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SIGNIFICANCE AND IMPACT OF THE STUDY:  

Nowadays, the use of LAB (Lactic Acid Bacteria) in food processing environments is considered as a 

biological strategy to control food-borne pathogens. This work provides new insights about the capacity of 

LAB to form biofilms and to inhibit growth and surface colonization of Enterohemorrhagic Escherichia 

coli (EHEC) O157:H7 under usual meat-processing environments. Our findings support the use of biofilm-

forming LAB strains as a biological strategy to control EHEC contaminations from food processing 

surfaces.  

ABSTRACT 

LAB (Lactic Acid Bacteria) exert antagonistic activities against diverse microorganisms, including 

pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce 

biofilms and to inhibit growth and surface colonization of Enterohemorrhagic Escherichia coli (EHEC) 

O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was 

evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on 

EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus 

plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the thirty-seven 

strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene 

surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able 

to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, 

Lact. plantarum CRL 1075 not only inhibited EHEC, but also was able to grow in the presence of the 

enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies 

oriented to its application in food processing environments to mitigate undesirable surface contaminations 

of E. coli. 

Keywords: BIOCONTROL, BIOFILM, ESCHERICHIA COLI O157:H7, LACTIC ACID BACTERIA, 

SURFACE COLONIZATION 

INTRODUCTION 

Biofilms are sessile bacterial communities formed on surfaces encased in an extracellular matrix of 

polymers that provides adhesiveness, cohesion and protection (Flemming and Wingender 2010; Abee et al. 

2011). The ability of bacteria to attach to abiotic surfaces and to form biofilms is a major cause of concern 

for the food industry, particularly in meat production, processing and packaging (Chmielewski and Frank 
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2003). In fact, biofilm formation improves the capacity of foodborne bacteria to survive stressful conditions 

found during food processing such as refrigeration, acidity or oxidative and osmotic stress. A large number 

of EHEC O157:H7 outbreaks have been associated with the consumption of contaminated ground beef 

(Omer et al. 2018). This pathogen has the ability to form biofilms on different materials used in the meat 

processing industry, such as stainless steel, plastic or glass. (Uhlich et al. 2006; Oloketuyi and Khan 2017). 

Thus, EHEC O157:H7 biofilms established on inadequately cleaned and sanitized meat processing facilities 

becomes a major source of meat contamination, leading to serious hygienic problems and economic losses 

(Sharma et al. 2005). 

Cleaning and disinfection procedures using physical and chemical methods have been extensively used 

over the years to reduce or eliminate microorganisms present on food contact surfaces. Nevertheless, 

current sanitation methods have some drawbacks, such as possible toxicity or resistance to sanitization 

agents developed by the target microorganisms (Langsrud et al. 2004; Moen et al. 2012). 

The growing negative consumer perception against synthetic chemicals, has redirected the research focus 

towards the development of environmental-friendly disinfection alternatives. Among them we can mention 

the use of biological strategies, including the use of natural compounds from bacteria or plants with GRAS 

(Generally Recognized As Safe) status, or even bacteriophages (Donlan et al. 2009; Neyret et al. 2014). 

In this context, numerous studies have showed the ability of lactic acid bacteria (LAB) to exclude unwanted 

bacteria (Ouali et al. 2014; Gómez et al. 2016). LAB are considered as GRAS and their use in the food 

industry constitutes a promising biological strategy against pathogens. LAB can potentially antagonize 

attachment and growth of pathogens onto abiotic surfaces indirectly, by secreting antimicrobial compounds 

like heat stable bacteriocins, organic acids and surfactants; or directly, by limiting access to surfaces and 

nutrients (competitive exclusion) (Pérez-Ibarreche et al. 2016; Alvarez-Ordóñez et al. 2019). Thus, LAB 

strains hold promise as biocontrol agents of biofilm-forming pathogens on food industrial environments, 

without posing any risk to consumers. 

In the present study, we investigated the capacity of LAB isolates to form biofilms and to inhibit the growth 

and surface colonization of EHEC O157:H7 at 10°C, a usual temperature in meat-processing environments. 

