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Abstract: A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model
uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where
only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario
where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output
feedback. The method considers an extended cost function that can be made globally convergent for any
finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost
contracting constraints in the control problem. The controller considers the output feedback case through a
non-minimal state-space model that is built using past output measurements and past input increments. The
application of the robust output feedback MPC is illustrated through the simulation of a low-order
multivariable system.
1 Introduction
The lack of guaranteed robust stability is still one of the
weaknesses of the available model predictive controller
(MPC) commercial packages that are based on linear
models [1]. A robust controller is supposed to provide
closed-loop stability for some classes of model uncertainty
or unknown disturbances. As many process systems are
non-linear, and usually operate in the vicinity of distinct
operating points, different linear models should be used
to represent the process across the operating region. The
design of the MPC controller is usually based on a
nominal linear model of the process and no explicit
consideration of model uncertainty or unmeasured
disturbances is included. So, even when a nominally stable
controller is used, stability is still an issue when the real
plant model may be significantly different from the
nominal model. This subject has been extensively treated in
the control literature for the case where the system is
represented by a minimal order state-space model where
the state is measured. Some of these works have addressed
robustness with respect to model uncertainty [2–6],
whereas other references have considered robustness with
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respect to disturbances [7–9]. For the case of state
feedback, the existing solutions to the robust MPC
problem seem to be already in an acceptable stage for
practical implementation.

An interesting approach to the problem of robust control
was proposed by Badgwell [4] that developed a robust
MPC for the regulator operation of stable systems
assuming the multi-plant uncertainty. The method was
extended to the case of output tracking of systems with
unmeasured disturbances [10, 11], and to the output
tracking of systems with stable and integrating modes [6]
for the same sort of model uncertainty. Other recent MPC
formulation to solve the robust control problem is based on
the development of a control Lyapunov function, which is
independent of the control cost function. Mhaskar [12]
applied this approach to the case of model uncertainty and
control actuator fault.

All the developments listed above were also based on the
assumption that the system state is perfectly known at each
sampling instant of the MPC control cycle. In practice, the
state-space model is usually built based on experimental
1377
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data, and the state of the model is not measured. To estimate
the model state that is used in the MPC control problem, it is
necessary to include a state observer. The separation principle
guarantees that a stable state feedback linear controller,
associated with an asymptotic stable observer, stabilises the
closed-loop system. However, in the constrained MPC, the
controller becomes non-linear when the constraints become
active, and the separation principle cannot be applied.

An alternative is to develop an MPC, which is based
on a state-space model where the state is always known.
Maciejowski [13] presented one of such models and Wang
and Young [14] discussed the advantages of the MPC
based on that model. One disadvantage of the model
presented by Maciejowski [13] is that, it is not of minimal
order and this property complicates the application of the
infinite horizon MPC (IHMPC) with robust stability
proposed by Odloak [11]. Thus, the main scope here is to
extend the methods of Odloak [11] and Badgwell [4] to
the case where the system is represented by a non-minimal
order model in which the state at the present time is
composed of the output and input measurements at the
present and past sampling instants. Here, it is extended
from the previous work [15] where an IHMPC with
output feedback was developed for the nominal system.
This controller can be characterised as an MPC with
output feedback and robust stability to the multi-model
uncertainty, as well as to unmeasured persistent
disturbances in the target tracking and regulatory
operations. The paper is organised as follows: in Section 2,
the non-minimal model utilised for the proposed MPC
strategy is presented; in Section 3, the nominal IHMPC
formulation is developed, together with a simulation
example; in Section 4, the nominal MPC is extended to
the multi-model robust case, and a simulation example is
presented to illustrate the controller performance. Finally,
in Section 5, the paper is concluded.

2 Non-minimal incremental state-
space model
The state-space model considered in this work is based on
the following ARX model

y(k) = −
∑na

i=1

Ai y(k − i) +
∑nb

i=1

Biu(k − i) (1)

where y [ <ny and u [ <nu. Several authors [14, 16] have
considered the model defined in (1) in a non-minimal
state-space form where the state is measured. The
incremental form in the input of this non-minimal model
can be written as follows

x(k + 1) = Ax(k) + BDu(k)

y(k) = Cx(k)
(2)
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where

A =
Ay ADu

0 I

[ ]
, B =

BDu

�I

[ ]
, C = Cy CDu

[ ]

Ay =

Iny − A1 A1 − A2 · · · Ana−1 − Ana Ana

Iny 0 · · · 0 0

0 Iny · · · 0 0

..

. ..
. . .

. ..
. ..

.

0 0 · · · Iny 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× [ <(na+1)ny×(na+1)ny

ADu =

B2 · · · Bnb−1 Bnb

0 · · · 0 0

0 · · · 0 0

0 . .
.

