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An efficient systematic iterative solution strategy for solving real-world scheduling problems in multi-
product multistage batch plants is presented. Since the proposed method has its core a mathematical
model, two alternative MIP scheduling formulations are suggested. The MIP-based solution strategy con-
sists of a constructive step, wherein a feasible and initial solution is rapidly generated by following an
iterative insertion procedure, and an improvement step, wherein the initial solution is systematically
enhanced by implementing iteratively several rescheduling techniques, based on the mathematical
model. A salient feature of our approach is that the scheduler can maintain the number of decisions at
a reasonable level thus reducing appropriately the search space. A fact that usually results in manageable
model sizes that often guarantees a more stable and predictable optimization model behavior. The pro-
posed strategy performance is tested on several complicated problem instances of a multiproduct mul-
tistage pharmaceuticals scheduling problem. On average, high quality solutions are reported with
relatively low computational effort. Authors encourage other researchers to adopt the large-scale phar-
maceutical scheduling problem to test on it their solution techniques, and use it as a challenging compar-
ison reference.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, it is widely recognized that the current gap between
practice and theory in the area of short-term scheduling needs to
be bridged, as clearly remarked in Méndez et al. (2006) and Ruiz
et al. (2008). New academic developments are mostly tested on rel-
atively small problems whereas current real-world industrial
applications consist of hundreds of batches, numerous multiple
units available for each task and long sequence of processing
stages. Additionally, there exist a wide range of operational con-
straints which should be taken into account in order to guarantee
the feasibility of the proposed solution. Most industrial problems
are very hard-constrained, thus optimization solvers have to find
optimal or near-optimal solutions in a huge search space with a rel-
atively small feasible region. This fact may result in unstable and
unpredictable computational performance of optimization models,
which is definitely not suitable for industrial environments.

Since most industrial scheduling problems are highly combina-
torial and complex decision-making processes, they rarely can be
solved to optimality within a reasonable amount of computational
ll rights reserved.

: +34 934 010 979.
er).
time. In addition, the computational effort to find a good solution
tends to be as important as the scheduling problem itself; since
industry demands solutions that are both optimal, or at least
close-optimal, and quick to be reached. As a result, the development
of efficient heuristic or metaheuristic techniques has emerged as a
promising option to face the inherent computational burden of this
problem. For instance, dispatching rules, genetic algorithms, graphs
theory, simulated annealing, tabu search, particle swarm and ant
colony optimization methods have been widely used in a variety
of scheduling problems. Some excellent contributions in this
direction can be found in Franca et al. (1996), Raaymakers and
Hoogeveen (2000), Pacciarelli (2002), Ruiz and Maroto (2006), Ruiz
and Stutzle (2008), and Venditti et al. (2010), among many others.
Despite the fact that the aforementioned methods may generate
fast and effective solutions for complex problems, they are usually
tailor-made and cannot systematically estimate the degree of qual-
ity of the solution generated. Moreover, the efficiency of these
techniques strongly depends on the proper implementation and
fine tuning of parameters since they combine the problem repre-
sentation and the solution strategy into the same optimization
framework.

In contrast, mathematical approaches divide the problem rep-
resentation and the solution strategy in an exact MIP model and

http://dx.doi.org/10.1016/j.ejor.2010.06.002
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Nomenclature

Indices/sets
i, i0, i00 2 I product orders
j 2 J processing units
s 2 S processing stages

Subsets
Iin set of product orders i that are included into the optimi-

zation
Ji available processing units j to process product i
Js available processing units j to process stage s
Si set of stages s for each product order i

Slast
i last processing stage for product order i

Parameters
ai weighing coefficient for earliness for product i
bi weighing coefficient for tardiness for product i
cii0j sequence-dependent setup time between orders i and i0

in unit j
di due date for order i
ej time point that unit j is available to start processing
M a big number
ls�1s batch transfer time between two consecutive stages

s � 1 and s
nii0 j sequence-dependent setup cost between orders i and i0

in unit j

oi release time for product i
pij sequence-independent setup time of product i in unit j
sisj processing time for stage s of product i in unit j
w operating cost of production facility per time unit

Continuous variables
Cis completion time of stage s of product i
Cmax makespan
Ei earliness for product i
Ti tardiness for product i
Wis the time that stage s of a product i is stored (waits) be-

fore proceeding to the following processing stage s + 1
Zii0 j position difference between orders i and i0 when both

are allocated to the same unit j

Binary variables
Xii0j if product i is processed before product i0, when both are

allocated to the same unit j, then Xii0 j ¼ 1, otherwise
Xii0j ¼ 0

Xii0j if product i is processed exactly before product i0, when
both are assigned on the same unit j, then Xii0j ¼ 1,
otherwise Xii0 j ¼ 0

