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Bouligand-Severi tangents in MV-algebras

Manuela Busaniche and Daniele Mundici

Abstract. In their recent seminal paper published in the Annals of Pure
and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly
semisimple if all principal quotients of A are semisimple. All boolean
algebras are strongly semisimple, and so are all finitely presented MV-
algebras. We show that for any 1-generator MV-algebra, semisimplicity
is equivalent to strong semisimplicity. Further, a semisimple 2-generator
MV-algebra A is strongly semisimple iff its maximal spectral space µ(A) ⊆
[0, 1]2 does not have any rational Bouligand-Severi tangents at its rational
points. In general, when A is finitely generated and µ(A) ⊆ [0, 1]n has
a Bouligand-Severi tangent then A is not strongly semisimple. An MV-
algebra A is strongly semisimple iff so is every two-generator subalgebra
of A.

1. Introduction

We refer to [4] and [8] for background on MV-algebras. Following Dubuc and
Poveda [5], we say that an MV-algebra A is strongly semisimple if for every princi-
pal ideal I of A the quotient A/I is semisimple. Since {0} is a principal ideal of A,
every strongly semisimple MV-algebra is semisimple. The definition of “logically
complete” MV-algebras in [1] is a variant of this notion, where one further as-
sumes I 6= {0}. The paper [7] is devoted to the frame-theoretic variant of strongly
semisimple MV-algebras, called “Yosida frame”. All these papers, along with the
results of the present paper, show that strong semisimplicity is a very interesting
purely algebraic counterpart of the simplicial, topological, and differential struc-
ture of MV-algebras. Further, from the logical viewpoint, 4.3 in [9] shows that
strongly semisimple MV-algebras coincide with Lindenbaum algebras of theories
Θ in infinite-valued  Lukasiewicz logic having the following property: for any for-
mula ψ, the set of syntactic consequences of Θ ∪ {ψ} coincides with the set of
(Bolzano-Tarski) semantic consequences of Θ ∪ {ψ}.
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From a classical result by Hay [6] and Wójcicki [14] (also see 4.6.7 in [4] and 1.6
in [8]), it follows that every finitely presented MV-algebra is strongly semisimple.
Trivially, all hyperarchimedean MV-algebras, whence in particular all boolean al-
gebras, are strongly semisimple, and so are all simple and all finite MV-algebras,
(see 3.5 and 3.6.5 in [4]).

For any real-valued function g we will write Zg = g−1(0) for its zeroset.
Our paper is devoted to n-generator strongly semisimple MV-algebras. When

n = 1 strong semisimplicity is equivalent to semisimplicity (Theorem 5.1). To
deal with the general case, we first recall that the free n-generator MV-algebra is
the MV-algebra M([0, 1]n) of all McNaughton functions f : [0, 1]n → [0, 1], with
pointwise operations of negation ¬x = 1 − x and truncated addition x ⊕ y =
min(1, x+ y). See 9.1.5 in [4].

For any nonempty closed set X ⊆ [0, 1]n we let M(X) denote the MV-algebra
of restrictions to X of the functions in M([0, 1]n), in symbols,

M(X) = {f |̀X | f ∈M([0, 1]n)}.

By 3.6.7 in [4], M(X) is a semisimple MV-algebra—actually, up to isomorphism,
M(X) is the most general possible n-generator semisimple MV-algebra A: to see
this, pick generators {a1, . . . , an} of A. Let πi : [0, 1]

n → [0, 1] be the projection
functions in the free MV-algebra M([0, 1]

n
) for i = 1, . . . , n. Then the assignment

that maps πi 7→ ai for each i = 1, . . . , n, uniquely extends to a homomorphism
ηa : M([0, 1]

n
)→ A of the free n-generator MV-algebra onto A. Let ha = ker(ηa)

be the kernel of this homomorphism and

(1.1) Za =
⋂
{Zf | f ∈ ha}

the intersection of the zerosets of the McNaughton functions in ha. Then

(1.2) A ∼=M(Za).

A point x ∈ Rn is said to be rational if so are all its coordinates. By a
rational vector we mean a nonzero vector w ∈ Rn such that the line Rw ⊆ Rn

contains at least two rational points. An MV-algebra A is strongly semisimple iff
so is every two-generator subalgebra of A (Proposition 4.1). A 2-generator MV-

algebra A = M(X), with nonempty closed X ⊆ [0, 1]
2
, is strongly semisimple iff

X has no rational outgoing Bouligand-Severi tangent vector at any of its rational
points, [2, 12, 10]. See Theorem 3.1. As proved in Theorem 2.3, for any closed
X ⊆ [0, 1]n , having such a tangent is a sufficient condition for M(X) not to be
strongly semisimple.