0 0

0 · · · 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

[ <(na+1)ny×(nb−1)nu

I =

0 · · · 0 0

Inu · · · 0 0

..

. . .
. ..

. ..
.

0 · · · Inu 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ [ <(nb−1)nu×(nb−1)nu

BDu =

B1

0

0

..

.

0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

, �I =

Inu

0

..

.

0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

Cy = Iny 0 · · · 0 0
[ ]

, CDu = 0 · · · 0 0
[ ]

Iny and Inu are identity matrices of dimensions ny × ny and
nu × nu, respectively.

Furthermore, state x is given by

x(k) = xy(k)
xDu(k)

[ ]
[ <nx (3)

with

xy(k) = y(k)T y(k− 1)T · · · y(k− na+ 1) y(k− na)T
[ ]T

[<(na+1)ny

xDu(k) = Du(k− 1)T
Du(k− 2)T · · · Du(k− nb+ 1)T

[ ]T

[<(nb−1)nu

nx = (na+ 1)ny+ (nb− 1)nu

The state partition defined in (3) is convenient in order to
separate the state components related to the system output
at past sampling steps, from the state components related
to the input at past sampling steps. Also, since the model
IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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is written in terms of the input increment (velocity model),
model (2) contains the modes of model (1) plus ny
integrating modes that results from the incremental form of
the model. The incremental model is interesting as it
precludes the need to compute the system steady state in
order to prevent output offset. Here, we assume that the
system represented in (1) has only stable modes. Also, the
model defined in (2) has the following useful properties:

1. It is an incremental model in the input and state, and
consequently, there is no need to include integrating
disturbance models and target calculation in order to
estimate the steady state xs and us of the system. For the
model defined in (2), if the steady state defined by set
point ysp is reachable, the state at this steady state is always

defined by xy,s = yT
sp yT

sp · · · yT
sp

[ ]T

, xDu,s = 0 0
[

· · · 0]T and Dus = 0 0 · · · 0
[ ]T

. So, this model is
adequate for output target tracking strategies.

2. The model defined in (2) is detectable and stabilisable.
These properties can be easily proven by verifying that

rank
lI − A

C

[ ]
= nx and rank lI − A, B

[ ]
= nx

∀l [ C/|l| ≥ 1. So, the proposed model can be used in
IHMPC control strategies, contrary to the conclusion of
Pannocchia and Rawlings [17] who considered a velocity
model that cannot be used in IHMPC.

3. Since xy is a vector of past measured outputs and xu is a
vector of implemented inputs, the state x(k) is known at
any time step k. So, a filter can be used to remove the
output measurement noise and there is no need to include
a state estimator in the MPC algorithm. Then, using the
model defined in (2), any stable MPC based on state
feedback can be easily transformed into a stable output
feedback MPC.

The main disadvantage of the model defined in (2) is that
matrix A is rank deficient, which complicates the application
of the IHMPC to this model. The rank of A can be easily
obtained if we observe that

A j = A j
y

∑j

i=1

(A j−i
y ADuI i−1)

0 I j

⎡
⎢⎣

⎤
⎥⎦ for any j ≥ 1

and I j = 0 for j ≥ nb 2 1. So, it is clear that
rank(A) ¼ rank(Ay) ¼ (na + 1)ny , nx.

To gain some insight into the application of the above
model to the IHMPC, one should keep in mind that, in
the MPC strategy, at any time step k, a sequence of control
moving along a control horizon m is computed by solving
an open-loop optimisation problem that minimises a cost
function subject to constraints. Let this control sequence be
Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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defined as follows

Duk = Du(k|k)T
Du(k + 1|k)T · · · Du(k + m − 1|k)T

[
0 · · ·]T

For this control sequence, based on the above considerations
about matrix A, the state prediction beyond time step k + n
where n ¼ m + nb 2 1 can be obtained as follows

xy(k + n + j|k) = (Ay)
jxy(k + n|k)

and

xDu(k + n + j/k) = 0

Now, assuming that matrix Ay is full rank, one can perform
the following eigenvalue–eigenvector Jordan decomposition

AyV = V Ad (4)

where

Ad =
Iny 0

0 F st

[ ]
(5)

is a block diagonal matrix (Jordan canonical form) that makes
explicit the different modes of the system. The ny integrating
modes results from the incremental form of the model and it
is here assumed that F st has eigenvalues strictly inside the
unit circle. The columns of V are the eigenvectors of Ay.

3 Infinite horizon MPC for the
non-minimal state-space model
The control cost of the IHMPC for output tracking based on
the non-minimal incremental model defined in (2) can be
written as follows

V1,k =
∑1
j=0

(Cx(k + j|k) − ysp)TQ(Cx(k + j|k) − ysp)

+
∑m−1

j=0

Du(k + j|k)TRDu(k + j|k) (6)

where x(k + j|k) is the predicted state at time k + j computed
at the present time k and ysp is the output target that usually
does not correspond to the origin.

