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Juan Maŕıa Gutierrez

(1613) Los Polvorines, Pcia. de Buenos Aires, Argentina

Abstract

Given B,C and W operators in the algebra L(H) of bounded linear operators on the Krein space H,

the minimization problem min (BX −C)#W (BX −C), for X ∈ L(H), is studied when the weight W is
selfadjoint. The analogous maximization and min-max problems are also considered. Complete answers
to these problems and to those naturally associated to trace clase operators on Krein spaces are given.
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1. Introduction

In estimation theory one would like to approximate the values of certain quantities that are not directly
observable from the values of some sampled measurements. The solution to the problem of estimating the
unobservable quantities given the observable ones depends on the model one uses to describe the relation
between them and the optimality criterion one chooses to determine the desired estimates. The weighted
least squares method is the standard approach in situations when it may not be feasible to assume that
every observation should be treated equally. It works by incorporating a weight to each data point as a
way to describe its influence over the estimates.

The Krein space estimation theory developed by Hassibi et al. [17] has brought into play indefinite
weighted least squares problems. Some of those problems were studied in their “pointwise” form, for
linear operators on infinite-dimensional spaces in [15] and, for matrices with complex entries in [18, 23].
Roughly speaking, if one is given an infinite or finite-dimensional linear space H, a weight W, bounded
linear operators or matrices B,C, and a vector y ∈ H, then the problem is to find an “extremal” vector
x0 ∈ H for the quadratic form [W (Bx − Cy), Bx − Cy] with [ , ] a Krein space inner product on H.
If R(B), the range of B, is closed and W -nonnegative, the vector x0 one seeks minimizing the above
quadratic form is called a weighted indefinite least squares solution of Bx = Cy.

In this work we look instead for a “global” solution of the problem, meaning a bounded linear operator
X0 acting as a W -inverse of B. Broadly speaking, we consider a Krein space (H, [ , ]), a selfadjoint
operator W on H and bounded linear operators B,C on H. We then determine whether there exists
X0 such that, for each y ∈ H, X0y is a weighted indefinite least squares solution of Bx = Cy. For a
positive weight W , the notion of W -inverse was introduced by Mitra and Rao in the case of matrices
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[21], and later on extended to Hilbert space operators in [10, 7]. Here we say that X0 is an indefinite
minimum solution of BX −C = 0 with weight W if X0 realizes the minimum of (BX −C)#W (BX −C)
as X runs over L(H), the space of the bounded linear operators on H, where the order is induced by the
cone of [ , ]-positive operators of L(H). Necessary and sufficient conditions for the existence of such a
solution are given and we show that the solution of BX − I = 0, if it exists, is none other than the Schur
complement of W to R(B); i.e.,

W/[R(B)] = min
X∈L(H)

(BX − I)#W (BX − I).

Given the W -indefiniteness of the range of B, it is natural to consider min-max problems. In fact, any
factorization of B as the sum of two operators, one with W -nonnegative range and the other with W -
nonpositive range, yields a min-max problem. As with the minimization problem, we give necessary and
sufficient conditions for the solvability of the min-max problem and we obtain another characterization
of the Schur complement. Furthermore, even though the decomposition of B depends on the chosen
signature operator J , the solutions to the min-max problem does not.

In the Hilbert space setting an associated minimizing problem can be considered in the context of
unitarily invariant norms, particularly, in the p-Schatten class norms ‖ ‖p, in which case – and under the
assumption that W is positive – it takes the form of the Procrustes problem min

X∈L(H)
‖W 1/2(BX −C)‖p.

Indeed, these two kinds of problems are closely related, as [14, 16, 7] have shown. Inspired by the work of
Kintzel on an indefinite Procrustes problem expressed as a max-min problem on traces of matrices [19],
we define a J-trace, trJ , and study the corresponding min-max problem. We find that, if the problem is
solvable for every C, the solution is unique and equals trJ(C

#W/[R(B)]C). In addition, if trJ(T ) < ∞
for some signature operator J , then trJ′(T ) < ∞ for any other signature operator J ′, though it may
happen that trJ (T ) 6= trJ′(T ). Consequently, the min-max value for the trJ depends on J , but the set
of solutions where this value is attained for each J, is independent of J .

The paper may be thought of as the second part of [8], for it contains the weighted versions of the
operator least squares problems we studied there. There the fundamental tool for solving the least squares
problems was given by the indefinite inverse. In this work the Schur complement , as defined and studied
in [9], plays this role.

The paper has four additional sections. Section 2 fixes notation and recalls the basics of Krein spaces,
Section 3 gives a brief account of the fundamental results on the Schur complement from [9]. In Section 4
we turn to weighted least squares problems. Subsection 4.1 is entirely devoted to the weighted min-max
problems and contains the main results. Section 5 extends the notion of the trace of an operator to
the Krein space setting, and applies the results obtained in the previous section to trace-type min and
min-max problems for operators.

2. Preliminaries

We assume that all Hilbert spaces are complex and separable. If H is a Hilbert space, L(H) stands for
the algebra of bounded linear operators on H and L(H)+ for the cone of positive semidefinite operators
in L(H). We write CR(H) to indicate the subset of L(H) of operators with closed range.

The range and nullspace of any A ∈ L(H) are denoted by R(A) and N(A), respectively. Given a
subset T ⊆ H, the preimage of T under A is denoted by A−1(T ) so A−1(T ) = {h ∈ H : Ah ∈ T }.
Given two operators S, T ∈ L(H), the notation T ≤H S signifies that S−T ∈ L(H)+. For any T ∈ L(H),
|T | := (T ∗T )1/2 is the modulus of T and T = U |T | is the polar decomposition of T, with U the partial
isometry such that N(U) = N(T ).

