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Abstract

Site and bond percolation of k-mers of di-erent structures and forms deposited on 2-D regular
lattices is studied. In addition, the percolation threshold for percolating k-mers on a Bethe lattice
is analytically obtained. By using 1nite-size scaling theory, the analysis of the results is performed
in order to determine the behavior of the percolation threshold which exhibits an exponential
decrease with the k-mer size. Characteristic parameters of that function are dependent not only
on the form and structure of k-mers but also on the properties of the lattice where they are
deposited. An expression for the percolation threshold as a function of the parameters of the
problem is proposed and discussed.
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1. Introduction

Percolation theory has been known for several decades [1–6] and applied to a wide
number of problems in a large variety of 1elds, even outside physics, proving to be a
very general, powerful and useful tool. Although it is a purely geometric phenomenon,
the phase transition involved in the process can be described in terms of the usual
second-order phase transition. This mapping to critical phenomena made percolation a
full part of the theoretical framework of collective phenomena and statistical physics.

Upon site or bond dilution, a sharp change is found to occur in the connectivity of
the system at some threshold pc in the density of occupied sites or bonds. Despite
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the simplicity of its de1nition, its mathematical ground and its success, percolation
theory (and the evaluation of the corresponding percolation threshold) has resisted
exact calculations. Most known data are numerical estimates from both Monte Carlo
simulations and series expansions. In particular, analytical calculations of percolation
threshold have proven to be a rather diEcult task only overcome for a given number
of simple geometries. From simulations percolation thresholds have been found to be
dependent on both the dimension of the system d and the connectivity of the lattice c.
Only in the known Cayley trees have been solved exactly to yield pc=1=(c−1). This
expression which holds for both bonds and sites, yields good results at high dimensions.
Several contributions in the literature have tried to generalize the above expression in
order to include the known values of the percolation threshold of several geometries
and dimensions. Galam and Maugier [7,8] have used the following expression as a
natural generalization of the Cayley tree’s percolation threshold:

pc = p0[(d− 1)(c − 1)]−a ; (1)

where p0 and a are 1tting parameters.
The behavior of the percolation threshold as a function of the size of the percolating

species has been studied in several contributions in the literature. However, the problem
has not been fully exhausted. In the present work, the percolation of k-mers on several
regular lattices is studied in the framework of a Monte Carlo (MC) analysis. The aim
of the paper is to generalize Eq. (1) in order to include the size of the percolating
species.

The paper is organized as follows. In Section 2, an exact analytical result for per-
colation threshold of k-mers deposited on a Bethe lattice is obtained. In Section 3,
the basis of the model of deposition of k-mers on either sites or bonds of a regular
lattice are given. Monte Carlo results for pc(k; c) are also presented and discussed.
Conclusions are drawn in Section 4.

2. Percolation of polyatomic species on the Bethe lattice

Let us assume N k-mers distributed at random on a Bethe lattice of size M and
connectivity c (see Fig. 1(a)). Then, the coverage (fraction of occupied lattice sites)
is given by p = kN=M . One can now think of mapping the original lattice L to an
e8ective lattice L′ where each empty site of L transforms into an empty one of L′,
while each set of k sites occupied by a k-mer in L is represented by an occupied site
in L′ (see Fig. 1(b)). Thus, the total number of sites in L′ is M ′ =M − (k− 1)N , and
the coverage of L′

p′ = N=M ′ = (p=k)=
[
1 − (k − 1)

k
p
]
: (2)

The e-ective lattice can be characterized by two connectivities, c′o and c′e, associated
to occupied and empty sites, respectively. From simple arguments, (a) c′o = 2(c− 1) +
(k − 2)(c − 2) and (b) c′e = c. These relationships make complete the mapping from
the original problem of k-mers percolation on L to an e-ective monomer percolation
on L′.
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Fig. 1. (a) Dimers (labeled according their respective numbers, as indicated) deposited on a Bethe lattice
with coordination c. (b) E-ective lattice of the Bethe lattice (a) according to the rules given in the text.