To deal with the infinite summation term of the cost
defined in (6), two approaches are usually adopted in the
MPC literature:

1. The dual paradigm is used [18, 19], where a finite number
(m) of constrained control moves is used to steer the state
into an admissible target set that is invariant under a state
feedback law, which in the case of the incremental model
1379
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would take the form Du ¼ Fx, and the input constraints are
satisfied. This means that in the invariant target set the input
constraints will not become active. In this case, the dual-
mode MPC provides the optimal solution to the problem
of minimising the cost defined in (6). However, this
condition may be too restrictive when the system is
expected to maximise economic objectives, which
correspond to operating conditions where one or more
inputs will lie on constraints. Input saturation may also
occur at steady state when a persistent disturbance forces
the input to saturate for enough time to reach steady state.
In these cases, the control law produced by the dual-mode
MPC is not guaranteed to be stabilising. This problem has
been dealt in the literature for the cases where it is
previously known whose inputs will saturate at the
predicted steady state [20, 21], but a general method has
not been found yet.

2. The null controller is used (Du ¼ 0) after the m control
moves that are applied to the system [2, 10, 22]. In this
case, a suboptimal control law is obtained where all the
unstable modes of the system have to be zeroed at the end
of the control horizon, which corresponds to additional
constraints to the MPC problem that may become
infeasible and loose robustness when the system is subject
to persistent disturbances or the output reference target
is changed significantly. To overcome this problem,
Rodrigues and Odloak [10] proposed a modified cost
function that includes additional slack variables that enlarge
the feasible set of the MPC problem.

In this work, the approach where the null controller is used
to deal with the IHMPC is followed. The method will be
extended to the case of output feedback through the model
defined in (2). Considering the case of open-loop stable
systems, which is the most common case when the
controller is designed to track optimising targets, the m
control moves that are the degrees of freedom of MPC
have to cancel the ny integrating modes depicted in (5). To
make these integrating modes explicit, it is convenient to
define the following state transformation

xy = V z

and consequently

z = (V )−1xy

At this point, it is convenient to decompose the transformed
state as follows

xy = V i V st
[ ] zi

zst

[ ]
(7)

and

zi

zst

[ ]
= V i

in

V st
in

[ ]
xy (8)
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It can be shown that for n ¼ m + nb 2 1, the transformed
state satisfies the following equation

zi(k + n + j)
zst(k + n + j)

[ ]
=

Iny 0

0 F st

[ ]( )j
zi(k + n)
zst(k + n)

[ ]
(9)

Now, the cost defined in (6) can be developed as follows

V1,k =
∑n

j=0

(Cx(k + j|k) − ysp)TQ(Cx(k + j|k) − ysp)

+
∑1
j=1

(Cyxy(k + n + j|k) − ysp)TQ(Cyxy(k

+ n + j|k) − ysp) +
∑m−1

j=0

Du(k + j|k)TRDu(k + j|k)

(10)

Using (8) and (9), the infinite sum on the right-hand side of
(10) can be written as follows

∑1
j=1

(CyV izi(k + n|k) − ysp + CyV st(F st)jzst(k + n|k))T

Q(CyV izi(k + n|k) − ysp + CyV st(F st)jzst(k + n|k))

Then, when adopting the null controller at time steps beyond
the control horizon, the integrating modes have to be zeroed
at time n, which is the time where the last control move
Du(k + m 2 1/k) still affects the state of the model defined
in (2). This condition, in the output tracking case,
corresponds to including in the MPC control problem the
following constraint, which also guarantees that the control
cost will be bounded

CyV izi(k + n|k) − ysp = 0 (11)

Considering (11), the infinite sum term can be replaced by

zst(k + n|k)T �Q zst(k + n|k) where Q̄ can be computed
through equation

F stT �Q F st − �Q = F stTV stTCT
y QCyV stF st

Finally, the control cost defined in (6) takes the following
form

V1,k =
∑n

j=0

(Cx(k + j|k) − ysp)TQ(Cx(k + j|k) − ysp)

+ x(k + n|k)TṼ
stT
in

�Q Ṽ
st
inx(k + n|k)

+
∑m−1

j=0

Du(k + j|k)TRDu(k + j|k) (12)
IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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where

Ṽ
st

in = 0 V st
in

[ ]
To express the transformed state, which appears in (11) in
terms of the original state, one can use the following relations

zi(k + n|k) = V i
inxy(k + n|k) = V i

in 0
[ ]

x(k + n|k)

= Ṽ
i
inx(k + n|k)

Then, (11) can be written as follows

CyV i Ṽ
i

in(An x(k) + Baug Duk) − ysp = 0 (13)

where Baug = An−1B An−2B · · · B
[ ]

.