Our findings support the use of biofilm-forming LAB strains as a biological strategy to eliminate EHEC 

contaminations from food processing surfaces. 
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RESULTS AND DISCUSSION 

Growth inhibitory effect of LAB strains on EHEC O157:H7 

To examine the potential growth inhibitory effects of 100 LAB strains on EHEC O157:H7 NCTC12900, 

we used the agar diffusion assay. Briefly, pure cultures or fractions of them containing either cells or heat-

treated/neutralized supernatants and as acidity control, were spotted on MRS (de Man Rogosa and Sharpe) 

agar. As acidity control, 4% lactic acid was included. Thereafter, a top agar containing EHEC O157:H7 

NCTC12900 cells was overlaid.  

Notably, while 56 LAB strains exhibited intermediate anti-EHEC activity, 37 strains showed high 

antagonistic activity on EHEC. Strains having high inhibitory effects belong mainly to Lact. plantarum 

(10), Ped. acidilactici (7) and Ped. pentosaceus (6) species and were isolated mainly from artisanal sausages 

and cabbages (Table 1). The inhibitory activities were observed only when EHEC was exposed to culture 

fractions containing concentrated cell suspensions or whole liquid cultures of LAB strains (Table 1). When 

EHEC was challenged with heat-treated and/or neutralized supernatants from cultures of the same strains, 

the inhibitory effects on the pathogen were no observed (data not shown). These results indicate that neither 

heat-stable bacteriocins nor acids (usually present in supernatants of LAB cultures) are involved in the 

inhibitory effect on EHEC. This agrees with previous findings by Orihuel et al. (2018) who did not observe 

any inhibitory activity against EHEC by culture supernatants of different LAB strains. Thus, we can infer 

that the inhibitory activity of LAB requires the presence of viable cells. This could be associated to a 

Contact-dependent growth inhibition (CDI) mechanism. Bacteria may deliver toxin molecules into 

neighbouring bacteria upon direct cell-cell contact, causing growth arrest or cell death (Ruhe et al. 2013). 

A similar inhibition mechanism has been recently reported for the interaction between Lactococcus piscium 

and Listeria monocytogenes (Saraoui et al. 2018).  

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved 

 

Table 1. LAB strains showing high antagonistic activity against EHEC O157:H7 NCTC12900 by well-

diffusion assay 

      
Zone of inhibition average from triplicate spotsa 

(mm) 

LAB species Strain ID   Origin Spot 1 Spot 2 Scoreb 

Lactiplantibacillus plantarum CRL682 Sausages 6.7 4 ++/++c 

CRL683 Sausages 6 4 ++/++ 

CRL708 Sausages 4.7 4.1 ++/++ 

CRL 1480 Sausages 6 4.3 ++/++ 

CRL 725 Sausages 6 4 ++/++ 

CRL 1075 Peas 6 4 ++/++ 

CRL 1234 Cabbage 7 5 ++/++ 

CRL 1482 Fermented sausages 6 4 ++/++ 

CRL 1506 Goat milk 6 4 ++/++ 

ATCC14917 Pickled cabbage 6 5 ++/++ 

      

Pediococcus pentosaceus CRL 791 Cabbage 6 5 ++/++ 

CRL 908 Cabbage 6 4 ++/++ 

CRL 909 Cabbage 5 5 ++/++ 

CRL 922 Cabbage 6 4.1 ++/++ 

ATCC 

10791 

Pickled cucumber 6.7 5.7 ++/++ 

CRL 2145 Chickpea sourdough 6 6 ++/++ 

      

Pediococcus acidilactici CRL 1888 Sausages 5 5 ++/++ 

CRL 902 Cabbage 6 4.7 ++/++ 

CRL 904 Cabbage 6 6 ++/++ 

CRL 907 Cabbage 6 5 ++/++ 

CRL913 Sausages 4 4 ++/++ 

CRL919 Sausages 4 4 ++/++ 

CRL 911 Argentinean artisanal 

fermented sausages 

5 4 ++/++ 

      

Lactilactobacillus sakei CRL 1468 Sausages 5 4 ++/++ 

CRL 1756 Fresh anchovies 6 6 ++/++ 

CRL 1882 Sausages 6 5 ++/++ 

      

Lactococcus lactis sub lactis CRL 649 Sausages 6 4 ++/++ 

      

Ligilactobacillus salivarius CRL697 Sausages 6.7 5.3 ++/++ 

      

Latilactobacillus curvatus CRL 1465 Sausages 6 6 ++/++ 

      