Notation: Following p.33 in [4] or p.21 in [8], for k ∈ N, k � g stands for k-fold
pointwise truncated addition of g.

2. Strong semisimplicity and Bouligand-Severi tangents

Severi (see §53, p.59 and p.392 of [11], as well as §1, p.99 of [12]) and independently,
Bouligand (p.32 in [2]) called a half-line H ⊆ Rn tangent to a set X ⊆ Rn at an
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accumulation point x of X if for all ε, δ > 0 there is y ∈ X other than x such that
||y − x|| < ε, and the angle between H and the half-line through y originating at
x is < δ.

Here as usual, ||v|| is the length of the vector v ∈ Rn .
On §2, p.100 and §4, p.102 of [12] Severi noted that for any accumulation point

x of a closed set X there is a half-line H tangent to X at x.
Today (see, e.g., p.16 in [3], or p.1376 in [10]), Bouligand-Severi tangents are

routinely introduced as follows:

Definition 2.1. Let x be an element of a closed subset X of Rn , and u a unit
vector in Rn. We then say that u is a Bouligand-Severi tangent (unit) vector to X
at x if X contains a sequence x0, x1, . . . of elements, all different from x, such that

lim
i→∞

xi = x and lim
i→∞

(xi − x)/||xi − x|| = u.

Observe that x is an accumulation point of X. We further say that u is outgoing
if for some λ > 0 the segment conv(x, x+ λu) intersects X only at x.

Already Severi noted that his definition of tangent half-line H = x + R≥0u is
equivalent to Definition 2.1. More precisely:

Proposition 2.2. (§5, p.103 of [12]). For any nonempty closed subset X of Rn ,
point x ∈ X, and unit vector u ∈ Rn the following conditions are equivalent:

(i) For all ε, δ > 0, the cone conex,u,ε,δ with apex x, axis parallel to u, vertex
angle 2δ and height ε contains infinitely many points of X.

(ii) u is a Bouligand-Severi tangent vector to X at x.

When n = 1, conex,u,ε,δ is the segment conv(x, x+εu). When n = 2, conex,u,ε,δ
is the isosceles triangle conv(x, a, b) with vertex x, basis conv(a, b), height equal to

ε (and parallel to u), and vertex angle âxb = 2δ.

The next two results provide geometric necessary and sufficient conditions on X
for the semisimple MV-algebraM(X) to be strongly semisimple. These conditions
are stated in terms of the non-existence of Bouligand-Severi tangent vectors having
certain rationality properties.

Theorem 2.3. Let X be a nonempty closed set in [0, 1]n. Suppose X has a
Bouligand-Severi rational outgoing tangent vector u at some rational point x ∈ X.
Then M(X) is not strongly semisimple.

Proof. Since u is outgoing, let λ > 0 satisfy X ∩ conv(x, x+ λu) = {x}. Without
loss of generality x+λu ∈ Qn. By Definition 2.1, our hypothesis yields a sequence
w1, w2, . . . of distinct points of X, all distinct from x, accumulating at x, at strictly
decreasing distances from x, in such a way that the sequence of unit vectors ui
given by (wi − x)/||wi − x|| tends to u as i tends to ∞. Let y = x + λu. Since
X ∩ conv(x, y) = {x}, no point wi lies on the segment conv(x, y), and we can
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further assume that the sequence of angles ŵixy is strictly decreasing and tends
to zero as i tends to ∞.

Since both points x and y are rational, then by 2.10 in [8] for some g ∈
M([0, 1]n) the zeroset

Zg = {z ∈ [0, 1]n | g(z) = 0}
coincides with the segment conv(x, y). Thus,

∂g(x)

∂(u)
= 0.

Let J be the ideal of M([0, 1]n) generated by g,

J = {f ∈M([0, 1]n) | f ≤ k � g for some k = 0, 1, 2, . . .}.

Then for each f ∈ J ,
∂f(x)

∂(u)
= 0.

Since the directional derivatives of f at x are continuous, (meaning that the map
t 7→ ∂f(x)/∂t is continuous) it follows that

(2.1) lim
t→u

∂f(x)

∂(t)
=
∂f(x)

∂(u)
= 0.