Then, the IHMPC for output tracking of open-loop stable
systems can be obtained from the solution of the following
problem

min
Duk

V1,k (14)

subject to (13) and

Du(k + j|k) [ U , j = 1, . . . , m − 1 (15)

where

U = Du(k + j)

−Dumax ≤ Du(k + j) ≤ Dumax

umin ≤ u(k − 1) +
∑j

i=0

Du(k + i) ≤ umax

∣∣∣∣∣∣∣
⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

Theorem 1: In the output tracking of the undisturbed
system represented in (2), if the MPC defined through
problem (14) is feasible at time step k and ysp is reachable,
then the controller will remain feasible at any subsequent
time step. Also, the system output will converge to the
target and the input increment will converge to zero.

Proof: It is easy to show that if at time k the optimal solution
to problem (14) is represented by Du∗k = Du∗(k|k)T

[
Du∗(k + 1|k)T · · · Du∗(k + m − 1|k)T]T and the
corresponding optimal cost is represented by V ∗

1,k, then, at
time k + 1, Dũk+1 = Du∗(k + 1|k)T · · · Du∗(k + m −

[
1|k)T0]T is feasible and corresponds to the cost

Ṽ 1,k+1 = V ∗
1,k − (y(k) − ysp)TQ(y(k) − ysp)

− Du(k|k)TRDu(k|k)

Then, V1,k converges to zero and the output converges to the
target. A

Remark 1: The IHMPC with output feedback defined
through the solution of problem (14) is not robust to large
persistent disturbances and to large changes in the output
T Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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target. This is so because in these cases, even if the target is
reachable, there may be a conflict between constraints (13)
and (15) that turns the control problem infeasible.

To make the IHMPC resulting from the solution to the
problem defined in (14) feasible, one can follow two
equivalent approaches. In the first approach an artificial
output target is introduced in the MPC problem as a new
decision variable [21]. The distance between the artificial
target and the real target is then penalised in the cost
function of the new MPC. When the incremental model is
used, the method proposed by Limon et al. [23] leads to
the following problem

min
Duk,ŷsp

V2,k =
∑n

j=0

(Cx(k + j|k) − ŷsp)TQ(Cx(k + j|k) − ŷsp)

+ x(k + n|k)TṼ
stT
in

�Q Ṽ
st
inx(k + n|k)

+
∑m−1

j=0

Du(k + j|k)TRDu(k + j|k)

+ (ŷsp − ysp)TQysp(ŷsp − ysp) (16)

subject to (15) and

CyV i Ṽ
i

in(An x(k) + Baug Duk) − ŷsp = 0

where ŷsp is the artificial target for the system output.

In the second approach [10], instead of the artificial target
a slack variable is introduced in the output predictions that
are used in the computation of the control cost. In this case
the control problem becomes

min
Duk,d

V ′
2,k =

∑n

j=0

(Cx(k + j|k) − ysp − d)TQ(Cx(k + j|k)

− ysp − d) + x(k + n|k)TṼ
stT
in

�Q Ṽ
st
inx(k + n|k)

+
∑m−1

j=0

Du(k + j|k)TRDu(k + j|k) + dTQdd

(17)

subject to (15) and

CyV i Ṽ
i
in(An x(k) + Baug Duk) − ysp − d = 0

where d is a slack variable that makes the above constraint
always feasible.
1381
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Observe that the same control law is obtained by solving
either problem (16) or (17) with Qysp ¼ Qd

Theorem 2: The IHMPC with output feedback that results
from the solution to the problem defined in (17) is robust to
track piecewise constant output targets. Also, as long as
the output target is reachable and Qd is large enough, the
control cost of problem (17) is converging to zero and the
output converges to the target.

Proof: Since the slack variable d is unbounded, problem
(17) is always feasible. To prove the convergence of V ′

2,k to
zero, one may follow the same steps as Theorem 1 in
Odloak [11]. A

Remark 2: The controller obtained from the solution to
problem (16) shares the same properties related to the
robustness to the tracking of piecewise constant targets as
the controller defined in (17). Also, as the two controllers
are always feasible, they are robust to the presence of any
persistence disturbance. These controllers can also be
considered robust even when the output target is
unreachable. In this case, the control cost cannot be
reduced to zero and the controller will only minimise the
distance between the steady state that can be reached and
the desired target.