Yisj if stage s of product i is allocated to unit j, then Yisj = 1,
otherwise Yisj = 0
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an optimization code. Therefore, a general MIP model can be
solved by using alternative commercial optimization solvers, such
as CPLEX, XPRESS, OSL, and the more recently developed GUROBI,
which have been evolved significantly in last years. Although
small and medium size models can be usually solved to optimal-
ity by using default values in code parameters, large size prob-
lems are generally unmanageable by mathematical formulations.
Therefore, in order to make the use of exact methods more attrac-
tive in real-world applications, increasing effort has been oriented
towards the development of systematic techniques that allow
maintaining the number of decisions at a reasonable level, even
for large-scale problems. A reduced search space usually results
in manageable model sizes that often guarantee a more stable
and predictable optimization model behavior. Furthermore, once
the best possible feasible solution has been generated in a short
time, optimization-based methods could be employed to gradu-
ally enhance a non-optimal solution with low computational ef-
fort. Following this trend, the work of Castro et al. (2009) have
been recently emerged as alternative solution strategies to these
challenging problems. An apparent drawback of these techniques
is that optimality can no longer be assured. Nevertheless, from a
practical point of view, guaranteeing global optimality may not be
relevant in many industrial scenarios mainly due to the following
features: (i) a very short time is just available to generate a solu-
tion and send it to the plant floor, (ii) optimality is easily lost be-
cause of the highly dynamic nature of industrial environments,
(iii) implementing the schedule as such is limited by the real pro-
cess, and (iv) only a part of the real scheduling goals are generally
taken into account in the model since not all scheduling objec-
tives can be quantified. Heuristic model reduction methods,
decomposition/aggregation techniques, and improvement optimi-
zation-based techniques constitute the principal methods that are
embedded in exact mathematical models to face large-scale
scheduling problems. A brief description of the aforementioned
methods follows. For a detailed state-of-the-art refer to Méndez
et al. (2006).
(i) Heuristic model reduction methods usually take into advan-
tage an empirical solution tactic or a particular problem fea-
ture and incorporate this knowledge into the mathematical
problem representation. As a result, good solutions can be
generated in a reasonable time. Simple or combined dis-
patching (preordering) rules are usually adopted. The contri-
butions by Pinto and Grossmann (1995), Cerdá et al. (1997),
Blömer and Günther (2000), and Méndez et al. (2001) are
some representative works of heuristic model reduction
methods.

(ii) Approaches based on spatial or temporal decomposition,
such as the works by Graves (1982) and Gupta and Maranas
(1999), usually rely on Lagrangian decomposition. Aggrega-
tion techniques aggregate later time periods within the
specified time horizon in order to reduce the dimensionality
of the problem, or to aggregate the scheduling problem so
that it can be considered as part of a planning problem
(see Bassett et al., 1997; Birewar and Grossmann, 1990).

(iii) Improvement optimization-based techniques can be inter-
preted as a special case of rescheduling where an initial solu-
tion is partially adjusted with the only goal of enhancing a
particular scheduling criterion. These techniques use the
current schedule as the initial point of a procedure that iter-
atively enhances the existing solution in a systematic man-
ner. The works by Röslof et al. (2001) and Méndez and
Cerdá (2003), which followed this direction, have shown
promising results with relatively low computational cost.

In this work, a hybrid and systematic solution strategy, having a
Mixed Integer Programming (MIP) scheduling formulation as its
core, is introduced to address large-scale scheduling problems in
multiproduct multistage batch plants. The applicability of the
methodology is demonstrated by solving a challenging real-world
scheduling problem arising in a pharmaceutical process. The man-
uscript is organized as follows. Section 2 describes the major prob-
lem characteristics of the problem addressed. In Section 3, two MIP
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models for solving scheduling problems in multiproduct multistage
batch plants are presented. Afterwards, in Section 4, the proposed
MIP-based solution strategy is explained in detail. Then, a bench-
mark large-scale scheduling problem of a pharmaceuticals plant
is introduced to Section 5 and a set of problem instances is solved
in Section 6 in order to validate the performance of the proposed
solution strategy and highlight its potential benefits. Finally, the
article concludes with some discussion and remarks in Section 7.
2. Problem statement

This study considers the short-term scheduling problem of
industrial-scale multiproduct multistage batch processes with
the following features:

� A set of product orders i 2 I should be processed by following a
predefined sequence of processing stages s 2 S with, in general,
unrelated processing units j 2 J working in parallel.
� Each product order i comprises a single batch that must follow a

set of processing stages s 2 Si.
� Some orders i may skip some processing stages s R Si, since dif-

ferent production recipes are considered.
� Product order i can be processed in a specific subset of units

j 2 Ji. Similarly, processing stage s can be processed in a specific
subset of units j 2 Js.
� Transition times between consecutive product orders are

expressed as the sum of two terms. One depends on both the
unit and the order being processed (pij) while the other also var-
ies with the order previously manufactured in that unit ðcii0 jÞ.
Transition times must be explicitly taken into account in the
schedule generation process since they are usually of the same
order of magnitude or even larger than the processing times.
Consequently, they become a very critical feature when sched-
uling real-world pharmaceutical processes.
� Model parameters like order due dates (di), processing times

(sisj), sequence-dependent changeover times ðcii0 jÞ and costs
ðnii0 jÞ, unit-dependent setup times (pij), order release times (oi),
unit available times (ej), and operating cost (w) are all
deterministic.
� Once the processing of an order in a given stage is started, it

should be carried out until completion without interruption
(non-preemptive mode).
� Mixing or splitting of product orders is not allowed.

The key decision variables are:

– the allocation of products i to units j 2 Ji per stage, Yisj;
– the relative sequence for any pair of products i, i0 at unit

j 2 ðJi \ Ji0 Þ; Xii0 j;
– the completion time of products i at stage s 2 Si, Cis.

Alternative objective functions can be considered, such as the
minimization of makespan, total weighted lateness or total operat-
ing and changeovers cost.
3. Mathematical formulations

In this section, two batch-oriented mathematical models are
presented for solving scheduling problems in multiproduct multi-
stage batch plants. Both models are based on a continuous-time do-
main and utilize sequencing variables. The first model is based on
the general (global) precedence sequencing concept and the latter
one is based on the unit-specific general precedence sequencing
concept, recently introduced by Kopanos et al. (2009). Global prece-
dence formulations result in models with small model size and they
are computationally faster on average. However, a drawback of
these models is that they cannot optimize objectives containing se-
quence-dependent setup issues (e.g., minimization of changeover
costs). For this reason, a unit-specific general precedence model,
for scheduling multiproduct multistage batch plants, able to cope
with any objective function, is also presented and is proposed as a
more general mathematical formulation.

It is worth noticing that the MIP models, presented in this work,
are not claimed to be either the fastest or the tightest. However, in
order to present the proposed MIP-based solution strategy, the MIP
models adopted were entirely developed by the authors rather
than using some models from other sources. Otherwise, other
mathematical formulations found in the literature could be used
as core MIP models as well in the proposed solution strategy.
The description of the mathematical frameworks used in this work
follows.

3.1. The general precedence multistage scheduling framework

The problem under study can be formulated by the following
sets of constraints using the general precedence notion:
X

j2ðJi\JsÞ
Yisj ¼ 1 8i 2 Iin; s 2 Si; ð1Þ

Cis P
X

j2ðJi\JsÞ
ðmax½ej; oi� þ pij þ sisjÞYisj 8i 2 Iin; s 2 Si : s ¼ 1; ð2Þ

Cis �
X

j2ðJi\JsÞ
ðpij þ sisjÞYisj ¼ Cis�1 þWis�1 þ ls�1s 8i 2 Iin;

s 2 Si : s > 1; ð3Þ

Cis þ cii0 j 6 Ci0s � pi0 j � si0sj þMð1� Xii0jÞ
þMð2� Yisj � Yi0sjÞ 8i 2 Iin; i0 2 Iin;

s 2 Si; j 2 ðJs \ Ji \ Ji0 Þ : i0 > i; ð4Þ

Ci0s þ ci0 ij 6 Cis � pij � sisj þMXii0 j þMð2� Yisj � Yi0sjÞ
8i 2 Iin; i0 2 Iin; s 2 Si; j 2 ðJs \ Ji \ Ji0 Þ : i0 > i; ð5Þ

Yisj 2 f0;1g 8i 2 Iin; s 2 Si; j 2 ðJs \ JiÞ;
Xii0 j 2 f0;1g 8i 2 Iin; i0 2 Iin; j 2 ðJi \ J0iÞ : i0 – i;

Wis P 0 8i 2 Iin; s 2 Si : s < S;

Cis P 0 8i 2 Iin; s 2 Si:

ð6Þ

Constraint set (1) assures that every product order goes through one
unit j 2 (Js \ Ji) at each stage s 2 Si. Constraint set (2) defines the
completion time of the first stage for every product. Notice that this
set of constraints takes into account possible release order oi and
available unit ej times. Constraint set (3) gives the timing for every
product order between to consecutive stages. This set of constraints
allows for the consideration of possible transferring times between
two sequential stages. Positive variable Wis�1 reflects the wait time
of every product batch before proceeding to the following process-
ing stage. Note that in Zero Wait (ZW) storage policy Wis�1 is set to
zero. In Unlimited Intermediate Storage (UIS) policy, Wis�1 is left
free or, alternatively, it can be eliminated and substitute the equal-
ity by a greater-or-equal inequality. In order to model storage
policies like Non Intermediate Storage (NIS) and Finite Intermediate
Storage (FIS), appropriate sets of constrains found in the literature
can be easily added to the current model. To continue with,
constraint sets (4) and (5) give the relative sequencing of product
batches at each processing unit. These sets of big-M constraints
force the starting time of an order i0 to be greater than the
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completion time of whichever order i processed beforehand. Note
that Xii0 j corresponds to the global sequencing binary variable. Have
in mind that Xii0 j is active (i.e., Xii0 j ¼ 1) for all product batches i0 that
are processed after product batch i. Finally, the decision variables
are defined by (6). Henceforth, we will refer to the MIP model that
constitutes by constraint sets (1)–(6) as GP.

3.2. The unit-specific general precedence multistage scheduling
framework

The following sets of constraints are proposed for coping with
scheduling problems where the optimization of sequence-depen-
dent issues are the optimization goal or are a part of it. The con-
straints are:
X

j2ðJi\JsÞ
Yisj ¼ 1 8i 2 Iin; s 2 Si; ð7Þ

Cis P
X

j2ðJi\JsÞ
ðmax½ej; oi� þ pij þ sisjÞYisj þ

X
i0 – i

X
j2ðJs\Ji\Ji0 Þ

ci0 ijXi0 ij

8i 2 Iin; s 2 Si : s ¼ 1; ð8Þ

Cis �
X

j2ðJi\JsÞ
ðpij þ sisjÞYisj ¼ Cis�1 þWis�1 þ ls�1s 8i 2 Iin;

s 2 Si : s > 1; ð9Þ

Cis þ cii0 jXii0 j 6 Ci0s � pi0 j � si0sj þMð1� Xii0jÞ 8i 2 Iin;

i0 2 Iin; s 2 Si; j 2 ðJs \ Ji \ Ji0 Þ : i0 – i; ð10Þ

Yisj þ Yi0sj 6 1þ Xii0 j þ Xi0 ij 8i 2 Iin; i0 2 Iin; s 2 Si;

j 2 ðJs \ Ji \ Ji0 Þ : i0 > i; ð11Þ

2ðXii0j þ Xi0 ijÞ 6 Yisj þ Yi0sj 8i 2 Iin; i0 2 Iin; s 2 Si;

j 2 ðJs \ Ji \ Ji0 Þ : i0 > i; ð12Þ

Zii0 j ¼
X

i002Iin :i00 – ½i;i0 �

ðXii00 j � Xi0 i00jÞ þMð1� Xii0 jÞ 8i 2 Iin; i0 2 Iin;

j 2 ðJi \ Ji0 Þ : i0 – i; ð13Þ

Zii0 j þ Xii0 j P 1 8i 2 Iin; i0 2 Iin; j 2 ðJi \ Ji0 Þ : i0 – i; ð14Þ

Yisj 2 f0;1g 8i 2 Iin; s 2 Si; j 2 ðJs \ JiÞ;
Xii0j 2 f0;1g & Xii0 j 2 f0;1g 8i 2 Iin; i0 2 Iin; j 2 ðJi \ J0iÞ : i0 – i;

Zii0 j 2 R 8i 2 Iin; i0 2 Iin; j 2 ðJi \ J0iÞ : i0 – i;

Wis P 0 8i 2 Iin; s 2 Si : s < S;

Cis P 0 8i 2 Iin; s 2 Si:

ð15Þ

Constraint set (7) forces that every product order goes through one
unit j 2 (Js \ Ji) at each stage s 2 Si. Constraint set (8) gives the com-
pletion time of the first stage for every product. Notice that Xii0 j is
the unit-specific immediate precedence binary variable. Constraint
set (9) gives the timing for every product order between to consec-
utive stages and is similar to constraint set (3) of the GP model. Con-
straint sets (10)–(12) give the relative sequencing of product
batches at each processing unit. Big-M constraint set (10) forces
the starting time of a product batch i0 to be greater than the comple-
tion time of whichever product batch i processed beforehand at the
same unit. Constraint sets (11) and (12) state that when two-prod-
uct batches are allocated to the same unit (i.e., Yisj ¼ Yi0sj ¼ 1), one of
the two global sequencing binary variables Xii0 j and Xi0 ij should be
active. If the two-product batches are not allocated to the same unit
then Xii0 j ¼ Xi0 ij ¼ 0. To continue with, obviously, two orders i and i0

are consecutive only in the case that Xii0 j ¼ 1 and, moreover, when
there is no other order i00 between them. In other words, two-prod-
uct batches i and i0 are consecutive if and only if the total number of
batches that are processed after batch i, if batch i0 is excluded, is
equal to the total number of batches that are processed after batch
i0, when batch i is excluded; see Fig. 1. Constraint sets (13) and (14)
formulate this concept. Note that the auxiliary variable Zii0 j is zero
whenever two products i and i0 are sequentially processed in the
same unit. The RHS of Eq. (14) can be substituted by Xii0 j; in some
instances this reduces the computational time. Refer to Kopanos
et al. (2009) for more details regarding the unit-specific general pre-
cedence concept. Finally, the decision variables are defined by (15).
Henceforth, we will refer to the MIP model that constitutes by con-
straint sets (7)–(15) as USGP.

3.3. Objective functions

In this section, the different optimization goals used in this
study, for solving the short-term scheduling in a real-life multi-
product multistage pharmaceutical batch plant, are presented.

3.3.1. Makespan
The time point at which all product orders are accomplished

corresponds to the makespan, which can be calculated by Eq.
(16). The makespan objective is closely related to the throughput
objective. For instance, minimizing the makespan in a parallel-ma-
chine environment with sequence-dependent setup times forces
the scheduler to balance the load over the various machines and
to minimize the sum of all the setup times in the critical bottleneck
path (Pinedo and Chao, 1999).

minimize Cmax P Cis 8i 2 Iin; s 2 Slast
i : ð16Þ
3.3.2. Total weighted lateness
The minimization of a combined function of earliness and tardi-

ness, as given in Eq. (17), is one of the most widely used objective
functions in the scheduling literature. It is also known as weighted
lateness. The weighing coefficients ai and bi are used to specify the
significance of every product order earliness or tardiness,
respectively.

minimize
X
i2Iin

ðaiEi þ biTiÞ: ð17Þ

Earliness and tardiness for every product order i are estimated by
constraint set (18) and (19), respectively.

Ei P di � Cis 8i 2 Iin; s 2 Slast
i ; ð18Þ

Ti P Cis � di 8i 2 Iin; s 2 Slast
i : ð19Þ

This objective, in a sense, accounts for minimizing storage and han-
dling costs while maximizing service and customer satisfaction level.

3.4. Operating and changeovers costs

Operating and changeovers costs goal constitutes a reasonable
goal in production environments where sequence-dependent set-
up costs are significant. The operating cost is denoted by w and
is defined as the cost for operating the production facility per time
unit. Obviously, makespan corresponds to the total operating time.
Parameter nii0 j stands for the changeover cost from product order i
to i0 in processing unit j

minimize wCmax þ
X
i2Iin

X
i02Iin ;i0 – i

X
j2ðJi\Ji0 Þ

nii0jXii0 j

0
@

1
A ð20Þ



Fig. 1. Unit-specific general precedence concept.
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4. The MIP-based solution strategy

Although these mathematical formulations are able to describe
a large number of scheduling problems, in practice, they can only
solve problems of modest size in a reasonable computational time.
Have in mind that the combinatorial complexity strongly increases
with the number of product orders considered thus precluding the
resolution of real-life scheduling problems by exact methods.
According to Herrmann (2006), algorithms that can find optimal
solutions to these hard problems in a reasonable amount of time
are unlikely to exist.

In a nutshell, the proposed MIP-based solution strategy has as a
core a MIP scheduling framework and consists of two major proce-
dure steps: (i) the constructive step, and (ii) the improvement step.
The objective in the constructive step is the generation of a feasible
schedule in short amount of time. Afterwards, this schedule is
gradually improved by implementing some elaborate rescheduling
techniques, in the improvement step. As a sequence, the genera-
tion of feasible and fairly good schedules in reasonable computa-
tional time is favored. A description of the proposed solution
strategy steps follows (see Fig. 2).