The direct sum of two closed subspaces M and N of H is represented by M+̇N . If H is decomposed
as H = M+̇N , the projection onto M with nullspace N is denoted by PM//N and abbreviated PM when

N = M⊥. Q indicates the subset of oblique projections in L(H), namely, Q := {Q ∈ L(H) : Q2 = Q}.

Krein Spaces

A linear space H endowed with an indefinite inner product (a Hermitian sesquilinear form) [ , ] is a
Krein space if H is the algebraic direct sum of two subspaces H+ and H− such that: (1) [x+, x− ] = 0
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for every x± ∈ H±, and (2) (H+, [ , ]) and (H−,−[ , ]) are Hilbert spaces. We write

H = H+ [∔] H− (2.1)

to indicate that the Krein space H is the [ , ]-orthogonal direct sum of H+ and H−, and we say that
(2.1) is a fundamental decomposition of H.

In general, all geometrical notions on a Krein space are to be understood with respect to the indefinite
inner product. In particular, the orthogonal companion of a set T in H, which we denote by T [⊥], is the
subspace of those h ∈ H such that [h, x] = 0 for all x ∈ T .

Every fundamental decomposition H = H+ [∔] H− of a given Krein space (H, [ , ]) induces a Hilbert
space inner product 〈 , 〉 on H. Namely, 〈x, y〉 := [x+, y+] − [x−, y−], for x, y ∈ H, x = x+ + x− and
y = y+ + y−. In this situation the operator J defined on x = x+ + x− by Jx := x+ − x− is called a
signature operator of H.

If H is a Krein space, L(H) stands for the vector space of all the linear operators on H which are
bounded in an associated Hilbert space (H, 〈 , 〉). Since the norms generated by different fundamental
decompositions of a Krein space H are equivalent (see, for instance, [4, Theorem 7.19]), L(H) does not
depend on the chosen underlying Hilbert space.

The symbol T# stands for the [ , ]-adjoint of T ∈ L(H). The set of the operators T ∈ L(H) such
that T = T# is denoted L(H)s. If T ∈ L(H)s and [Tx, x ] ≥ 0 for every x ∈ H, T is said to be positive;
the notation S ≤ T signifies that T − S is positive.

Given W ∈ L(H)s and S a closed subspace of H, we say that S is W -positive if [Ws, s ] > 0 for every
s ∈ S, s 6= 0. W -nonnegative, W -neutral, W -negative and W -nonpositive subspaces are defined likewise.
If S and T are two closed subspaces of H, the notation S [∔]W T is used to indicate the direct sum of
S and T when, additionally, [Ws, t ] = 0 for every s ∈ S and t ∈ T .

Standard references on Krein space theory are [2], [4] and [5]. We also refer to [12] and [13] as
authoritative accounts of the subject.

3. Schur complement in Krein Spaces

In this section we include several results on the Schur complement in Krein spaces that will be useful
along the paper. For the proofs the reader is referred to [9].

The notion of Schur complement (or shorted operator) of A to S for a positive operator A on a
Hilbert space H and S ⊆ H a closed subspace, was introduced by M.G. Krein [20]. He proved that the
set {X ∈ L(H) : 0 ≤H X ≤H A and R(X) ⊆ S⊥} has a maximum element, which he defined as the
Schur complement A/S of A to S. This notion was later rediscovered by Anderson and Trapp [1]. If A is

represented as the 2 × 2 block matrix

(

a b

b∗ c

)

with respect to the decomposition of H = S ⊕ S⊥, they

established the formula

A/S =

(

0 0
0 c− y∗y

)

where y is the unique solution of the equation b = a1/2x such that the range inclusion R(y) ⊆ R(a) holds.
The solution always exists because A is positive: in this case, a is also positive and the range inclusion
R(b) ⊆ R(a1/2) holds.

In [3] Antezana et al., extended the notion of Schur complement to any bounded operator A satisfying
a weak complementability condition with respect to a given pair of closed subspaces S and T , by giving
an Anderson-Trapp type formula. In particular, if A is a bounded selfadjoint operator, S = T and

A =

(

a b

b∗ c

)

, this condition reads R(b) ⊆ R(|a|1/2), which as noted, is automatic for positive operators.

In this case, let f be the unique solution of the equation b = |a|1/2x such that the range inclusion
R(f) ⊆ R(a) holds and a = u|a| the polar decomposition of a. Then, the Schur complement of A to S is
defined as

A/S =

(

0 0
0 c− f∗uf

)

.

In [9], the notions of S-complementability, S-weak complementability and the Schur complement were
extended to the Krein space setting in the following fashion.
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Definition. LetW ∈ L(H)s and S be a closed subspace ofH. The operatorW is called S-complementable
if

H = S +W−1(S [⊥]).

If W is S-complementable then, for any fundamental decomposition H = H+ [∔] H− with signature
operator J, we get that H = S +(JW )−1(S⊥). Therefore, W is S-complementable if and only if the pair
(JW,S) is compatible in (the Hilbert space) (H, 〈 , 〉) for any (and then for every) signature operator J,
meaning that there exists a projection Q onto S, such that JWQ = Q∗JW, see [6]. From this, it follows
that W is S-complementable if and only if there exists a projection Q onto S such that WQ = Q#W.

In a similar way the S-weak complementability in Krein spaces, with respect to a fixed signature
operator J, is defined.