Example 1: To evaluate the performance of the infinite
horizon controller defined through the solution to problem
(17), we consider the ill-conditioned distillation column
presented by Skogestad et al. [24]. In this system the
distillate composition yD and the bottom composition xB

are controlled by manipulating reflux L and boilup V. The
transfer function model representing this system is the
following

yD(s)
xB(s)

[ ]
= 1

75s + 1

0.878 −0.864
1.082 −1.096

[ ]
L(s)
V (s)

[ ]

For a sampling period Dt ¼ 15, the model defined in (2)
82
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takes the following form

yD(k + 1)

xB(k + 1)

yD(k)

xB(k)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ =

0.1813 0 0.8187 0

0 0.1813 0 0.8187

1 0 0 0

0 1 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

×

yD(k)

xB(k)

yD(k − 1)

xB(k − 1)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦+

0.1592 −0.1566

0.1961 −0.1987

0 0

0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

×
DL(k)

DV (k)

[ ]

For the simulations considered here, the following
parameters were considered

m = 3; Q = diag(1, 1);

R = diag(0.01, 0.01); S = 103 × diag(1, 1)

umax =
20

20

[ ]
; umin =

−40

−35

[ ]
; Dumax =

1

1

[ ]

The system starts from the origin and the output target is

changed to ysp = 1
1

[ ]
, which is a reachable target. Fig. 1

shows that the system output converges quite easily to this
target, whereas Fig. 2 shows that the system inputs remain
inside their bounds. In this case, Fig. 3 shows that the
control cost converges asymptotically to zero. In Fig. 1, it is
also represented by the values of ysp + d, which is here
defined as the artificial set point for the system output. It is
clear that when the target is feasible, the artificial set point
tends to the target, which means that the slack variable
tends to zero. At time step k ¼ 100, the target is changed

to ysp = −1
0.1

[ ]
. This target is not reachable because it

corresponds to the following input at steady state

uss =
−43.09
−42.62

[ ]
, which does not satisfy the constraints

defined above. Figs. 1–3 also shows the responses of the
Figure 1 Outputs for target tracking (———) and artificial set points (2. 2 .2)
IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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Figure 2 Inputs of the distillation system for target tracking

Figure 3 Control cost of the distillation system for output tracking
distillation system with the infinite horizon proposed here.
Fig. 1 shows that the output targets are not reached and there
is a permanent offset in the two outputs. Observe that the
artificial set points also do not tend to the targets, which
means that the slacks are not zeroed at steady state and the
control cost does not converge to zero as shown in Fig. 3.
Fig. 2 shows that input V saturates at its minimum bound
while input L remains inside its allowable range. These
results show that, when the output target is unreachable, the
proposed IHMPC remains feasible and leads the system to
the nearest point to the target in terms of the control cost.

In the second simulation experiment, the distillation
system starts from the origin and at time k ¼ 10, a

persistent unmeasured disturbance corresponding to a step

in the system input du = 10
−20

[ ]
is introduced into the

system, while the output target remains at the origin.
Observe that with this disturbance and the input
constraints adopted in this problem, the origin is a target

that is still reachable since the new input steady state

corresponds to uss =
−10
20

[ ]
, which lies on the boundary

of the input definition set. Fig. 4 shows that the controller is
robust to this disturbance as the controlled outputs
converge to the origin and the inputs converge to the
expected steady state as shown in Fig. 5. It can also be
verified that the cost function also converges to zero. At
Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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time step k ¼ 80, a new persistent step disturbance

corresponding to Du = 10
−2

[ ]
is introduced in the

distillation system. With this new disturbance the origin

becomes unreachable by the MPC controller as the input

steady state corresponding to the origin is uss =
−20
22

[ ]
that lies outside the definition set of the system input as
input V is larger than its maximum value. However, the
proposed controller is robust to this disturbance as it
remains feasible and uses the available degrees of freedom
of the distillation system to minimise the distance between
the system outputs and the target that is the origin. Fig. 4
shows that for time steps larger than 100 both outputs
stabilise close to zero, but the target is not reached. This is
so because, as shown in Fig. 5, input V remains saturated
as it cannot be increased any further. Consequently, in this
case, the control cost will converge to a value larger than zero.

4 MPC for target tracking with
model uncertainty
A robust model predictive controller is a controller which
explicitly accounts for modelling errors in the control
design procedure. With the model structure presented in
(2), model uncertainty is related to uncertainty in matrices
A and B. The most common way to represent model
uncertainty in model predictive control is to consider a
1383
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Figure 4 Outputs (———) and artificial set points (2. 2 .2) for persistent disturbances
discrete set of models V ¼ {u1, . . ., uL}, where each ui

corresponds to a particular set of parameters that define the
model. We may consider that V corresponds to several
operating points of the process system along its operating
region, and these models may be considered as a discrete
linear approximation of the true non-linear model. In this
case, the uncertain model representation is designated as
multi-plant uncertainty [4]. Some authors [3, 25, 26]
extended the multi-plant uncertainty by assuming that
these models constitute the vertices of a polytopic set that
characterises model uncertainty. In this case, all convex
combinations of the vertices of the polytope(
u =