4.1. Constructive step

In the constructive step, the large-scale scheduling problem is
decomposed by scheduling, in an iterative mode, a subset of the
involved product orders. That way the MIP solver search space is
Fig. 2. Representative scheme of the pro
reduced and the resolution of the problem is favored. Concretely,
a predefined number of product orders (i 2 Iin) are scheduled (by
solving the MIP model) at each iteration, until all product orders
are finally scheduled. User defines the number of product order
for each iteration. Note that the number of orders inserted into
each iteration should be small enough to ensure the quick MIP
model resolution for every iteration, and thus generating a feasible
schedule in short time. In this study, it is proposed to insert (sche-
dule) product orders one-by-one, since it has been observed, after a
series of experiments, that insertion of a higher number of prod-
ucts per iteration: (i) does not guarantee a better constructive step
solution, and (ii) is more computationally expensive.

To continue with, user should also specify the order that prod-
ucts are inserted into the constructive step procedure. An insertion
criterion could be adopted in order to decrease the possibility of
obtaining a bad constructive step solution. Here, it is proposed to
insert first the products will less unit-stage allocation flexibility.
In other words, products with less alternative units should be
scheduled first. By doing so, unit allocation decisions are first taken
for the less unit-stage-flexible products. Consider a single-stage
two-product (A and B) batch plant with two parallel processing
units (J1 and J2). The product’s A processing time in unit J1 is 3
hours and in unit J2 equals to 2 hours. Product B can be only pro-
cessed in unit J2 in 3 hours. The minimization of makespan is the
optimization goal. Consider the following insertion sequences:
the case I that first is inserted product A and afterwards product B,
which opposes our proposed insertion criterion, and the case II that
posed MIP-based solution strategy.



Fig. 3. Illustrative example for insertion criterion.
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first is inserted product B and then product A, in accordance with
our proposed insertion criterion. As one can observe, the first inser-
tion strategy (case I) results in a makespan of 5 hours. Note that
both products are allocated to unit J2. Following our insertion cri-
terion (case II) a makespan of 3 hours is obtained. Fig. 3 illustrates
the schedules for both cases.

After the resolution of the MIP model at each iteration, alloca-
tion and global sequencing binary variables for the already sched-
uled product orders are fixed. In other words, unit allocation
decisions and relative sequencing relations between the already
scheduled products cannot be modified in the following iterations.
However, timing decisions may change thus permitting the inser-
tion of new product orders among the previously scheduled prod-
uct orders. Fig. 4 delineates an illustrative example (single-stage
products and single-unit) of the allowed sequences when a product
D is inserted to a current schedule containing products A, B, and C.
Note that just 4 sequences are permitted, instead of the 24 possible
sequences, thus reducing significantly the computational effort.
When all product orders have been inserted, a feasible schedule
can be finally obtained in relatively short time.

Similar insertion methods have also been implemented to other
types of scheduling problems by Nawaz et al. (1983), Werner and
Winkler (1995), Röslof et al. (2001), and Röslof et al. (2002). It is
pointed out that the insertion order of the product orders influ-
ences the quality of the solution. Therefore, a more detailed study
and the development of other insertion criteria seems a promising
future research direction for enhancing the proposed approach.
Fig. 4. Illustrative example for allowe
4.2. Improvement step

The initial feasible schedule provided by the constructive step
can be systematically improved through reordering and/or reas-
signment MIP-based operations; in accordance with the main
rescheduling concepts introduced by Röslof et al. (2001) and Mén-
dez and Cerdá (2003). The improvement step is a two-stage closed
loop procedure that consists of the reordering and the reinsertion
stage, which are performed sequentially until no improvement is
observed. A description of the improvement step follows.
4.2.1. Reordering stage
In this stage, unit allocation decisions, are fixed. Reordering ac-

tions are iteratively applied on the initial schedule, by solving a
MIP model, until no further improvement is observed. A full unit
reordering tactic results impractical due to the large number of
batches and processing units in real-world industrial scheduling
problems. Instead, the alternative of limited reordering operations
may usually improve the current schedule with relatively low
computational effort. It is common sense that there exists a strong
trade-off between the degrees of freedom and the solution time. In
an industrial environment, the scheduler should appropriately de-
fine the reordering tactic/limitations, followed in this step, depend-
ing on the complexity of the scheduling problem. A local
reordering tactic is adopted in this study. Concretely, in an attempt
to maintain manageable model sizes, reordering of batches with
their direct predecessor or successor is only allowed. An illustrative
example is included here to highlight the local reordering compu-
tational benefits. Consider the reordering scheduling problem of 4
single-stage products (A, B, C, and D) on a single-unit. As Fig. 5
shows, a local reordering policy will only examine 4 potential se-
quences instead of the 23 total possible sequences. On the one
hand, solution quality is probably decreased since one of the 19
unexplored sequences may yield a better solution. On the other
hand, the optimization search space is significantly reduced. Keep
in mind that considering the whole set of possible sequences im-
pacts drastically the computational performance of the reordering
step. Other less-limited reordering tactics could be also easily ap-
plied. The interested reader is referred to the contribution work
of Méndez and Cerdá (2003).
d sequences in constructive step.