Definition. Let W ∈ L(H)s and S be a closed subspace of H. The operator W is S-weakly comple-
mentable with respect to a signature operator J if JW is S-weakly complementable in (H, 〈 , 〉).

In this case, if the matrix representation of JW induced by S is

JW =

[

a b

b∗ c

]

, (3.1)

the S-weak complementability of W is equivalent to R(b) ⊆ R(|a|1/2). The S-weak complementability
of W does not depend on the signature operator, see [9, Theorem 4.4]. Then, we simply say that W is
S-weakly complementable, whenever W is S-weakly complementable with respect to a signature operator
J.

Let W ∈ L(H)s and S a closed subspace of H. Then, by applying the spectral theorem for Hilbert
space selfadjoint operators to A = JW, with J any signature operator, S can be decomposed as

S = S+ [∔]W S−, (3.2)

where S+ and S− are closed, S+ is W -nonnegative, S− is W -nonpositive and S+ ⊥ S−. Notice that the
decomposition in (3.2) need not be unique.

The following is a characterization of the S-weak complementability [9, Proposition 4.7].

Proposition 3.1. Let W ∈ L(H)s and S be a closed subspace of H. Suppose that S = S+ [∔]W S− is any
decomposition as in (3.2) for some signature operator J. Then the following statements are equivalent:

i) W is S-weakly complementable,

ii) there exist W1,W2,W3 ∈ L(H)s, W2,W3 ≥ 0 such that W = W1 + W2 − W3 and S ⊆ N(W1),
S− ⊆ N(W2), S+ ⊆ N(W3),

iii) W is S±-weakly complementable.

Definition. Let W ∈ L(H)s, S be a closed subspace of H and J a signature operator. Suppose that W
is S-weakly complementable. The Schur complement of W to S corresponding to J is

W J
/[S] = J(JW )/S ,

and the S-compression of W is W J
[S] = W −W J

/[S].

In [9, Theorem 4.5] it was proved that the Schur complement does not depend on the fundamental
decomposition of H. Henceforth we write W/[S] for this operator and W[S] for the S-compression. Also,
suppose that S = S+ [∔]W S− is any decomposition as in (3.2) for some signature operator J. If W is
S-weakly complementable then

W/[S] = (W/[S+])/[S−] = (W/[S−])/[S+]. (3.3)

Also, if W = W1 +W2 −W3 as in Proposition 3.1 then

W/[S] = W1 +W2/[S+] −W3/[S−]. (3.4)
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Moreover, if W is S-complementable then

W/[S] = W (I −Q), (3.5)

for any projection Q onto S such that WQ = Q#W.

The following result was proved in [9, Corollary 4.12].

Proposition 3.2. Let W ∈ L(H)s and S be a closed subspace of H. Suppose that S is W -nonnegative.
Then W is S-weakly complementable if and only if there exists inf {E#WE : E = E2, N(E) = S}. In
this case,

W/[S] = inf {E#WE : E = E2, N(E) = S}.

4. Weighted least squares problems in Krein spaces

Consider the following problem: given the operators W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H),
determine the existence of

min
X∈L(H)

(BX − C)#W (BX − C). (4.1)

Definition. Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). An operator X0 ∈ L(H) is an indefinite
minimum solution of BX − C = 0 with weight W (W -ImS) if X0 is a solution of Problem (4.1).

In a similar fashion, the analogous maximization problem can be considered. Along this section all
the results are stated for problem (4.1) but similar results hold for the maximum problem.

Consider W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H) and define

F (X) := (BX − C)#W (BX − C). (4.2)

We begin by giving conditions for the existence of the infimum in L(H) of the family {F (X) : X ∈ L(H)}
when C = I.

Proposition 4.1. Let W ∈ L(H)s and B ∈ CR(H) such that R(B) is W -nonnegative. Then the
following are equivalent:

i) There exists inf
X∈L(H)

(BX − I)#W (BX − I) =: Z0 ∈ L(H) and R(B) is Z0-nonnegative,

ii) W is R(B)-weakly complementable.

In this case, Z0 = W/[R(B)].

Proof. Suppose that W is R(B)-weakly complementable. Let F (X) be as in (4.2) for C = I. Then, for
any X ∈ L(H), F (X) = W/[R(B)]+(BX−I)#W[R(B)](BX−I) ≥ W/[R(B)], because R(B) ⊆ N(W/[R(B)])
and the fact that R(B) is W -nonnegative yields W[R(B)] ≥ 0. Hence W/[R(B)] is a lower bound of {F (X) :
X ∈ L(H)}. Let T ∈ L(H) be any other lower bound of F (X).

In particular, given E ∈ Q such that R(I − E) = R(B), by Douglas’ Lemma [11], there exists
X0 ∈ L(H) satisfying I − E = BX0; i.e., such that −E = BX0 − I. Then

T ≤ E#WE for every E ∈ Q such that N(E) = R(B).

By Proposition 3.2,
T ≤ inf {E#WE : E ∈ Q, N(E) = R(B)} = W/[R(B)].

Therefore, W/[R(B)] = inf
X∈L(H)

F (X) and, since R(B) ⊆ N(W/[R(B)]), R(B) is W/[R(B)]-nonnegative.

Conversely, if Z0 exists and R(B) is Z0-nonnegative, then taking X = 0, the inequality Z0 ≤ W shows
that Z0 ∈ L(H)s. As before,

Z0 ≤ E#WE for every E ∈ Q such that N(E) = R(B).
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Fix a signature operator J and let (H, 〈 , 〉) be the corresponding Hilbert space; consider E = PR(B)⊥ .