∑L
i=1 aiui,

∑L
i=1 ai = 1, ai ≥ 0

)
are considered as

possible realisations of the true model. In the model
defined in (2), uncertainty lies in matrices A and B and the
multi-plant or polytopic uncertainty can be described
84
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through the set of models (A(up), B(up)), p ¼ 1, . . ., L.
Also, for each model up the Jordan decomposition (4) can
be written as follows

Ay(up)V (up) = V (up) Ad(up)

where

Ad(up) =
Iny 0

0 F st(up)

[ ]

For this model, one can also define a transformed state as
follows

xy = V (up) zup

and consequently

zup
= (V (up))−1xy, p = 1, . . . , L
Figure 5 Inputs of the distillation system for persistent disturbances
IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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As in (7) one can decompose the transformed state as follows

xy = V i(up) V st(up)
[ ] zi

up

zst
up

[ ]

and from (8)

zi
up

zst
up

[ ]
=

V i
in(up)

V st
in (up)

[ ]
xy, p = 1, . . . , L

Analogous to the nominal case, for the uncertain transformed
state, one has

zi
up

(k + n + j)

zst
up

(k + n + j)

[ ]
=

Iny 0

0 F st(up)

[ ]( )j
zi
up

(k + n)

zst
up

(k + n)

[ ]
,

p = 1, . . . , L

There are several methods to develop an MPC that is robust
to model uncertainty. Kothare et al. [3] propose the use of
linear matrix inequalities (LMIs) to find a Lyapunov
function xTQx and a state feedback control law u ¼ Kx
that minimises an upper bound for the cost functions
corresponding to each vertex of the polytopic set that
defines model uncertainty. The dual paradigm was used to
extend the above method by including in the state feedback
control law additional degrees of freedom [16, 21, 27]. The
resulting control law becomes u ¼ Kx + v, where v is
calculated following a min–max approach in which the cost
of the worst model combination is minimised from the
present state until the invariant set under the feedback
control is reached. Badgwell [4] proposed to achieve robust
stability for the regulator case with multi-plant uncertainty
by including a contraction constraint for the cost functions
corresponding to the vertices of set V. The method was
extended to the output target tracking of stable systems
[10, 11] and integrating systems [6] by considering a
minimal state-space model in the velocity form. Here, the
approach will be applied to the non-minimal state-space
model presented in the introduction section of this work.

For the development that follows, it is assumed that the
true plant, which lies within the set V is designated as uT,
and there is a most likely a nominal plant that also lies in
V and designated as uN.

For any model lying in V, the cost function considered in
(17) can be written as follows

V3,k(Duk, dk(up), up)

=
∑1
j=0

(Cxup
(k + j|k) − ysp − dk(up))TQ(Cxup

(k + j|k)

− ysp − dk(up)) +
∑m−1

j=0

Du(k + j|k)TRDu(k

+ j/k) + dk(up)TSdk(up) (18)
Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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Following the same steps as in the nominal system presented
in the previous section, the tail of infinite sum on the right-
hand side of (18) becomes

∑1
j=1

(CyV i(up)zi
up

(k + n|k) − ysp − dk(up)

+ CyV st(up)(F st(up))jzst
up

(k + n|k))T

Q(CyV i(up)zi
up

(k + n|k) − ysp − dk(up)

+ CyV st(up)(F st(up))jzst
up

(k + n|k))

Then, in order to the infinite sum on the right-hand side of
(18) to be bounded, for all the models in V, it is necessary to
impose the following constraint

CyV i(up)zi
up

(k + n|k) − ysp − dk(up) = 0,

p = 1, . . . , L (19)

Considering (19), the infinite sum term can be replaced by

zst
up

(k + n|k)T �Q(up) zst
up

(k + n|k) where �Q(up) can be

computed through the following equation

(F st(up))T �Q (up)F st(up) − �Q(up) = (F st(up))TV st(up)T

× CT
y QCyV st(up)F st(up)

Now, as for the nominal system, the transformed states that
depend on the particular model that is considered can be
represented in terms of the original state as follows

zi
up

(k + n|k) = V i
in(up)xy(k + n|k) = V i

in(up) 0
[ ]

x(k + n|k)

= Ṽ
i
in(up)x(k + n|k)

zst
up

(k + n|k) = V st
in (up)xy(k + n|k)

The last equation can also be written as follows

zst
up

(k + n|k) = 0 V st
in (up)

[ ]
x(k + n|k)

or

zst
up

(k + n|k) = Ṽ
st
in(up)x(k + n|k)