Let gp = g |̀X and

J p = {f p ∈M(X) | f p ≤ k � gp for some k = 0, 1, 2, . . .}

be the ideal of M(X) generated by gp. A moment’s reflection shows that

(2.2) J p = {l |̀X | l ∈ J}.

One inclusion is trivial. For the converse inclusion, if f |̀X ≤ (k �g) |̀X then letting
l = f ∧ k � g we get l ≤ k � g. So l ∈ J and l |̀X = f |̀X, whence f |̀X is extendible
to some l ∈ J.

For any f ∈ M([0, 1]n), the piecewise linearity of f ensures that for all large
i the value of the incremental ratio (f(wi)− f(x))/||wi − x|| coincides with the
directional derivative ∂f(x)/∂ui along the unit vector ui = (wi − x)/||wi − x||.
Thus in particular, if f |̀X = f p ∈ J p, from (2.1)-(2.2) it follows that

lim
i→∞

f p(wi)− f p(x)

||wi − x||
= 0.

Since x is rational, again by 2.10 in [8] there is j ∈ M([0, 1]n) with Zj = {x}.
For some ω > 0 we have ∂j(x)/∂(u) = ω, whence

lim
i→∞

jp(wi)− jp(x)

||wi − x||
= ω.

Therefore, jp /∈ J p. Since Zg ∩X = {x}, recalling 4.19 in [8] we see that the only
maximal ideal of M(X) containing J p is the set of all functions in M(X) that
vanish at x. Thus, jp belongs to all maximal ideals of M(X) containing J p. By
3.6.6 in [4], M(X) is not strongly semisimple: specifically, j′/J ′ is infinitesimal in
the principal quotient M(X)/J ′. 2



Strong semisimplicity and tangents 5

3. A partial converse of Theorem 2.3

Theorem 3.1. Let X ⊆ [0, 1]n be a nonempty closed set. Suppose the MV-algebra
M(X) is not strongly semisimple.

(i) Then X has a Bouligand-Severi tangent vector u at some point x ∈ X sat-
isfying the following nonalignment condition: there is a sequence of distinct
wi ∈ X, all distinct from x such that

lim
i→∞

wi = x, lim
i→∞

wi − x
||wi − x||

= u, wi /∈ conv(x, x+ u) for all i.

(ii) In particular, if n = 2, then X has a Bouligand-Severi outgoing rational
tangent vector u at some rational point x ∈ X.

Proof. (i) The hypothesis yields a function g ∈ M([0, 1]n), with its restriction
gp = g |̀X ∈ M(X), in such a way that the principal ideal J p of M(X) generated
by gp,

J p = {lp ∈M(X) | lp ≤ k � gp for some k = 1, 2, . . . }

is strictly contained in the intersection I of all maximal ideals ofM(X) containing
J ′. Thus for some j ∈M([0, 1]n) letting jp = j |̀X we have jp ∈ I \ J p. By 3.6.6 in
[4] and 4.19 in [8],

(3.1) jp = 0 on Zgp, i.e., X ∩ Zj ⊇ X ∩ Zg

and

(3.2) ∀m = 0, 1, . . .∃zm ∈ X, jp(zm) > m � gp(zm).

There is a sequence of integers 0 < m0 < m1 < . . . and a subsequence y0, y1, . . .
of {zi, z2, . . . } such that yi 6= yl for i 6= l and

(3.3) ∀t = 0, 1, . . . , jp(yt) > mt � g
p(yt).

The compactness of X yields an accumulation point x ∈ X of the yt. Without loss
of generality (taking a subsequence, if necessary) we can further assume

(3.4) ||y0 − x|| > ||y1 − x|| > · · · , whence lim
i→∞

yi = x.

By (3.3), for all t, jp(yt) > 0. Then by (3.1), gp(yt) > 0. For each i = 0, 1, . . . ,
letting the unit vector ui ∈ Rn be defined by ui = (yi − x)/||yi − x||, we obtain a
sequence of (possibly repeated) unit vectors ui ∈ Rn . Since the boundary of the
unit ball in Rn is compact, some unit vector u ∈ Rn satisfies

∀ε > 0 there are infinitely many i such that ||ui − u|| < ε.
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Some subsequence w0, w1, . . . of the yi will satisfy the condition

(3.5) ∀ε, δ > 0 there is k such that for all i > k, wi ∈ conex,u,ε,δ .

Correspondingly, the sequence v0, v1, . . . given by vk = (wk − x)/||wk − x|| will
satisfy

(3.6) lim
i→∞

vi = u.

We have just proved that u is a Bouligand-Severi tangent to X at x.