Since Z0 ∈ L(H)s, (JZ0)
∗ = JZ0 and

JZ0 ≤H PR(B)⊥JWPR(B)⊥ . (4.3)

Let JW =

[

a b

b∗ c

]

and JZ0 =

[

z11 z12
z∗12 z22

]

be the matrix representation of JW and JZ0 induced by

R(B), respectively. By (4.3),

PR(B)⊥JWPR(B)⊥ − JZ0 =

[

−z11 −z12
−z∗12 c− z22

]

≥H 0.

Then, z11 ≤H 0 and R(z12) ⊆ R((−z11)
1/2). Since R(B) is Z0-nonnegative, z11 ≥H 0. So z11 = z12 =

z∗12 = 0 and R(JZ0) ⊆ R(B)⊥ or equivalently, R(Z0) ⊆ R(B)[⊥]. Therefore, W = (W − Z0) + Z0, with
W − Z0 ≥ 0 and R(Z0) ⊆ R(B)[⊥]. Then, by Proposition 3.1, W is R(B)-weakly complementable.

Corollary 4.2. Let W ∈ L(H)s and B ∈ CR(H) such that R(B) is W -nonnegative and W is R(B)-
weakly complementable. Then, for every C ∈ L(H),

inf
X∈L(H)

(BX − C)#W (BX − C) = C#W/[R(B)]C.

Proof. If W ≥ 0, by [7, Lemma 4.1],

inf {C#E#WEC : E ∈ Q, N(E) = R(B)} = C#W/[R(B)]C.

By Proposition 3.1, W = W1 + W2, with R(B) ⊆ N(W1) and W2 ≥ 0. Then, given E ∈ Q such that
N(E) = R(B),

C#E#WEC = C#W1C + C#E#W2EC.

Hence

inf {C#E#WEC : E ∈ Q, N(E) = R(B)} =

= C#W1C + inf {C#E#W2EC : E ∈ Q, N(E) = R(B)}

= C#W1C + C#W2/[R(B)]C = C#W/[R(B)]C.

Using this equality, the result follows in a similar way as in the first part of the proof of Proposition 4.1.

The next theorem establishes when the infimum in Proposition 4.1 is attained.

Theorem 4.3. Let W ∈ L(H)s and B ∈ CR(H). Then the following are equivalent:

i) there exists a W -ImS of BX − I = 0,

ii) R(B) is W -nonnegative and W is R(B)-complementable,

iii) R(B) is W -nonnegative and the normal equation

B#W (BX − I) = 0 (4.4)

admits a solution.

In this case,
min

X∈L(H)
(BX − I)#W (BX − I) = W/[R(B)].
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Proof. i) ⇔ iii) : Suppose that X0 is a W -ImS of BX − I = 0. Then

[W (BX0 − I)x, (BX0 − I)x ] ≤ [W (BX − I)x, (BX − I)x ]

for every x ∈ H and every X ∈ L(H). Let z ∈ H be arbitrary. Then, for every x ∈ H \ {0}, there exists
X ∈ L(H) such that z = Xx. Therefore

[W (BX0 − I)x, (BX0 − I)x ] ≤ [W (Bz − x), Bz − x ]

for every x, z ∈ H. Thus, for every x ∈ H, X0x is a weighted indefinite least squares solution of Bz = x.

So, by [15, Proposition 3.2] (see also [5, Chapter I, Theorem 8.4]), R(B) is W -nonnegative and X0x is a
solution of B#W (By − x) = 0 for every x ∈ H, or equivalently, X0 is a solution of (4.4).

The converse follows in a similar way, applying again [15, Proposition 3.2].
ii) ⇔ iii) : Suppose that H = R(B) + W−1(R(B)[⊥]), then R(B#W ) ⊆ R(B#WB). Hence, by

Douglas’ Lemma, the equation B#W (BX − I) = 0 admits a solution. The converse follows analogously.
In this case, by Proposition 4.1,

min
X∈L(H)

(BX − I)#W (BX − I) = W/[R(B)].

The next corollaries follow from Theorem 4.3.

Corollary 4.4. Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). Then the following are equivalent:

i) there exists a W -ImS of BX − C = 0,

ii) R(B) is W -nonnegative and R(C) ⊆ R(B) +W−1(R(B)[⊥]),

iii) R(B) is W -nonnegative and the normal equation

B#W (BX − C) = 0 (4.5)

admits a solution.

In this case, X0 is a W -ImS of BX − C = 0 if and only X0 is a solution of (4.5).

Proof. This follows in a similar way as in the proof of Theorem 4.3 using the fact that u is a weighted
indefinite least squares solution of the equation Bz = Cx if and only if R(B) is W -nonnegative and u is
a solution of B#W (By − Cx) = 0, see [15, Proposition 3.2].

Corollary 4.5. Let W ∈ L(H)s and B ∈ CR(H). Then there exists a W -ImS of BX −C = 0 for every
C ∈ L(H) if and only if R(B) is W -nonnegative and W is R(B)-complementable. In this case,

min
X∈L(H)

(BX − C)#W (BX − C) = C#W/[R(B)]C.

Proof. Suppose that there exists a W -ImS of BX − C = 0 for every C ∈ L(H). Then the conclusion
follows by applying Theorem 4.3 for C = I.

Conversely, if W is R(B)-complementable and R(B) is W -nonnegative, then B#W (BX − I) = 0
admits a solution. Therefore B#W (BX − C) = 0 admits a solution for every C ∈ L(H) and, by
Corollary 4.4, there exists a W -ImS of BX − C = 0.