Then, (19) can be written as follows

CyV i(up)Ṽ
i
in(up)(An(up)x(k) + Baug(up)Duk) − ysp

− dk(up) = 0, p = 1, . . . , L

where Baug(up) = A(up)n−1B(up) A(up)n−2B(up) · · ·
[

B(up)].
1385

& The Institution of Engineering and Technology 2010



13

&

www.ietdl.org
Thus, with the above considerations, the control cost
defined in (18) can be written as follows

V3,k(Duk, dk(up), up)

=
∑n

j=0

(Cxup
(k + j|k) − ysp

− dk(up))TQ(Cxup
(k + j|k) − ysp − dk(up))

+ x(k + n|k)TṼ
st
in(up)T �Q(up)Ṽ

st
in(up)x(k + n|k)

+
∑m−1

j=0

Du(k + j|k)TRDu(k + j|k) + dk(up)TSdk(up)

(20)

The IHMPC, which is robust to the multi-plant model
uncertainty, as well as to unmeasured persistent
disturbances and target tracking, is obtained from the
solution to the following problem

min
Duk,di

k(u1),...,di
k(uL)

V3,k(Duk, dk(uN), uN) (21)

subject to (15), (19) and

CyV i(up)Ṽ
i

in(up)(An(up)x(k) + Baug(up)Duk) − ysp

− dk(up) = 0, p = 1, . . . , L

V3,k(Duk, dk(up), up) ≤ V3,k(Dũk, d̃k(up), up), p = 1, . . . , L

(22)

where Dũk = Du∗(k|k − 1)T · · · Du∗(k + m − 2|k−
[

1)0]T and d̃k(up) is such that

CyV i(up)Ṽ
i
in(up)(An(up)x(k) + Baug(up)Dũk)

− ysp − d̃k(up) = 0, p = 1, . . . , L (23)

Remark 3: Notice that the current state x(k) does not
depend on the model parameters, since it is composed of
measured outputs and inputs. The cost, which is minimised
in the control problem, is based on the nominal model uN,
while the constraints are written for each of the models
that define set V. Equation (23) is necessary to the
computation of the pseudo slack d̃k(up), which is associated
to the optimal solution of problem (21) at the previous
time step and to the current state x(k).

Remark 4: The MPC controller generated by the solution
to the problem defined in (21) is robust to persistent
unmeasured disturbances and to changes in the output
target. This is so because the problem defined in (21) is
always feasible as it is easy to show that at time step k, the
following solution Duk = Dũk and dk(up) = d̃k(up) is feasible.
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Also, observe that constraint (23) makes the control
problem defined in (22) a non-linear programming, which
can be solved by any available solver as the ones based on
the sequential quadratic programming algorithm. However,
it can be shown that constraint (23) and the control cost
can be converted into LMIs, and so, the robust controller
problem can be formulated as an LMI problem.

Theorem 3: Consider a stable system whose true model is
unknown but it is known to lie within the set V, and the
desired output target is reachable. Then, the control law
obtained from the sequential solution to the problem
defined in (21) is stable and drives the true system to the
reference value.

Proof: Assume that at time k we inject the optimal control
action Du∗(k|k) into the true system and we move to time
step k + 1. As (Dũk+1, d̃k+1(u1), . . . , d̃k+1(uL)) is a feasible
solution to the problem defined in (21) at k + 1 and, in
addition, for the undisturbed system one has d̃k+1(uT) =
d∗k (uT), then, from (20) the value of the cost for the true
plant with this feasible solution is given by

V3,k+1(Dũk+1, d̃k+1(uT), uT) = V3,k(Du∗k , d∗k (uT), uT)

− (Cx(k) − ysp − d∗k (uT))T

× Q(Cx(k) − ysp − d∗k (uT))

− Du∗(k|k)TRDu∗(k|k)

Therefore

V3,k+1(Du∗k+1, d∗k+1(uT), uT) ≤ V3,k(Du∗k , d∗k (uT), uT)

which means that the closed-loop corresponding to the true
model is stable and for a time step �k large enough
converges to a stationary point in which

Cx(�k) − ysp = d∗�k (uT) (24)

In addition, since x(�k) corresponds to the measured state
(past values of inputs and outputs) and ysp is fixed, then

d∗�k (uT) = d∗�k (u1) = · · · = d∗�k (uL)

It can be shown [2] that if weight S is large enough, (24) will
hold only if Cx(�k) − ysp = 0 and Du(�k|�k) = 0. This shows
that the sequence of optimal costs for the true plant is
decreasing and converges to zero although V3,k(ui) is not
necessarily decreasing for ui = uT. A

Example 2: To evaluate the performance and stability of
the controller produced by the solution to the problem
(21), the ill-conditioned distillation column presented in
Example 1 is considered again, but now the system may
IET Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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have two different models as represented below

G1(s) = 1

75s + 1

0.878 −0.864

1.082 −1.096

[ ]