Fig. 5. Illustrative example for local reordering.
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4.2.2. Reinsertion stage
The schedule of the reordering step constitutes the initial

schedule in the reinsertion stage. Here, unit allocation and rela-
tive sequencing decisions for a small number of product orders
are left free by the scheduler. Let us refer to these product orders
as reinserted orders. Allocation and relative sequencing decisions,
among the non-reinserted orders, are fixed. In other words, some
products orders are extracted from the current schedule, and they
are reinserted aiming at improving the actual schedule. Note that
the reinsertion stage is quite similar to the last iteration of the
constructive step (see Fig. 4). Since our scope is to propose a gen-
eral standard algorithm for large-scale industrial scheduling prob-
lems, we adopt the lowest number of reinsertion orders (i.e., one
at a time) in order to favor low solution times. However, the
scheduler could set the number of reinserted orders depending
on the specific scheduling problem. In the standard reinsertion
stage, the number of iterations (reinsertions) equals the number
of product orders. The solutions of all reinserted orders (itera-
tions) are compared, and the best one is finally chosen as the
solution of the reinsertion stage. Note that if the number of prod-
uct orders is too high, someone could have preferred to end the
reinsertion stage once a better solution (comparing it with the
previous stage) is reached. That way is saved computational time.
If the best solution of this stage is better than the solution of the
reordering stage, the algorithm goes to the reordering stage again.
Otherwise, the solution algorithm terminates and reports the best
solution found.

In the Appendix, some illustrative pseudo-codes can be found
for the constructive and the improvement stage of our MIP-based
solution strategy.
Fig. 6. Pharmaceutical m
5. Pharmaceutical production process

A real-world multiproduct multistage pharmaceutical batch
plant is studied in the current work. Recently, Castro et al. (2009)
have also studied this pharmaceutical facility. Concretely, they
solved two problem instances (for 30 and 50 product orders) min-
imizing the makespan under UIS policy. In this work, we use par-
tially different sets of data (e.g., we introduce due dates,
changeover costs) and we deal with more objective functions.

In the current study, the short-term scheduling problem of a
considerably high number of multistage product orders (30–60)
at the 17 processing units of the production plant is addressed.
The production process has 6 processing stages, as Fig. 6 depicts.
Some products bypass the third processing stage S3. Processing
times can be found in the Supplementary material. Sequence-
dependent setup times are also explicitly considered thus increas-
ing the complexity of the problem. An interesting feature of the
production process is that in some processing stages changeover
times are higher than the processing times. Changeover times are
zero in the first stage S1 and 0.45 hours in the second stage S2
among all products. Changeover times for the remaining stages
(S3–S6) can be found in the Supplementary material. Finally,
changeover costs are defined as the multiplication of the impact
factors, in Table 1, and the corresponding changeover time.

6. Experimental studies

In this section, the problem instances details are firstly intro-
duced and the results of these experimental studies are presented
and discussed afterwards.
ultistage process.



Table 2
Due dates for product orders (hours).

P01 30.6 P16 20.7 P31 34.2 P46 54.0
P02 16.2 P17 14.4 P32 37.8 P47 49.5
P03 23.4 P18 23.4 P33 37.8 P48 46.8
P04 18.0 P19 20.7 P34 48.6 P49 52.2
P05 27.0 P20 27.0 P35 40.5 P50 54.0
P06 16.2 P21 30.6 P36 34.2 P51 48.6
P07 28.8 P22 9.0 P37 46.8 P52 52.2
P08 20.7 P23 18.0 P38 54.0 P53 27.0
P09 18.0 P24 23.4 P39 46.8 P54 52.2
P10 10.8 P25 23.4 P40 49.5 P55 41.4
P11 30.6 P26 18.0 P41 52.2 P56 49.5
P12 14.4 P27 14.4 P42 40.5 P57 54.0
P13 30.6 P28 9.0 P43 54.0 P58 52.2
P14 14.4 P29 18.0 P44 36.0 P59 40.5
P15 27.0 P30 10.8 P45 52.2 P60 36.0

Table 1
Changeover costs’ impact factors per time unit (103$/hour).