Fructilactobacillus 
fructivorans 

ATCC15435 Contaminated sake 7 6 ++/++ 

      

Lactobacillus zeae ATCC15820 Macerated corn 7 5 ++/++ 

      

Pediococcus parvulus ATCC19371 Ensilage 6 4 ++/++ 

      

Leuconostoc mesenteroides 

subp. mesenteroides 

ATCC23386 Sake starter culture 6 6 ++/++ 

      

Weisella confusa ATCC27646 Lettuce leaves 7 6 ++/++ 

CRL 2148 Bean sourdough 6 6 ++/++ 

      

Weisella paramesenteroides CRL 2149 Bean sourdough 6 4 ++/++ 

      

Lactiplantibacillus pentosus CRL 1772 Olives brine 4 4 ++/++ 

aspot designations: 1- Concentrated cell suspension; 2- overnight pure culture of the LAB strain in MRS. bAnti-EHEC activity 

score according to the diameter of the zone of inhibition: – ≤1.0 mm; + =1.1–3.9 mm and ++ ≥4.0 mm. c Strains with high 
anti-EHEC activity ++ / ++ present ≥4 mm inhibition zone in spots 1 and 2.  
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Biofilm formation by selected LAB strains on abiotic surfaces 

As next step in the evaluation of LAB candidates that antagonize EHEC, we examined the ability to form 

biofilms of the 37 LAB strains with high anti-EHEC activity. All strains were evaluated for biofilm 

formation on polystyrene surfaces at two temperatures: 10°C, which reflects temperatures in meat 

processing environments, and 30°C, optimal growth temperature for LAB. Biofilm formation was assessed 

by Cristal violet (CV) staining and the strains were classified as strong, moderate, weak biofilm producers 

or non-biofilm producers based on the CV absorbance (A570) values. As shown in Figure 1, eighteen LAB 

strains showed high capacity to form biofilms at both 10°C and 30°C with A570 values between 0.95 and 

3.50. Among them, five LAB strains (Lact. plantarum CRL 683, Ped. pentosaceus CRL 908, Lact. 

plantarum CRL 1075, Lact. plantarum CRL 1482 and Ped. pentosaceus CRL 2145) resulted strong biofilm-

producers at both temperatures (Figure 1). These five LAB strains were then selected for further studies. 

Although, Emanuel et al. (2010) and Pérez-Ibarreche et al. (2016) have previously reported that LAB ability 

to form biofilms increased at low temperature, our strains showed greater biofilm-forming capacity at 30ºC. 

This corroborates that biofilm formation and its optimal conditions are strain-dependent. 
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Fig. 1 Biofilm-forming capacity of antagonistic LAB strains on polystyrene surfaces at 10ºC for 48 

h. Strains are classified as strong, moderate, weak or no biofilm producers. Each bar represents the mean 

value of at least three independent experiments performed in quadruplicates. Asterisks indicate strains 

with the highest absorbance values at both temperatures. Error bars represent standard error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential of sessile LAB strains to inhibit the settlement of EHEC biofilm on abiotic surfaces. 

Exclusion assays at 10°C 

Considering the potential application of LAB strains as biocontrol agents in meat processing environments, 

we examined whether pre-formed biofilms on polystyrene of the five selected LAB strains were able to 

prevent the colonization of the surface by EHEC NCTC12900 at low temperature (10°C). As shown in 

Figure 2a, pre-established biofilms of Lact. plantarum CRL 683, Lact. plantarum CRL 1075, Lact. 

plantarum CRL1482 and Ped. pentosaceus CRL 2145 reduced significantly the colonization of EHEC after 

24 h of co-incubation. The remaining number of viable EHEC cells was about the minimal infective dose 
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of this pathogen (10-100 cells/g of food) (Law et al. 2000). However, it must be considered that the number 

of E. coli cells on meat-processing surfaces is usually significantly lower than the inoculum used here, in 

this assay. Thus, it seems logical to speculate that in a real scenario in the food industry, biofilm-forming 

LAB strains could exclude EHEC contaminations.  