To complete the proof of (i) we prepare:

Fact 1. gp(x) = 0.

Otherwise, from the continuity of g, for some real ρ > 0 and suitably small
ε > 0, we have the inequality g(z) > ρ for all z in the open ball Bx,ε of radius ε
centered at x. By (3.5), Bx,ε contains infinitely many wi. There is a fixed integer
m̄ > 0 such that 1 = m̄ � gp ≥ jp for all these wi, which contradicts (3.3).

Fact 2. jp(x) = 0.

This immediately follows from (3.1) and Fact 1.

Fact 3. ∂g(x)/∂u = 0.

By way of contradiction, suppose ∂g(x)/∂u = θ > 0. In view of the continuity
of the map t 7→ ∂g(x)/∂t, let δ > 0 be such that ∂g(x)/∂r > θ/2, for any unit
vector r such that r̂u < δ. Since by Fact 2 j(x) = 0 and both g and j are piecewise
linear, there is an ε > 0 together with an integer k̄ > 0 such that k̄ � g ≥ j over the
cone C = conex,u,ε,δ. By (3.5), C contains infinitely many wi, in contradiction
with (3.3).

To conclude the proof of the nonalignment condition in (i), it is sufficient to
settle the following:

Fact 4. There is λ > 0 such that for all large i the segment conv(x, x+λu) contains
no wi.

For otherwise, from Fact 3, ∂g(x)/∂(u) = 0, whence the piecewise linearity of
g ensures that g vanishes on infinitely many wi of conv(x, x+ λu) arbitrarily near
x. Any such wi belongs to X, whence by (3.1), j(wi) = 0, in contradiction with
(3.3).

The proof of (i) is now complete.

(ii) Let H± be the two closed half-spaces of R2 determined by the line passing
through x and x + u. By (3.5), infinitely many wi lie in the same closed half-

space, say, H+. Without loss of generality, H+ ∩ int([0, 1]
2
) 6= ∅. Let u⊥ be the

orthogonal vector to u such that x+ u⊥ ∈ H+.
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Fact 5. For all small ε > 0,

∂g(x+ εu)

∂u⊥
> 0.

By way of contradiction, assume ∂g(x+ εu)/∂u⊥ = 0. Since g is piecewise
linear, by Facts 1 and 3, for suitably small η, ω > 0, the function g vanishes over
the triangle T = conv(x, x + ηu, x + ηu + ωu⊥). By (3.5), T contains infinitely
many wi. By (3.1), g(wi) = j(wi) = 0 against (3.3).

Fact 6.
∂j(x)

∂u
> 0.

Otherwise, ∂j(x)/∂u = 0. Fact 5 yields a fixed integer h̄ such that, on a suitably
small triangle of the form T = conv(x, x+ εu, x+ εu+ωu⊥), we have h̄ � g ≥ j. By
(3.5), T contains infinitely many wi, again contradicting (3.3).

We now prove a strong form of Fact 4, showing that u is an outgoing tangent
vector:

Fact 7. For some λ > 0 the segment conv(x, x+ λu) intersects X only at x.

Otherwise, from Facts 1 and 3 it follows that g vanishes on infinitely many
points of X ∩ conv(x, x + λu) converging to x. By (3.1), jp vanishes on all these
points. Since j is piecewise linear, ∂j(x)/∂u = 0, against Fact 6.

By a rational line in Rn we mean a line passing through at least two distinct
rational points.

Fact 8. x is a rational point, and u is a rational vector.

As a matter of fact, Facts 6 and 2 yield a rational line L through x. On the
other hand, Facts 3 and 5 show that the line passing through x and x + u is
rational and different from L. Thus x is rational, whence so is the vector u.

We conclude that X has u as a Bouligand-Severi outgoing rational tangent
vector at the rational point x. 2

Figure 1 is a sketch of the functions g and j in the foregoing proof.

Recalling Theorem 2.3 we now obtain:

Corollary 3.2. Let X ⊆ [0, 1]2 be a nonempty closed set. Then M(X) is not
strongly semisimple iff X has a Bouligand-Severi outgoing rational tangent vector
u at some rational point x ∈ X.
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Figure 1: A Bouligand-Severi outgoing tangent vector u to X at x, and two functions g and
j. The restriction g |̀X generates a principal ideal J ′ of M(X). The restriction j |̀X does not
belong to J ′, but belongs to the only maximal ideal I′ of M(X) containing J ′, namely the set
of all functions in M(X) vanishing at x. So the principal quotient M(X)/J ′ is not semisimple.