Let us now 1nd the percolation threshold in the e-ective lattice. We start at the
origin and check if there is a chance of 1nding an in1nite path of occupied neighbors,
starting from that site. If we go on such a path in the outward direction, we 1nd (c′o−1)
new bonds emanating from every new site, apart from the direction from which we
came. Each of these (c′o−1) bonds leads to one new neighbor, which is occupied with
probability p′. Thus on average we have (c′o − 1)p′ new occupied neighbors to which
we can continue our path. If this number (c′o − 1)p′ is smaller than unity, the average
number of di-erent paths leading to in1nite decreases at each generation by this factor
¡ 1 and the probability of 1nding a contiguous path of occupied neighbors goes to zero
exponentially with path length, if p′¡ 1=(c′o−1). Therefore, the percolation threshold,
p′
c in the e-ective lattice L′ has been derived as p′

c = 1=(c′o − 1).
By using the relationships between L and L′ and replacing in p′

c, the percolation
threshold pc in L can be obtained. Thus,

pc
k − (k − 1)pc

=
1

2(c − 1) + (k − 2)(c − 2) − 1
: (3)

Finally, the percolation threshold is obtained: pc = 1=(c − 1).
This equation shows that the size of the percolating species does not modify the

percolation threshold for this very peculiar lattice which can be considered of in1nite
dimensionality [2]. In addition, this result does not guide us for a generalization of
Eq. (1) which include the inLuence of k on pc for regular lattices of 1nite dimen-
sionality. Then, MC simulations emerge as an important tool in order to determine the
inLuence of k on pc for regular lattices in 2-D.

3. Numerical results

We consider a periodic lattice of linear size L on which we deposit at random k-mers,
each one occupying k sites of the lattice. The procedure to realize this non-reversible
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Fig. 2. Percolation threshold as a function of k for site percolation in a (a) square lattice, (b) triangular
lattice, (c) honeycomb lattice and (d) for bond percolation in a square lattice. Symbols represent results
from MC data obtained after a detailed 1nite size scaling analysis while solid lines are 1tting by using
Eqs. (1) and (4).

adsorption is the following. We select at random a site of the lattice; if it is vacant,
one of its c neighbors is randomly chosen. If this new site is empty, we repeat the
process until either k free sites are found and the k-mer is then deposited on those sites
or an occupied site is selected and the attempt is rejected. In any case, we iterate the
procedure until N of those k-mers are adsorbed and we reach a desired concentration
given by p = (kN )=L2. In the same manner, it has also been considered the process
when only the bonds are occupied by k-mers.

The central idea of the percolation theory is based in 1nding the minimum concen-
tration p for which a cluster (a group of occupied sites in such a way that each site has
at least one occupied nearest-neighbor site) extends from one side to the opposite side
of the system. The important point is that, as long as the structure of the background
lattice is the same, the value pc is always the same in spite of the random con1gura-
tion of the percolating cluster which varies from sample to sample. As is was already
mentioned, the main goal of this paper is (a) to determine how the numerical value
of the percolation threshold is modi1ed whether the size of the k-mer increases and
(b) generalize Eq. (1) in order to include the case of polyatomic species.

In Fig. 2(a), we have plotted the percolation threshold for k-mers as a function of
its size k. k-mers are adsorbed only on sites of the lattices. At the beginning, for small
values of k, the curve rapidly decreases. However, it Lattens out for larger values of
k and 1nally asymptotically converges toward a de1nite value as k → ∞. In previous
studies of the same problem [9,10], an abrupt increment of pc(k) is observed for
values of k ¿ 10. This discrepancy with our results is explained because of 1nite size
e-ect not considered in Refs. [9,10]. In Figs. 2(b) and (c) are presented the behaviors
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of the percolation threshold as a function of k for triangular and honeycomb lattices,
respectively. Fig. 2(d) shows the corresponding curve for a square lattice where the
k-mers only can be deposited on its bonds.

From the above results, the Galam and Maugier equation, Eq. (1) can be generalized
for including the case when k-mers are deposited. All solid curves in Fig. 2 correspond
to 1tting with the expression given by Eq. (1) with

a(k) = Aa exp
(
− k
Ba

)
; p0(k) = Ap0 exp

(
− k
Bp0

)
(4)

being Aa=0:366±0:021; Ba=30:703±0:003; Ap0=0:911±0:005 and Bp0=30:147±0:001
1tting parameters.

4. Conclusions

In the present paper, the behavior of the percolation threshold of site and bond
percolation when k-mers of di-erent size and structure are deposited on regular lattices
is presented. For the di-erent situations considered, a monotonic decreasing function
is observed when pc is plotted as a function of k. In order to include the cases
treated here, which correspond to regular 2-D lattices, a generalization of Eq. (1) is
presented where the inLuence of the parameter k is explicitly considered. This shows
the importance of the e-ect of this particular degree of local correlation, determined
by the k-mers, on the percolation threshold.
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