In this case, let Q ∈ Q be such that R(Q) = R(B) and WQ = Q#W. Then, by Douglas’ Lemma,
there exists X0 ∈ L(H) such that BX0 = QC. Therefore B#W (BX0 − C) = B#W (Q − I)C = 0,
because R(I −Q) = N(Q) ⊆ N(B#W ) [6, Lemma 3.2]. Then, X0 is a W -ImS of BX − C = 0. Hence,
min

X∈L(H)
F (X) = C#W/[R(B)]C, since W/[R(B)] = W (I −Q), by (3.5).
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4.1. Weighted Min-Max problems

A necessary condition for the minimization (maximization) problem to be solvable is that the range
of the operatorB is W -nonnegative (W -nonpositive). In what follows, we are interested in posing (and
solving) a problem similar to the one in (4.1), that does not require the range of B to be W -definite
in order to admit a solution. To do so, we begin by expressing the range of B as the sum of suitable
W -definite subspaces.

For a fix signature operator J, the spectral theorem for Hilbert space selfadjoint operators applied to
JW gives that S := R(B) can be decomposed as S = S+ [∔]W S− (compare with (3.2)). If P± = PS±

and B± = P±B then S± = R(B±) and the following result holds.

Lemma 4.6. Let W ∈ L(H)s and B ∈ CR(H). Then, given a signature operator J, B can be written as

B = B+ +B− (4.6)

with R(B+) closed and W -nonnegative, R(B−) closed and W -nonpositive, R(B+) ⊥ R(B−) and R(B) =
R(B+) [∔]W R(B−).

Fix a descomposition of R(B) as in (4.6) and define

FJ (X,Y ) = (B+X +B−Y − C)#W (B+X +B−Y − C).

Notice that FJ (X,X) = F (X).
Consider the following problem: determine the existence of

max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

.

Proposition 4.7. Let W ∈ L(H)s and B ∈ CR(H) such that W is R(B)-weakly complementable and B

is represented as in (4.6) for some signature operator J. Then, for every C ∈ L(H),

sup
Y ∈L(H)

(

inf
X∈L(H)

FJ (X,Y )

)

= inf
X∈L(H)

(

sup
Y ∈L(H)

FJ(X,Y )

)

= C#W/[R(B)]C.

Proof. Write W = W1 + W2 − W3, with R(B) ⊆ N(W1), R(B−) ⊆ N(W2), R(B+) ⊆ N(W3) and
W2,W3 ≥ 0 (see Proposition 3.1). Then

FJ(X,Y )=C#W1C+(B+X−C)#W2(B+X−C)−(B−Y −C)#W3(B−Y −C).

By Proposition 3.1, W is R(B±)-weakly complementable. Also, W is R(B+)-weakly complementable
and R(B+) is W -nonnegative if and only if W2 is R(B+)-weakly complementable and R(B+) is W2-
nonnegative. Applying Corollary 4.2,

inf
X∈L(H)

(B+X − C)#W2(B+X − C) = C#W2/[R(B+)]C.

Therefore, for each Y ∈ L(H),

inf
X∈L(H)

FJ(X,Y ) = C#W1C + C#W2/[R(B+)]C − (B−Y − C)#W3(B−Y − C).

In the same way, by applying Corollary 4.2 and (3.4)

sup
Y ∈L(H)

(

inf
X∈L(H)

FJ(X,Y )

)

= C#W1C + C#W2/[R(B+)]C − C#W3/[R(B−)]C =

= C#W/[R(B)]C.

The second equality can be proved similarly.
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Definition. Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). Suppose that B is represented as in (4.6) for
some signature operator J. An operator Z ∈ L(H) is an indefinite min-max solution of BX −C = 0 with
weight W (W -ImMS) (corresponding to the decomposition given by J) if

(BZ − C)#W (BZ − C) = max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

. (4.7)

When the weight is the identity, it was proved in [8, Theorem 5.1 and Corollary 5.2], that an operator
Z ∈ L(H) is an I-ImMS of BX − C = 0, for some fundamental decomposition of H, if and only if

Z = Z1 + Z2

where B#(BZ1 −C) = 0 and (BZ2)
#BZ2 = 0. Therefore, an I-ImMS of BX − C = 0 is independent of

the selected fundamental decomposition of H. Also, there exists an I-ImMS of BX − C = 0 if and only
if R(C) ⊆ R(B) +R(B)[⊥]. A similar result holds for a general weight:

Theorem 4.8. Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). An operator Z is a W -ImMs of BX−C = 0
for some (and, hence, any) fundamental decomposition of H, if and only if

Z = Z1 + Z2

where B#W (BZ1 − C) = 0 and (BZ2)
#WBZ2 = 0.

The proof follows from Corollary 4.4, using similar arguments to those found in the proof of [8,
Theorem 5.1].

Remark. Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). Suppose that B is represented as in (4.6) for
some signature operator J. Then

max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

= min
X∈L(H)

(

max
Y ∈L(H)

FJ (X,Y )

)

.

This follows from Theorem 4.8 and using similar arguments to those found in the proof of [8, Remark
after Theorem 5.1].

Corollary 4.9. Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). Then, there exists a W -ImMS of BX−C =
0 if and only if R(C) ⊆ R(B) +W−1(R(B)[⊥]).

Proof. Suppose that Z is a W -ImMs of BX − C = 0. Then, by Theorem 4.8, Z = Z1 + Z2 where
B#W (BZ1 − C) = 0 and (BZ2)

#WBZ2 = 0. Therefore

R(C) ⊆ R(B) +W−1(R(B)[⊥]).