Examples. The above corollary provides many examples of two-generator strongly
semisimple MV-algebras:

(i) Let κ ∈ [0, 1] be irrational. Let W be the arc of parabola {(x, y) ∈ [0, 1]
2 |

y = κx2}. Then M(W ) is strongly semisimple—for want of rational points
in W . One can similarly construct two-generator strongly semisimple MV-
algebras of the formM(V ), by letting V be a closed subset of [0, 1]

2
without

rational points, or else, without outgoing rational tangents.

(ii) Following [13], let Q ⊆ [0, 1]
2

be a polyhedron in [0, 1]
2
, i.e., a finite union

of m-simplexes (m = 0, 1, 2) in [0, 1]
2
. Then Q does not have any outgoing

Bouligand-Severi tangent, whence M(Q) is strongly semisimple.

(iii) (Generalizing (ii)). Let A be a two-generator subalgebra of a semisimple
tensor product (see §9.4 in [8]) of the form [0, 1]⊗D, where D is a finitely
presented MV-algebra. Using Lemma 3.6 and Theorem 6.3 in [8], one sees
that A is isomorphic to an MV-algebra of the form M(Q) for some polyhe-

dron Q ⊆ [0, 1]
2
. Thus A is strongly semisimple.

4. The general case

The central role of finitely generated, and especially of 2-generator strongly semi-
simple MV-algebras among all strongly semisimple MV-algebras, is shown by the
following result:
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Proposition 4.1. For any MV-algebra A the following conditions are equivalent:

(i) A is strongly semisimple;

(ii) A is the direct limit of a direct system S = {Ai, φij} of finitely generated
strongly semisimple algebras Ai, where all the homomorphisms φij : Ai → Aj
are embeddings;

(iii) Each 2-generator subalgebra of A is strongly semisimple.

Proof. Recall that an MV-algebra is semisimple iff it has no infinitesimals. For any
MV-algebras C,D and embedding φ : C → D, letting for any y ∈ C, 〈y〉C denote
the ideal generated by y in C, we first make the following elementary observations:

(I) For each c ∈ C, the map φ̄ : C/〈c〉C → D/〈φ(c)〉D defined by x/〈c〉C 7→
φ(x)/〈φ(c)〉D is an embedding. This immediately follows by observing that
φ(〈c〉C) = 〈φ(c)〉D ∩ φ(C).

(II) c ∈ C is an infinitesimal of C iff φ(c) is an infinitesimal of D.

(III) If D is strongly semisimple then so is C. As a matter of fact, for any c ∈ C,
the map φ̄ : C/〈c〉C → D/〈φ(c)〉D of (I) is an embedding. By hypothesis,
D/〈φ(c)〉D is semisimple, whence so is C/〈c〉C by (II).

We are now ready to prove the proposition:

(i)⇒(ii). Let A = {Ai ⊆ A | Ai is a finitely generated subalgebra of A}, and
let φij : Ai → Aj be the inclusion map whenever Ai ⊆ Aj . Then A together the
homomorphisms φij is a direct system of MV-algebras, having A as its direct limit.
By (III), each Ai is strongly semisimple.

(ii)⇒(i). Let S = {Ai, φij} be a directed system of strongly semisimple MV-
algebras, indexed by the directed partially ordered set I, where each φij is an
embedding of Ai into Aj . Let A be the direct limit of S with the telescopic
maps φi∞ : Ai → A. Each φi∞ is an embedding. Suppose that A is not strongly
semisimple, (absurdum hypothesis), and let g ∈ A be such that A/〈g〉A is not
semisimple. Then there is an element e ∈ A such that e/〈g〉A is an infinitesimal of
A/〈g〉A. Since the partial order of the index set I is directed, for some i ∈ I there
are gi, ei ∈ Ai with φi∞(gi) = g and φi∞(ei) = e. The map φ̄i∞ : Ai/〈gi〉Ai

→
A/〈g〉A of (I) is an embedding. By (II), ei/〈gi〉Ai

is an infinitesimal element of
Ai/〈gi〉Ai , against the hypothesis that Ai is strongly semisimple.

(i)⇒(iii). Immediate from (III).