G2(s) = 1

75s + 1

1.319 −0.864

1.082 −1.096

[ ]

The sampling period of the controller is Dt ¼ 15 and in this
case, the tuning parameters are the following

Q = diag 0.1 0.1
( )

, R = diag 1 1
( )

,

S = diag 1 1
( )

× 106, umax = 10 10
[ ]

,

umin = −10 −10
[ ]

, Dumax = 1 1
[ ]

, m = 3

(25)

In the simulations performed here, model 2 is the nominal
model used in the cost function that is minimised by the
robust controller. The simulation starts with the plant
being also represented by model 2 and the output target
is changed from the origin to ysp = 1 1

[ ]T
, which is

reachable and corresponds to the input steady state
uss = 0.454 −0.464

[ ]T
. Fig. 6 shows that the output

targets are reached nicely, whereas Fig. 7 shows that the
inputs tend to their expected steady states. From Fig. 8a,
we can see that during the initial simulation period (before
time step 50), the cost computed with model 2 that is the
T Control Theory Appl., 2010, Vol. 4, Iss. 8, pp. 1377–1390
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true plant model decreases asymptotically and reaches
zero as the desired target is feasible, while the cost
corresponding to model 1 does not decrease asymptotical
although it eventually reaches zero after the true system
has converged (see Fig. 9a). At time step 50, the model
that represents the true plant is switched from model 2
to model 1, while the output target remains the same.
Corresponding to the required output target, the new
input steady state becomes uss = 8.455 7.434

[ ]T
.

Figs. 6 and 7 show that from time step 50 until time
100, the proposed controller is robust to this disturbance
and the outputs converge to the target while the inputs
are led to the new steady state, although input L reaches
temporarily its maximum bound. We can also observe
from Fig. 9b that during this period of time the cost
computed with model 1 is decreasing and converges
again to zero as the target remains reachable, while
Fig. 8b shows that the cost computed with model 2 is no
longer asymptotically decreasing. Finally, at time 100 the
output target is changed to ysp = −1 0.1

[ ]T
which for

model 1 (true plant) would correspond to
uss = −43.09 −42.63

[ ]T
that is unreachable because of

the input constraints. In this case, the proposed controller is
still able to stabilise the distillation column but the outputs
do not reach the targets and permanent offsets are
observed. This is so because input V saturates at the
minimum bound (210), while input L remains inside its
definition range. Fig. 8b shows that the cost computed with
Figure 6 Outputs for output tracking and model uncertainty

Figure 7 Inputs for output tracking and model uncertainty
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Figure 9 Cost function for model G1(s)

a When the true model is G2(s)
b When the true model is G1(s)

Figure 8 Cost function for model G2(s)

a When the true model is G2(s)
b When the true model is G1(s)
model 2 is not decreasing, and Fig. 9b shows that the cost of
the true plant is decreasing but does not converge to zero.

To emphasise the advantage of the proposed robust
controller, which guarantees stability in the presence of
model uncertainty, over the nominal stable MPC where
stability is only assured when the model is perfect, the two
controllers are compared for the output tracking case

represented in Figs. 10 and 11. The true plant model is
represented by model 1 and the nominal controller is based
only on model 2, while the robust controller uses the two
models. The same tuning parameters defined in (25) are
used in the two controllers. It is clear that the robust
controller has a much better performance than the nominal
controller, mainly when the system is far from input
saturation. The nominal controller is almost unstable,

Figure 10 Outputs with model uncertainty: robust (———) and nominal (- - -)
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Figure 11 Inputs with model uncertainty: robust (———) and nominal (- - -)
whereas the robust controller performs quite well. When the
system input reaches saturation, the responses of the two
controllers tend to be close to the open-loop response and
the same steady state is reached.

5 Conclusion
In this work, an IHMPC with output feedback that, for
open-loop stable systems, is robustly stable to persistent
disturbances and model uncertainty was presented. The
proposed controller is based on a non-minimal state-space
model in the velocity form in which the state is always
known, as the state is constituted by the output at the
present and past time steps and the input increments at
past time steps. The consequence is that the controller does
not need a state observer and robust stability can be
obtained by extending to the non-minimal model the
conventional approach of considering an infinite prediction
horizon and including constraints that force the control
cost to be bounded. The main difficulty of implementing
the IHMPC to the non-minimal incremental model that is
to guarantee that the cost function is bounded was solved
by forcing the zeroing of the integrating modes at a
suitable time instant beyond the control horizon. This idea
could be conveyed to the case where model uncertainty can
be approximated by a finite set of models. Although the
robust controller proposed here has not yet been extended
to unstable systems, the practical application of the
proposed strategy to a number of systems seems to be quite
promising as the computation cost is acceptable.
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