Conversely, if R(C) ⊆ R(B) + W−1(R(B)[⊥]) then R(B#WC) ⊆ R(B#WB). By Douglas’s Lemma,
there exists a solution of the normal equation B#W (BX−C) = 0, say Z1 ∈ L(H). Put Z2 = 0 and apply
Theorem 4.8 to get that Z1 is a W -ImMs of BX − C = 0.

Corollary 4.10. Let W ∈ L(H)s and B ∈ CR(H). Then, there exists a W -ImMS of BX − C = 0 for
every C ∈ L(H) if and only if W is R(B)-complementable. In this case, for every signature operator J,

max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

= C#W/[R(B)]C = C#W (I −Q)C,

where Q is any projection onto R(B) such that WQ = Q#W.

Proof. If W is R(B)-complementable then, for every C ∈ L(H), R(C) ⊆ R(B)+W−1(R(B)[⊥]) and, by
Corollary 4.4, there exists a W -ImMS of BX − C = 0.
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Conversely, assume that, for every C ∈ L(H) there exists a W -ImMS of BX − C = 0. Set C = I

and apply the corollary once again to get that W is R(B)-complementable as H = R(I) ⊆ R(B) +
W−1(R(B)[⊥]).

In this case, like in the proof of Corollary 4.5, let Q ∈ Q be such that R(Q) = R(B) and WQ = Q#W.

Then, by Douglas’ Lemma, there exists Z1 ∈ L(H) such that BZ1 = QC and B#W (BZ1−C) = 0. Then,
by Theorem 4.8, Z1 is a W -ImMS of BX − C = 0. Therefore,

max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

= F (Z1) = C#W/[R(B)]C = C#W (I −Q)C.

5. Minimization problems in the indefinite trace space

In the present section the notion of trace of an operator is extended to the Krein space setting with
the aim of applying the results previously obtained to trace-type problems on operators.

We denote by Sp the p-Schatten class for 1 ≤ p < ∞. The reader is referred to [22, 24] for further
details on Sp-operators.

Let (H, [ , ]) be a Krein space. If J is a signature operator for H, fix the Hilbert space (H, 〈 , 〉),
where 〈 x, y 〉 = [ Jx, y ] for all x, y ∈ H. The operator T belongs to the Schatten class Sp(J) if T ∈ Sp when
viewed as acting on the associated Hilbert space (H, 〈 , 〉). The next lemma shows that if T ∈ Sp(Ja)
for some fundamental decomposition of H with signature operator Ja then T ∈ Sp(Jb) for any other
fundamental decomposition of H with signature operator Jb. To prove this assertion we will use the
following result, see [22, Theorem 2.1.3].

Theorem 5.1. Let H be a Hilbert space, T ∈ L(H) and 1 ≤ p < ∞. Then T ∈ Sp if and only if there
exists a sequence {Fn}n∈N of operators on H such that Fn has finite rank not greater than n and

∑

n≥1

‖T − Fn‖
p < ∞.

Lemma 5.2. Let (H, [ , ]) be a Krein space with signature operators Ja and Jb. Fix the Hilbert spaces
(H, 〈 , 〉a) and (H, 〈 , 〉b). Then T ∈ Sp(Ja) if and only if T ∈ Sp(Jb).

Proof. The result is readily obtained by applying Theorem 5.1 and from the fact that 〈 , 〉a and 〈 , 〉b
are equivalent.

On account of the above lemma we just write Sp instead of Sp(J).

Definition. Let (H, [ , ]) be a separable Krein space with signature operator J and fix the associated
Hilbert space (H, 〈 , 〉). If T ∈ S1 and {en : n ∈ N} is an orthonormal basis of (H, 〈 , 〉), then the
J-trace of T, denoted by trJ(T ), is defined as

trJ(T ) =

∞
∑

n=1

[Ten, en ].

Notice that trJ(T ) equals tr(JT ) in the inner product 〈 , 〉 = [ J , ] see [22, 24]. Whence the J-trace
of T does not depend on the particular choice of the orthonormal basis (see [22, Lemma 2.2.1]).

The next lemma gathers the basic properties of the J-trace. By using the definition of trJ and the
properties of the trace of an operator in a Hilbert space the proof is straightforward.

Lemma 5.3. Let (H, [ , ]) be a Krein space with signature operator J and fix the associated Hilbert
space (H, 〈 , 〉). Let T, S ∈ S1 and α, β ∈ C, then

i) trJ (αT + βS) = α trJ(T ) + β trJ(S),

ii) trJ (T
#) = trJ(T ),
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iii) trJ (T ) = tr(JT ), where the trace is calculated with respect to the inner product 〈 , 〉 = [ J , ],

iv) trJ (TS) = trJ(JSJT ) = trJ(SJTJ),

v) | trJ (T )| ≤ ‖T ‖1.

The next example shows that the J-trace depends on the signature operator J.

Example 1. Consider C2 with the indefinite metric [ (x1, x2), (y1, y2) ] = x1y1 − x2y2.

Then (C2, [ , ]) is a Krein space with fundamental decompositions: C2 = span{(1, 0)} [∔] span{(0, 1)}
and C2 = span{(2, 1)} [∔] span{(1, 2)}. Let Ja and Jb be the corresponding signature operators. Observe

that {(1, 0), (0, 1)} is an orthonormal basis in (C2, [ Ja , ]) and
{

1√
3
(2, 1), 1√

3
(1, 2)

}

is an orthonormal

basis in (C2, [ Jb , ]). Set T : C2 → C2, T (x1, x2) := (x1 + x2, 0). A straightforward computation gives
trJa

(T ) = 1 6= 3 = trJb
(T ).