Lact. plantarum CRL 1075 deserves special consideration as potential biocontrol strain. This strain reduced 

the number of viable EHEC and was the only one whose cell population grew in the presence of the 

pathogen (Figure 2b). Previous studies have also demonstrated the ability of LAB to reduce the colonization 

of food-borne pathogens, however, these studies were carried out at temperatures higher than 10°C. In fact, 

Merino et al. (2019), have reported that Lact. kefiri 83113 inhibits Salmonella 115 biofilm formation at 

28°C. Similarly Gómez et al. (2016) have demonstrated the ability of probiotic LAB biofilms to prevent 

Listeria monocytogenes, Salmonella Typhimurium and EHEC O157:H7 biofilm formation through 

exclusion mechanisms at 30°C. We believe that our studies at 10°C provide new insights into the 

antagonistic potential of LAB strains in an environment closer to that in the meat-processing industry. 
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Fig. 2 Exclusion assays at 10°C in a meat-based medium. EHEC NCTC12900 challenged with pre-

established biofilms of LAB in a meat-based medium at 10°C for 24 h on polystyrene microplates. a) EHEC 

cells (Ec) counting (log CFU/cm2) in absence (control Ec) or presence of Lact. plantarum (Lp) CRL 1075, 

Lp CRL 1482, Lp CRL 683, Ped. pentosaceus (Pp) CRL 2145, Pp CRL 908 biofilms. b) LAB cell counting 

(log CFU/cm2) after biofilm growth either alone or subsequently challenged with EHEC cells. The squares 

represent the mean value and the dots represent each independent experiment value. One-way analysis of 

variance and Dunnet or Tukey test was applied. Different letters indicate statistically significant differences 

between the groups (p<0.05).  

          

Evaluation of antibiotic susceptibility  
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Recently, the role of food-associated bacteria acting as reservoir of antibiotic resistance determinants has 

gained special attention in the food industry (Devirgiliis et al. 2011; González-Zorn and Escudero 2012). 

Thus, the assessment of antimicrobial susceptibility of bacteria intended to be used in food has become a 

mandatory step in the food safety management. In this regard, the EFSA (European Food Safety Authority) 

has provided phenotypic methods for determining susceptibility to antimicrobials (EFSA et al. 2012). It 

also recommends defining the genetic basis of the resistance, looking at acquired or transferable 

determinants. Considering the potential application of LAB as biocontrol agents, we evaluated the antibiotic 

susceptibility of the five selected strains (Lact. plantarum CRL 683, CRL 1075, CRL 1482 and Ped. 

pentosaceus CRL 908, CRL 2145) by determining the Minimum Inhibitory Concentration (MIC) of eight 

antibiotics of clinical and veterinary importance: ampicillin; chloramphenicol; tetracycline, erythromycin, 

gentamicin, kanamycin, clindamycin and streptomycin. As shown in Table 2, the five selected LAB strains 

were susceptible to chloramphenicol, erythromycin, gentamicin, clindamycin and streptomycin. 

Nevertheless, the five LAB strains presented resistance to ampicillin and tetracycline and the two Ped. 

pentosaceus strains also showed resistance to kanamycin.  

 

Table 2. Minimum inhibitory concentration (MIC) of antibiotics against selected LAB strains  

a MIC of the following antibiotics: AMP, ampicillin; CMP, chloramphenicol; TET, tetracycline; ERY, erythromycin; 

GEN gentamicin; KAN, kanamycin; CLI, clindamycin and STR, streptomycin. Classification of strains according to 

the cut-off values of MIC described in the EFSA guidelines EFSA, 2012: (R), resistant; (S), Susceptible; n.r., not 

required 

 

When the presence of transferable antibiotic resistance genes was investigated by PCR, only the tet(M) 

gene encoding ribosomal protection protein for tetracycline resistance was detected in two strains (Lact. 

plantarum CRL 683 and Ped. pentosaceus CRL 908) (data not shown). These strains generated a PCR 

product of the expected size (406-bp) amplified with primers specific to the tet(M) gene (nt 1472731-

1473136; 100% identity) of Staphylococcus aureus (Genbank accession no. AP024511) (Malhotra-Kumar 

et al. 2005). The tet(M) gene has been reported to be associated to the Tn916 transposon (Devirgiliis et al. 

 

Strains 
MICa (mg l-1) 

AMP CMP TET ERY GEN  KAN CLI STR 

Lact. plantarum CRL 683  4 (R) 8 (S) 64 (R) <0.125 (S) 2 (S) 32 (S) 0.5 (S) n.r 

Lact. plantarum CRL 1075 4 (R) 4 (S) 64 (R) <0.125 (S) 2 (S) 32 (S) 1 (S)  n.r. 

