̂(z;ks)= (	1 J1 +	2 J2)z−(	1
12+(T )+	2
2(T ))J1 +(	1
2(T )−	2
12(T ))J2

ksq(z)
.

The necessary condition for the existence of a period-doubling bifurcation is �̂(−1;ks)=−1+ i0.
Solving this equation, the critical value of the gain ks as a function of the rest of the parameters
can be written as

ksc = g1(T,�)+g2(T,�)(1−x1ref)2

g3(T,�)+g4(T,�)(1−x1ref)2
. (12)

where

g1(T,�) = 8

{
(1+
1(T ))

(
2
2

(
T

2

)
+T 
12

(
T

2

))

+
2(T )

[
(T −�)
2

(
T

2

)
+ 1

2
(T �−4)
12

(
T

2

)]}
,

g2(T,�) = T 2

4
(1+
1(T ))

[
(T �−2)
2

(
T

2

)
+(T �2 −2�−T )
12

(
T

2

)]

+T 2

8

2(T )

[
(T �2 −2�−2T )
2

(
T

2

)
+(T �3 −2�2 −3T �+4)
12

(
T

2

)]
,

g3(T,�) = 8

{
(1+
1(T ))

[
T 
2

(
T

2

)
+(T �−2)
12

(
T

2

)]

+1

2

2(T )

[
(T �−4)
2

(
T

2

)
+(T �2 −2�−2T )
12

(
T

2

)]
+q(−1)

}
,

g4(T,�) = T 2

4
(1+
1(T ))

[
(T �2 −2�−T )
2

(
T

2

)
+(T �3 −2�2 −2T �+2)
12

(
T

2

)]

+T 2

8

2(T )

[
(T �3 −2�2 −3T �+4)
2

(
T

2

)
+(T �4 −2�3 −4T �2 +6�+2T )
12

(
T

2

)]
.

Following steps A–H of Section 2, it is possible to determine the stability of the orbits exhib-
ited by the converter when (12) is verified. The eigenvectors associated to the linearized system
(step A) are

v=
[

v1

1

]
=

⎡⎢⎣ (1+
12+(T ))J1 −
2(T )J2

(1+
12(T ))J2 +
2(T )J1

1

⎤⎥⎦ , uT =
[

	1

	2
1
]
.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2012; 40:77–91
DOI: 10.1002/cta



84 M. B. D’AMICO ET AL.

The closed-loop matrix of Step B is

H(1;ks) = 1

r (1)

[
ksq(1)+h11 h12

h21 ksq(1)+h22

]
G(1),

h11 = (1−
12(T ))	2 J2 −
2(T )	2 J1,

h12 = −(1−
12+(T ))	2 J1 −
2(T )	2 J2,

h21 = −(1−
12(T ))	1 J2 +
2(T )	1 J1,

h22 = (1−
12+(T ))	1 J1 +
2(T )	1 J2,

r (1) = ksq(1)+h11+h22.

After some algebraic operations, matrices Q and L related to the derivatives of the nonlinear
function (step C) can be written as

Q = T (1−x1ref)(v1	1 +	2)(	1 +	2)

4k2
s

⎡⎢⎢⎢⎣
−
212

(
T

2

)
�
212

(
T

2

)
−
12

(
T

2

)
⎤⎥⎥⎥⎦ ,

L = 2(v1	1 +	2)

ks T (1−x1ref)
Q

with 
212(x)=
2(x)+�
12(x). Finally, calculating vectors v0 and p(ks) of step D at the critical
point, the stability index � (step H) is given by

�= (v1	1 +	2)2

96k2
sc

�1�2

�3
(13)

with

�1 =
[

212

(
T

2

)
(2+
1(T )+�
2(T ))−2
2(T )
12

(
T

2

)]
	1

+
[

2
212

(
T

2

)

2(T )+2(1+
1(T ))
12

(
T

2

)
−�
2(T )
12

(
T

2

)]
	2

�2 = 3T 2

4

(
�1 −4
212

(
T

2

)
	1 −4
12

(
T

2

)
	2

)
(1−x1ref)

2 −4r (1),

�3 = r (1)[J1	1 + J2	2 −2ksc(1+
1(T ))].

5. MULTIPARAMETER ANALYSIS

Based on expressions (12) and (13) derived above, the changes exhibited by the detected period-
doubling bifurcations under the variation of x1ref, T and � are described. The parameter values are
restricted according to the following practical and analytical considerations:

(i) |x1ref|�1. This range corresponds to the duty cycle limits (0�dk�T ).
(ii) 0<T � 2

3 . The switching frequency (or equivalently, for this case, the sampling frequency) of
the converter has to be greater than the cut-off frequency of the filter LC( f =1/(2�

√
LC)).
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Figure 3. Upper and lower bounds of ksc for 0<T < 2
3 and 0.2��<2.

Even though the theoretical minimum is 2 f , it is very common practice to choose switching
frequencies of around 10 f (i.e. Tc ≈�

√
LC/5). For this reason, it is considered that the

normalized period is smaller than 2
3 .