Lemma 5.4. Let (H, [ , ]) be a separable Krein space with signature operators Ja and Jb. Fix the Hilbert
spaces (H, 〈 , 〉a) and (H, 〈 , 〉b). If T ∈ S1 then

trJb
(T ) = trJa

(JbTJa).

Proof. We use the notation tr〈 , 〉 when we want to highlight the inner product on which the trace is
calculated. Let α = JaJb. Then α is an invertible operator on H such that, for every x, y ∈ H,

〈αx, y 〉a = 〈 JaJbx, y 〉a = [ Jbx, y ] = 〈x, y 〉b .

In particular, 〈αx, x 〉a ≥ 0 for every x ∈ H.

Let {en : n ∈ N} be an orthonormal basis in (H, 〈 , 〉b). Then

δij = 〈 ei, ej 〉b = 〈αei, ej 〉a =
〈

α1/2ei, α
1/2ej

〉

a
.

Hence, {α1/2en : n ∈ N} is an orthonormal basis in (H, 〈 , 〉a).
So, if T ∈ S1 then
trJb

(T ) = tr〈 , 〉
b
(JbT ) = tr〈 , 〉

b
(TJb) =

∑

n≥1 〈TJben, en 〉b =

=
∑

n≥1 〈αTJaαen, en 〉a =
∑

n≥1

〈

(α1/2TJaα
1/2)α1/2en, α

1/2en
〉

a
=

= tr〈 , 〉
a
(α1/2TJaα

1/2) = tr〈 , 〉
a
(αTJa) = tr〈 , 〉

a
(JaJbTJa) =

= trJa
(JbTJa).

Fréchet derivative of the J-trace

Let (E , ‖ · ‖) be a Banach space and U ⊆ E be an open set. We recall that a function f : E → R is
said to be Fréchet differentiable at X0 ∈ U if there exists Df(X0) : E → R a bounded linear functional
such that

lim
Y→0

|f(X0 + Y )− f(X0)−Df(X0)(Y )|

‖Y ‖
= 0.

If f is Fréchet differentiable at every X0 ∈ E , f is called Fréchet differentiable on E and the function
Df which assigns to every point X0 ∈ E the derivative Df(X0), is called the Fréchet derivative of the
function f. If, in addition, the derivative Df is continuous, f is said to be a class C1-function, in symbols,
f ∈ C1(E ,R).

Let W ∈ L(H)s, B ∈ CR(H) and C ∈ L(H). Recall that F (X) = (BX − C)#W (BX − C) and
consider fJ : L(H) → R defined by

fJ(X) := trJ(F (X)).

In the following lemma we give the formula for the Fréchet derivative of fJ(X), see [16] for the
finite-dimensional case.
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Lemma 5.5. Let (H, [ , ]) be a Krein space with signature operator J. Fix the associated Hilbert space
(H, 〈 , 〉). Let W ∈ S1, B ∈ CR(H) and C ∈ L(H). Then fJ is Fréchet differentiable on L(H) and

DfJ (X)(Y ) = 2 Re trJ (Y
#B#W (BX − C)).

Moreover, fJ ∈ C1(L(H),R).

Proof. For all X,Y ∈ L(H),

fJ(X + Y ) = fJ(X) + 2Re trJ ((BY )#W (BX − C)) + trJ ((BY )#W (BY )).

Then
|fJ(X + Y )− fJ(X)− 2Re trJ((BY )#W (BX − C))|

‖Y ‖
=

=
| trJ ((BY )#W (BY ))|

‖Y ‖
≤

‖BY ‖2‖W‖1
‖Y ‖

≤ ‖B‖2‖W‖1‖Y ‖

(see Lemma 5.3). Hence fJ is Fréchet differentiable on L(H) and

DfJ(X)(Y ) = 2Re trJ ((BY )#W (BX − C)).

Finally, since

|DfJ(X1)(Y )−DfJ(X2)(Y )| = 2|Re trJ ((BY )#W (B(X1 −X2))|

≤ 2‖B‖2‖Y ‖‖W‖1‖X1 −X2‖.

(once again by Lemma 5.3), it follows that fJ ∈ C1(L(H),R).

In this section we deal with the following problems: let (H, [ , ]) be a Krein space with signature
operator J. Fix the associated Hilbert space (H, 〈 , 〉). Given B ∈ CR(H), C ∈ L(H) and W ∈ S1 ∩
L(H)s, we analyze whether there exists the

min
X∈L(H)

trJ((BX − C)#W (BX − C)) (5.1)

and the corresponding maximum.
Finally, if B is represented as in (4.6) and FJ (X,Y ) = (B+X + B−Y − C)#W (B+X + B−Y − C),

we also analyze the existence of

max
Y ∈L(H)

(

min
X∈L(H)

trJ(FJ (X,Y ))

)

. (5.2)

It follows from the last lemma that, if fJ : L(H)× L(H) → R is given by

fJ(X,Y ) := trJ(FJ (X,Y )), (5.3)

then fJ ∈ C1(L(H)× L(H),R) and the partial derivatives of fJ in every (X0, Y0) ∈ L(H)× L(H) are

DXfJ(X0, Y0)(H) = 2Re trJ((B+H)#W (B+X0 +B−Y0 − C)),

DY fJ(X0, Y0)(K) = 2Re trJ((B−K)#W (B+X0 +B−Y0 − C)),

for all H,K ∈ L(H).