Lact. plantarum CRL 1482 4 (R) 4 (S) 64 (R) <0.125 (S) <1(S) 32 (S) 1 (S)  n.r. 

Ped. pentosaceus CRL 908 8 (R) 4 (S) 64 (R) <0.125 (S) 2 (S) 128 (R) <0.125 (S) 64 (S) 

Ped. pentosaceus CRL 2145 8 (R) 4 (S) 64 (R) <0.125 (S) 4 (S) 128 (R) <0.125 (S) 64 (S) 
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2013). Although the flanking regions of tet(M) have not been characterized in our strains, the presence of 

a transposon-associated tet(M) indicated that the two strains should not be considered for use in the food 

industry due to their high potential for horizontal tetracycline-resistance gene propagation. Other 

tetracycline resistant determinants, such as tet(W), tet(K), tet(L), tet(S) and tet(O), were not detected in any 

of the selected strains. Similarly, it was not possible to detect resistance markers in those strains with 

resistance against ampicillin and kanamycin (data not shown). The level of resistance to these antibiotics 

exceeded a dilution of the breakpoints established by EFSA. MIC breakpoints may allow detection of some 

"borderline" resistant strains (Hummel et al. 2006; Połka et al. 2016). This could be due to the inherent 

insensitivity of some of the strains to certain antibiotics due to complex intrinsic characteristics such as cell 

wall/ membrane impermeability or metabolic properties (Hummel et al. 2007; Gueimonde et al. 2013). 

This resistance may not be associated with horizontal gene transfer which would not represent a concern 

for its use in the food chain. 

The present study provides novel information about the use of LAB biofilm for the control of E. coli 

NCTC12900 colonization of inert surfaces. In particular, our objective was to identify LAB strains with 

high activity against E. coli O157:H7 NCTC 12900 and high biofilm formation activity to use them for the 

exclusion of EHEC on an inert surface at low temperature. Lact. plantarum CRL 1075 managed to inhibit 

EHEC, formed biofilm at 30°C and 10°C and reduced significantly the ability of the EHEC strain to form 

biofilm without disturbing its own biomass. Moreover, its absence of acquired antibiotic resistance, lead us 

to propose Lact. plantarum CRL1075 as a possible candidate for further studies oriented to its use as a 

bioprotective tool against EHEC in the food chain. The obtained results are encouraging since LAB strains 

from food could be used to reduce the incidence of pathogenic bacteria in food-processing facilities and/or 

meat display coolers. Additional in situ and technological studies are in progress to evaluate different 

possibilities of application of this bioprotective strategy. 

MATERIALS AND METHODS 

Bacterial strains and growth conditions 

One hundred LAB strains isolated from food, belonging to the CERELA culture collection, were used in 

this study. Strains were stored at -20°C in milk yeast extract (10% w/v skim milk, 0.5% w/v yeast extract 

and 1% glycerol) and cultivated in MRS (de Man, Rogosa and Sharpe) broth (De Man et al. 1960) (Britania, 

Buenos Aires, Argentina) at 30°C or 37°C for 16-18 h. E. coli O157:H7 NCTC12900 (National Type 

Culture Collection, Colindale, London) was used as pathogen model for EHEC O157:H7 serotype. E. coli 
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O157:H7 NCTC12900 does not produce neither enterotoxins Stx1 nor Stx2 (Dibb-Fuller et al. 2001; Best 

et al. 2003). This strain was stored at -80°C in LB (Luria Bertani) medium in the presence of 20% glycerol 

as cryo-protectant. To obtain fresh cultures, the strain was transferred twice in LB broth and incubated at 

37°C for 9 h, and for 16 h in the second transfer. 