(iii) 0.2��<2. This interval is due to considerations of the previous section. The lower limit
is related to the expression of the equilibrium point. For �<0.2, ŷ depends strongly on
the parameter values, deviating from the assumption ŷ= [x1ref �x1ref]T. This difference
affects greatly the calculations of the critical gain. Thus, for example, deviations of around
10% from the actual ŷ can result in differences between (12) and the ksc values obtained
numerically of more than 50%. The upper limit is related to the exponential matrices (8–9).
For ��2, the eigenvalues of matrix A become real and the proposed solution for eAx is
not valid.

Within this parameter region, coefficients of the critical gain (12) satisfy g1(T,�)>0, g2(T,�)<0
and g3(T,�)>0 . However, the sign and magnitude of g4(T,�) in the denominator of (12) depends
on the � values. Nevertheless, it is explained in Appendix B that it is possible to find upper
and lower bounds for ksc. They actually correspond to evaluate (12) at x1ref =1 and x1ref =−1,
respectively. Thus,

g1(T,�)+4g2(T,�)

g3(T,�)+4g4(T,�)
�ksc�

g1(T,�)

g3(T,�)
.

The maximum and minimum of ksc as a function of T and � are shown in Figure 3. As it can be
observed, both surfaces approaches asymptotically as � increases, indicating that the influence of
x1ref over ksc could be neglected when � is big enough. Figure 4 depicts the critical period-doubling
curves obtained by fixing, for instance,¶ T =0.1767 and considering �=0.35, 0.85, 1.35 and 1.85.
In these cases, the variation of ksc for −1�x1ref�1 decreases‖ from 13.69% (�=0.35) to 1.85%
(�=1.85). These figures also show that the curves move to greater gain values as � decreases.

The stability of the bifurcations is determined by index (13). For any combination of x1ref,
T and � inside the proposed region, index � results greater than 0, so that the period-doubling
bifurcations exhibited by the system are always supercritical (i.e. period-two oscillations are stable
and they appear when the fixed point is unstable). Moreover, the magnitude of � is usually very
close to 0, indicating that oscillations tend to grow suddenly. The bifurcation diagrams given in
[20, 21] clearly present this behavior.

¶To facilitate the comparisons, the T value is the same used in the references [20, 21, 23].
‖Percentages of variation are measured with respect to minimum values, i.e. 100(max[ksc]−min[ksc])/min[ksc].
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Figure 4. Period-doubling curves for T =0.1767 and different � values: (a) �=0.35;
(b) �=0.85; (c) �=1.35; and (d) �=1.85.

For an arbitrary pair of (T,�) values, the influence of x1ref over the stability of the period-
doubling bifurcations can again be neglected. As an example, Figure 5 shows that the variation of
� over the curves of Figure 4 does not exceed the 8.5% in any of the four cases. Thus, bifurcations
corresponding to the same critical curve in Figure 4 are almost equal. As it is illustrated in
Figure 6 for T =0.1767, �=0.35 and different x1ref values, the bifurcation points change slightly
and branches grow all in the same way. Hence, the point of the upper branch where dk achieves T
(dk/T =1), i.e. where a border collision appears, is directly related to the level of the reference and
not to the growth of the bifurcation. As x1ref increases, the interval of ks where the period-doubling
bifurcation exists reduces, making the nonsmooth phenomena [20, 23] appear closer to the critical
gain ksc.

Changes in the � values are more visible when now parameters T and � are varied and x1ref is
fixed, as it is depicted in Figure 7. In particular, � clearly diminishes when T and � are close to their
upper limits, meaning that the branches of the period-doubling bifurcation grow more abruptly.
Figure 8 illustrates this behavior increasing � from 0.35 to 1.85 for T =0.1767 and x1ref =0.8. As
it can be seen, the greater the � value, the faster the growth of the branches (since � decreases
from 0.07799 to 0.06321). This phenomenon actually implies that the point where dk reaches T
(dk/T =1) will depend crucially on the � value for the same level of reference. In fact, the border
collision will be nearer the period-doubling bifurcation point as � increases (since � decreases).

It is worth mentioning that simulations concerning border-collision bifurcations have not been
presented in this section since this paper is mainly focused on the characteristics of their ante-
cessor. Different scenarios including both period-doubling and border-collisions bifurcations for
T =0.1767 and �=0.35 can be found in [23, 24].

6. CONCLUSIONS

This paper reported detailed analytical and numerical developments in the multiparameter study
of the first period-doubling bifurcation of a ZAD-strategy-controlled buck converter. Using a
frequency-domain approach, critical values for a relevant parameter ks as a function of the remaining
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Figure 5. Stability index values corresponding to the period-two critical curves of Figure 4.
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Figure 6. Period-doubling bifurcations for T =0.1767, �=0.35 and different x1ref values. The variation of
gain ks is defined as ksc ±4% in all cases: (a) x1ref =0.4; (b) x1ref =0.6; (c) x1ref =0.7; and (d) x1ref =0.8.

parameters were obtained, and a stability index was computed. It was demonstrated that for an
arbitrary pair of T and � values, the characteristics of the period-doubling bifurcation practically
keep unchanged. So, the point where a border collision appears is directly related to the reference
x1ref. Changes are visible when T and � are varied and x1ref is fixed. In particular, the appearance
of a border collision will be nearer the birth of the period-doubling bifurcation as � increases.
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Figure 8. Period-doubling bifurcations for T =0.1767, x1ref =0.8 and different � values. The interval of
variation of ks is [0.999ksc,1.001ksc]: (a) �=0.35; (b) �=0.85; (c) �=1.35; and (d) �=1.85.