Theorem 5.6. Let W ∈ L(H)s such that W ∈ S1, B ∈ CR(H) and C ∈ L(H). The following assertions
hold:

1. Assume that R(B) is W -nonnegative. Then, X0 ∈ L(H) realizes (5.1) for any signature operator
J if and only if X0 is a W -ImS of the equation BX − C = 0.
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2. Let B be represented as in (4.6) for some signature operator J. Then, the min-max in (5.2) exists
for every C ∈ L(H) if and only if W is R(B)-complementable. In this case,

max
Y ∈L(H)

(

min
X∈L(H)

trJ (FJ (X,Y ))

)

= trJ (C
#W/[R(B)]C).

The operator Z ∈ L(H) realizes (5.2) if and only if Z is a W -ImMS of BX − C = 0.

Proof. Let J be a signature operator of H and fix the associated Hilbert space (H, 〈 , 〉). Suppose that
X0 is a solution of Problem (5.1). If fJ is as in Lemma 5.5 then X0 is a global minimum of fJ . Since fJ is
a C1-function, X0 is a critical point of fJ(X); i.e., for every Y ∈ L(H), DfJ(X0)(Y ) = 0 or equivalently,

0 = 2Re trJ((BY )#W (BX0 − C)) = 2Re tr(J(BY )#W (BX0 − C)).

Thus, considering a suitable Y, it follows that

B#W (BX0 − C) = 0.

So, by Corollary 4.4, X0 is a W -ImS of BX − C = 0.
As for the converse, suppose that X0 is a W -ImS of BX−C = 0. Let {en : n ∈ N} be any orthonormal

basis in (H, 〈 , 〉). Then

[W (BX0 − C)en, (BX0 − C)en ] ≤ [W (BX − C)en, (BX − C)en ]

for every n ∈ N and every X ∈ L(H). Therefore

trJ (F (X0)) ≤ trJ (F (X))

for every X ∈ L(H). Hence X0 is a solution of Problem (5.1) and the proof of the item 1 is complete.
As for the item 2, suppose that W is R(B)-complementable and Z ′ is a solution of B#W (BX−I) = 0.

Then, for any C ∈ L(H), Z = Z ′C is a solution of B#W (BX − C) = 0 and, by Theorem 4.8, Z is a
W -ImMS of BX − C = 0, i.e.,

(BZ − C)#W (BZ − C) = max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

.

Let {en : n ∈ N} be any orthonormal basis in (H, 〈 , 〉). Then, for every n ∈ N and any X,Y ∈ L(H),

[ (B+Z +B−Y − C)#W (B+Z +B−Y − C)en, en ] ≤

≤ [ (B+Z +B−Z − C)#W (B+Z +B−Z − C)en, en ]

≤ [ (B+X +B−Z − C)#W (B+X +B−Z − C)en, en ].

Therefore

trJ(FJ (Z,Z)) = trJ (F (Z)) = max
Y ∈L(H)

(

min
X∈L(H)

trJ(FJ (X,Y ))

)

=

= trJ(C
#W/[R(B)]C),

where we used Corollary 4.10. Hence Z is a solution of Problem (5.2).
Conversely, if Z ∈ L(H) is a solution of Problem (5.2) for any C ∈ L(H), then

fJ(Z, Y ) ≤ fJ(Z,Z) ≤ fJ(X,Z) for every X, Y ∈ L(H),

where fJ is as in (5.3). Hence, Z is a global minimum of fJ(X,Z) and Z is a global maximum of fJ(Z, Y ).
Therefore, for every H,K ∈ L(H),

DXfJ(Z,Z)(H) = DY fJ(Z,Z)(K) = 0
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or equivalently,
Re trJ ((B+H)#W (B+Z +B−Z −C)) = Re trJ ((B−K)#W (B+Z +B−Z −C)) = 0. Then, considering
suitable H,K, it follows that

B
#
+W (B+Z +B−Z − C) = B

#
−W (B+Z +B−Z − C) = 0.

Thus
B#W (BZ − C) = 0

and, by Theorem 4.8 once again, Z is a W -ImMS of BX − C = 0.

The following theorem synthesizes the results of the last two sections.

Theorem 5.7. Let W ∈ L(H)s such that W ∈ S1 and B ∈ CR(H). Then the following statements are
equivalent:

i) there exists a W -ImMS of BX − C = 0 for every C ∈ L(H),

ii) the max
Y ∈L(H)

(

min
X∈L(H)

trJ (FJ (X,Y ))

)

is attained, for every C ∈ L(H),

iii) W is R(B)-complementable,

iv) the equation B#W (BX − C) = 0 admits a solution for every C ∈ L(H).

In this case,

max
Y ∈L(H)

(

min
X∈L(H)

FJ (X,Y )

)

= C#W/[R(B)]C

and

max
Y ∈L(H)

(

min
X∈L(H)

trJ (FJ (X,Y ))

)

= trJ(C
#W/[R(B)]C).

Moreover, Z is a W -ImMS of BX − C = 0 and the min-max in ii) is attained in Z if and only
Z = Z1 + Z2, where B#W (BZ1 − C) = 0 and (BZ2)

#WBZ2 = 0.

Final remark: the J-S2 space

Let (H, [ , ]) be a Krein space with signature operator J. Fix the associated Hilbert space (H, 〈 , 〉)
and set

[S, T ]J := trJ (T
#S), S, T ∈ S2.

It can be readily seen that [ , ]J is an indefinite inner product on S2. Moreover, (S2, [ , ]J) is a Krein
space and

trJ (T
#T ) = ‖P+T ‖

2
2 − ‖P−T ‖

2
2,

where P± = I±J
2 .
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