EHEC growth inhibition assay 

The antagonistic potential of the 100 LAB strains against E. coli NCTC 12900 was tested using the agar 

diffusion assay according to Orihuel et al. (2018) with some modifications. To investigate the possible 

mechanisms of EHEC inhibition, for each LAB strain, different fractions from overnight (ON) liquid 

cultures in MRS medium were prepared: 1) concentrated suspensions of cells, i.e., cells that were recovered 

from ON cultures, washed and suspended in physiological solution (spot #1); 2) cells and associated 

extracellular components, i.e., the pure ON cultures (spot #2); 3) cell-free supernatants from ON cultures 

heated for 5 min at 97°C (to evaluate the potential inhibition of acid and heat stable extracellular compounds 

i.e., bacteriocins) (spot #3); 4) Idem to spot #3 and neutralized to pH 7.0 with 1 mol l-1 NaOH, (to neutralize 

produced acids) (spot #4) . In addition to the different fractions, 4% lactic acid was used as control of the 

acid effect (spot #5) (Saavedra et al. 2003).  

For each LAB strain, 5 l of each fraction were spotted onto MRS agar plates and allowed to dry. Then, a 

lawn of E. coli O157:H7 NCTC 12900 was generated in every spotted MRS plate by pouring 10 ml of soft 

LB agar (0.7%) containing EHEC cells from an ON culture (1/100 dilution). Plates were incubated at 30°C 

overnight and then analyzed for the appearance of inhibition zones over the spots.  The anti-EHEC activity 

scores were assigned according to the diameter of inhibition zone: Negative (-) for inhibition halos ≤1.0 

mm; Intermediate (+) for inhibition halos of 1.1–3.9 mm and High (++) for inhibition halos ≥4.0 mm.  

This test was performed in independent triplicates and the means of the halos were calculated. 

Biofilm Assays 

The ability of LAB strains to form biofilms was evaluated according to the procedure described by Lebeer 

et al. (2007) with minor modifications. Briefly, 200 µl of each bacterial suspension in tMRS (de Man 

Rogosa and Sharpe without tween 80), adjusted to OD540 of 0.2, were added to individual wells in 

polystyrene 96-well microplates and incubated statically for 48 h at both 30°C and 10°C. In the latter case, 

an initial adherence of 8 h at room temperature was carried out. Every 24 h, the tMRS medium was replaced. 

After 48 h of incubation, supernatants were removed and wells were rinsed with PBS (phosphate buffer 

solution) to eliminate non-adherent cells. Then, biofilms on the surface of the wells were stained with 0.1% 
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crystal violet (CV) solution for 10 min. Excess of CV was removed by carefully washing the wells with 

distilled water. Plates were allowed to dry for 1 h at 60 °C. The CV bound to the biofilm biomass in each 

well was then extracted and solubilized by adding 200 l of 30% (v/v) anhydrous acetic acid. The 

absorbance (A) at 570 nm of the resulting CV solutions was determined by using a microplate reader 

(Microplate reader, Bio-Rad, Hercules; CA, USA). Uninoculated tMRS broth was used as negative control. 

The cut-off for the microtiter-plate test (ACOff) was defined as three standard deviations above the mean of 

the negative control, according to Stepanović et al. (2000). Based on the values of A at 570 nm, the strains 

were classified as: non-biofilm producers (A ≤ ACOff), weak (ACOff<A ≤ 2 × ACOff), moderate (2 × ACOff<A 

≤ 4 × ACOff) or strong biofilm producers (4 × ACOff<A). Each assay was performed in triplicates with four 

technical repetitions. Results were expressed as the mean with its respective standard error (SE). 

Meat-based medium 

A meat-based broth that closely reproduces the meat composition was used as culture medium for exclusion 

assays. The meat-based broth was prepared as previously described (Fadda et al. 1998) with minor 

modifications. Briefly, 10 g of bovine semimembranosus muscle was homogenized with 100 mL of 

deionized water for 8 min in a Stomacher 400 blender (Stomacher, London, UK). After centrifugation of 

the homogenate (14,000 x g, 20 min at 4°C), the supernatant containing sarcoplasmic proteins and other 

soluble compounds was filtered through Whatman paper, filter-sterilized through a 0.22 µm-pore-size filter 

(Steritop GP, Biopore, Buenos Aires, Argentina) and supplemented with 0.5 % glucose. The sterility of the 

system was confirmed by plating in Plate Count Agar (PCA).  

Exclusion assays at 10°C in a meat-based medium 

The ability of pre-established LAB biofilms to prevent or inhibit the adhesion and biofilm formation of E. 

coli O157:H7 NCTC12900 on polystyrene microplates was evaluated as follows. For each LAB strain, cells 

derived from ON cultures in tMRS were transferred to the meat-based broth to achieve 107-108 CFU/ml. 