(iii)⇒(i). If A is not strongly semisimple there are elements g, e ∈ A such that
e/〈g〉A is an infinitesimal in A/〈g〉A. Let B ⊆ A be the subalgebra of A generated
by g and e. By (I)-(II) e/〈g〉B is an infinitesimal element of B/〈g〉B , and B is not
strongly semisimple. 2



10 M. Busaniche and D.Mundici

5. Coda: one-generator MV-algebras

The following result is an easy consequence of Theorem 3.1. We include the ele-
mentary proof because it provides a technique to deal with strong semisimplicity
independently of Bouligand-Severi tangents.

Theorem 5.1. Every one-generator semisimple MV-algebra A is strongly semi-
simple.

Proof. As in (1.1)-(1.2), let X ⊆ [0, 1] be a nonempty closed set such that A ∼=
M(X). For some g ∈ M([0, 1]) let J be the principal ideal of M([0, 1]) generated
by g, and J p be the principal ideal of M(X) generated by gp = g |̀X.

The short argument immediately following (2.2) shows that J p = {l |̀X | l ∈ J}.
For every f ∈ M([0, 1]), letting f p = f |̀X we must prove: if f p belongs to all
maximal ideals of M(X) to which gp belongs, then f p belongs to J p. By 3.6.6 in
[4] and 4.19 in [8], this amounts to proving

(5.1) if f = 0 on Zg ∩X then f |̀X ∈ J p.

Let ∆ be a triangulation of [0, 1] such that f and g are linear over every simplex
of ∆. The existence of ∆ follows from the piecewise linearity of f and g, [13]. In
view of the compactness of X and [0, 1], it is sufficient to settle the following

Claim. Suppose f ∈ M([0, 1]) vanishes over Zg ∩X. Then for all x ∈ X there is
an open neighbourhood Nx 3 x in [0, 1] together with an integer mx ≥ 0 such that
mx � g ≥ f on Nx ∩X.

We proceed by cases:

Case 1: g(x) > 0. Then for some integer r and open neighbourhood Nx 3 x we
have g > 1/r over Nx. Letting mx = r we have 1 = mx � g ≥ f over Nx, whence a
fortiori, mx � g ≥ f over Nx ∩X.

Case 2: g(x) = 0. Since f vanishes over Zg ∩ X, then f(x) = 0. Let T be a
1-simplex of ∆ such that x ∈ T. Let Tx be the smallest face of T containing x.

Subcase 2.1: Tx = T . Then x ∈ int(T ). Since g is linear over T then g vanishes over
T . By our hypotheses on f and ∆, f vanishes over T , whence and 0 = g ≥ f = 0
on T . Letting Nx = int(T ) and mx = 1, we get mx � g ≥ f over Nx whence a
fortiori, the inequality holds over Nx ∩X.

Subcase 2.2: Tx = {x}. Then T = conv(x, y) for some y 6= x. Without loss of
generality, y > x. We will exhibit a right open neighbourhood Rx 3 x and an
integer rx ≥ 0 such that rx � g ≥ f on Rx ∩ X. The same argument yields a left
neighbourhood Lx 3 x and an integer lx ≥ 0 such that lx � g ≥ f on Lx ∩X. One
then takes Nx = Rx ∪ Lx and mx = max(rx, lx).

Subsubcase 2.2.1: If both g and f vanish at y, then they vanish over T (because
they are linear over T ). Upon defining Rx = int(T ) ∪ {x} and rx = 1 we get
rx � g ≥ f over Rx, whence in particular, over Rx ∩X.
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Subsubcase 2.2.2: If both g and f are > 0 at y then for all suitably large m we
have m � g ≥ f on T because f(x) = 0 and both f and g are linear on T . Letting
rx the smallest such m and Rx = int(T )∪ {x} we have the desired inequality over
Rx and a fortiori over Rx ∩X.

Subsubcase 2.2.3: g(y) = 0, f(y) > 0. By our hypotheses on ∆, g is linear over T
and hence g = 0 over T . It follows that X∩T = {x}: for otherwise, our assumption
Zf ∩X ⊇ Zg ∩X together with the linearity of f over T would imply f(y) = 0,
against our current hypothesis. Letting Rx = int(T ) ∪ {x} and rx = 1 we have
rx � g ≥ f over Rx ∩X. 2
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(1973), pp. 239-247. Reprinted, In: Wójcicki,R., Malinowski, G., (Eds.), Se-
lected Papers on  Lukasiewicz Sentential Calculi., Ossolineum, Wroc law, 1977, pp.
101-111.

Received ??
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Güemes 3450, S3000GLN-Santa Fe, Argentina

E-mail: mbusaniche@santafe-conicet.gov.ar

Daniele Mundici, Dipartimento di Matematica e Informatica, Universitá degli Studi
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