Although the results were strictly restricted to the � interval where all analytical assumptions are
valid, it could be expected they were still correct for a wider range of this parameter.

APPENDIX A

The following reasoning is based on that presented in [5] for the approximation of transition
matrix eAx .

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2012; 40:77–91
DOI: 10.1002/cta



INFLUENCE OF PERIOD-DOUBLING BIFURCATIONS 89

The term in (7) depending on the control variable dk can be replaced by the infinite series

eA(T −dk )/2 −e−A(T −dk )/2 =2
∞∑

n=0

1

(2n+1)!
A2n+1 (T −dk)2n+1

22n+1
. (A1)

But, assuming that only the first N terms are used, i.e.

eA(T −dk )/2 −e−A(T −dk )/2 ≈A(T −dk)+·· ·+ 1

(2N +1)!
A2N+1 (T −dk)2N+1

22N
, (A2)

the error is given by

ε= 1

(2N +3)!
A2N+3 (T −dk)2N+3

22(N+1)
+ 1

(2N +5)!
A2N+5 (T −dk)2N+5

22(N+2)
+·· ·

An upper bound for the elements of matrix ε can be found by using the ∞-norm∗∗. Thus,

|εij| � 2
∞∑

n=N+1

1

22n+1(2n+1)!
|(i, j) element of(A(T −dk))2n+1|

� 2
∞∑

n=N+1

1

22n+1(2n+1)!
‖A(T −dk)‖2n+1

� ‖A(T −dk)‖2N+3

22(N+1)(2N +3)!

(
1+ ‖A(T −dk)‖2

22
+ ‖A(T −dk)‖4

24
+·· ·

)
Considering that ‖A(T −dk)‖<2, the infinite series in the right side of the inequality converges.
Hence, an upper bound ϑ of the error is

ϑ= ‖A(T −dk)‖2N+3

22(N+1)(2N +3)!

(
1− ‖A(T −dk)‖2

4

) .

For the ZAD-controlled buck converter under study, ‖A(T −dk)‖�(�+1)T so that parameter
values should verify T <2/(�+1). Thus, for example, if (A1) is replaced by (A2) with N =1,
the error for T = 1

2 and �=1 is ϑ�6.94×10−4, meaning that this number of terms represents a
reasonably close approximation for the involved matrices. In fact, it can be seen that (A2) with
N =1 works properly even if T >2/(�+1).

APPENDIX B

The upper bound for the critical gain ksc is deduced in the following. The lower bound can be
found a similar way.

Within the parameter region defined in Section 5, it can be seen that g1(T,�)>0, g2(T,�)<0,
g3(T,�)>0 and also |g1(T,�)|>>4|g2(T,�)|. Furthermore, g1(T,�)+g2(T,�)(1−x1ref)2>0
because (1−x1ref)2�4. However, the sign and magnitude of g4(T,�) in the denominator of (12)
depends on the � values.

If g4(T,�)>0, it results g3(T,�)+g4(T,�)(1−x1ref)2>0. Furthermore,

0<1+ g2(T,�)

g1(T,�)
(1−x1ref)

2�1�1+ g4(T,�)

g3(T,�)
(1−x1ref)

2.

∗∗The ∞-norm of a matrix A is defined as ‖A‖=maxi
∑

j |aij|. In particular, |aij|�‖A‖ for all i and j .
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Rewriting (12) as

ksc = g1(T,�)

g3(T,�)

1+ g2(T,�)

g1(T,�)
(1−x1ref)2

1+ g4(T,�)

g3(T,�)
(1−x1ref)2

, (B1)

it can be affirmed that

ksc�
g1(T,�)

g3(T,�)
.

If g4(T,�)<0, it results again g3(T,�)+g4(T,�)(1−x1ref)2>0 since |g3(T,�)|>>4|g4(T,�)| and
0�(1−x1ref)2�4. Moreover, it is obtained that

g2(T,�)

g1(T,�)
<

g4(T,�)

g3(T,�)
.

Thus,

0<1+ g2(T,�)

g1(T,�)
(1−x1ref)

2<1+ g4(T,�)

g3(T,�)
(1−x1ref)

2,

and taken into account (B1), it can be deduced that

ksc�
g1(T,�)

g3(T,�)
.
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17. Fossas E, Grinó R, Biel D. Quasi-sliding control based on pulse width modulation, zero average and the l2 norm.
In Advances in Variable Structure System, Analysis, Integration and Applications, Yu X, Xu JX (eds). World
Scientific Co.: 2001.

18. Biel D, Fossas E, Ramos R, Guinjoan F. Implementación de controles pseudo-sliding en sistemas conmutados
(in spanish). Congreso Latinoamericano de Control Automático, Guadalajara (Mexico), 2002.
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