Adjusted cell suspensions were then seeded in individual wells. Microplates were first incubated at room 

temperature for 12 h to allow cells to attach to the surface of the wells and then incubated at 10°C for 36 h 

(48 h in total). Thereafter, supernatants were discarded and a suspension of E. coli NCTC12900 cells in 

meat-based medium (107-108 CFU/ml) was added to each well containing the LAB pre-formed biofilm. 

Microplates were incubated at 10°C for 24 h. After this incubation, wells were carefully washed twice with 

PBS and then individually scraped to remove all the biofilm biomass. Bacterial cells recovered from each 

well were suspended and adjusted in decimal dilutions, which were then plated on MRS and LB agar plates 
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to determine the number of viable cells for LAB and E. coli O157:H7, respectively. The plates were 

incubated at 30°C for 24-48 h. Then, for each strain, the number of colonies on the plates was determined. 

Results were expressed as log CFU/cm2, where cm2 corresponds to the surface of the well. Biofilm 

formation of E. coli NCTC 12900 in the absence of LAB was used as control. Biofilm formation of LAB 

strains in the absence of EHEC was also used as control. 

These experiments were carried out in triplicates, with duplicate samples per trial, and results were 

expressed as the mean and SE. The statistical significance of the differences associated to treatments was 

analyzed using one-way analysis of variance and Dunnet or Tukey test. A p value < 0.05 indicates statistical 

significance. 

Antibiotics Susceptibility 

Minimum inhibitory concentration (MIC) of eight antibiotics of clinical and veterinary importance against 

selected LAB strains were determined using the broth micro-dilution method set by ISO 10932/IDF 223 

standard (Federation 2010). All assays were carried out in sterile 96-well microplates containing 

appropriate concentrations of antibiotics as indicated by the ISO/IDF protocol. The antibiotics used were 

selected by the European Food Safety Authority recommendations (EFSA 2012): ampicillin (AMP); 

chloramphenicol (CMP); tetracycline (TET), erythromycin (ERY), gentamicin (GEN), kanamycin (KAN), 

clindamycin (CLI) and streptomycin (STR) (Sigma-Aldrich, St. Louis, MO, USA). Plates were incubated 

at 30°C for 48 h. MIC were recorded as the lowest concentration of an antimicrobial agent at which visible 

growth was inhibited. The results were interpreted according to the breakpoints defined by EFSA (2012). 

The strains were categorized as susceptible when the MIC value was equal or lower than the cut-off value 

established by EFSA or resistant when the MIC value was higher than the cut-off value. Strains displaying 

growth until the cut-off value were subsequently analysed for the presence of antibiotic resistance genes. 

Total genomic DNA was extracted from the strains according to (Pospiech and Neumann 1995) modified 

protocol. The presence of TET, AMP and KAN resistance genes in resistant isolates was investigated by 

PCR (Polymerase chain reaction) using the specific primers (Table S1). Positive amplicons were purified 

and sequenced. The obtained sequences were compared with those in GenBank. 
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Figure legends 

Fig. 1 Biofilm-forming capacity of antagonistic LAB strains on polystyrene surfaces at 10ºC for 48 h. 

Strains were classified as strong, moderate, weak or no biofilm producers. Each bar represents the mean 

value of at least three independent experiments performed in quadruplicates. Asterisks indicate strains with 

the highest absorbance values at both temperatures. Error bars represent standard error.  

Fig. 2 Exclusion assays at 10°C in a meat-based medium. EHEC NCTC12900 challenged with pre-

established biofilms of LAB in a meat-based medium at 10°C for 24 h on polystyrene microplates. a) EHEC 

cells (Ec) counting (log CFU/cm2) in absence (control Ec) or presence of Lact. plantarum (Lp) CRL 1075, 

Lp CRL 1482, Lp CRL 683, Ped. pentosaceus (Pp) CRL 2145, Pp CRL 908 biofilms. b) LAB cell counting 

(log CFU/cm2) after biofilm growth either alone or subsequently challenged with EHEC cells. The squares 

represent the mean value and the dots represent each independent experiment value. One-way analysis of 

variance and Dunnet or Tukey test was applied. Different letters indicate statistically significant differences 

between the groups (p<0.05).  

 

Supporting information 

Table S1. Primers used to amplify transferable antibiotic resistance genes by PCR 

 