Products P01–P10 P11–P20 P21–P30

P01–P10 0.36 0.27 0.27
P11–P20 0.27 0.45 0.27
P21–P30 0.27 0.27 0.54
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6.1. Details of problem instances

In this work, 12 different problem instances have been solved.
These case studies differ in: (i) the optimization goal (makespan,
weighted lateness, and operating and changeover costs), (ii) the
Table 3
Problem instances: best schedules found within the maximum predefined time limit (360

Problem
instance

Objective
function

Products
(batches)

Storage
policy

1st stage
solution

I.01 Cmax 30 (168) UIS 28.507
I.02 Cmax 30 (168) ZW 31.520
I.03 Cmax 60 (336) UIS 49.161
I.04 Cmax 60 (336) ZW 58.104
I.05 W.L. 30 (168) UIS 48.613
I.06 W.L. 30 (168) ZW 115.016
I.07 W.L. 60 (336) UIS 118.683
I.08 W.L. 60 (336) ZW 629.672
I.09 O.& C.C 30 (168) UIS 66.158
I.10 O.& C.C 30 (168) ZW 72.318
I.11 O.& C.C 60 (336) UIS 119.759
I.12 O.& C.C 60 (336) ZW 139.104

� W.L. = Weighted Lateness, and O. & C.C = Operating & Changeovers Costs.

Table 4
Comparison between original MIP model and proposed MIP-based strategy best solutions

Original mathematical model

Problem instance Constrains Binary variables Continuous variables Gap (

I.01 10,230 5326 295 57.7
I.02 10,230 5326 295 –
I.03 40,988 20916 589 90.1
I.04 40,988 20916 589 –
I.05 10,261 5326 355 100.0
I.06 10,261 5326 355 –
I.07 41,049 20916 709 100.0
I.08 41,049 20916 709 –
I.09 39,858 10264 20286 –
I.10 39,858 10264 20286 –
I.11 161,828 41056 81626 –
I.12 161,828 41056 81626 –
number of product orders (30 products, and 60 products), and
(iii) the storage policy type (ZW, and UIS).

Since, all the aforementioned data tables provide data about 30
products, two batches for every product are considered in order to
address the 60-product cases. Therefore, for instance, the product
order P31 has the same processing characteristics with product or-
der P01, the product order P32 has the same processing data with
product order P02, and so on. Moreover, notice that the changeover
times/costs between P01 and P31 are equal to the changeover
times/costs between P01 and P01, as they are given in the data ta-
bles, and so on. For the problem instances where the optimization
goal is the minimization of weighted lateness (i.e., I.05 to I.08), due
dates for every product order are considered; see Table 2. Observe
that due dates for two batches of the same product (e.g., P01 and
P31) may be different. Additionally, the weighing coefficient for
earliness, ai, equals to 0.9 and the weighing coefficient for tardi-
ness, bi, is set to 4.5 for all products. Regarding the problem in-
stances that have as an objective the simultaneous minimization
of operating and changeovers costs (i.e., I.09 to I.12), the operating
cost per time unit, w, is considered equal to 0.9 � 103$/hour.

At this point, it is worth mentioning that GP model has been
used to solve the problem instances that involves the minimization
of the makespan or the weighted lateness (i.e., I.01 to I.08), and
USGP model has been employed to cope with the operating and
changeovers costs objective (i.e., I.09 to I.12). Besides, it is empha-
sized that the 30-product problem instances (I.01, I.02, I.05, I.06,
I.09 and I.10) deal with the complex scheduling of 168 product
batches, and the 60-product problem instances (I.03, I.04, I.07,
I.08, I.11 and I.12) tackle the intricate scheduling problem of 336
product batches.
0 CPU seconds).

1st stage CPU
seconds

Best
solution

Total CPU
seconds

Impovement
percent

38 26.559 542 6.83
7 30.532 187 3.14
155 48.548 1502 1.25
106 56.061 1718 3.52
22 19.085 720 60.74
15 84.438 262 26.59
403 87.943 3600 25.90
356 515.876 1478 18.07
94 62.910 3600 4.91
58 70.209 3600 2.92
1780 117.909 3600 1.54
880 134.624 3600 3.22

found within the maximum predefined time limit (3600 CPU seconds).

Our strategy

%) Best solution Total CPU seconds Best solution Total CPU seconds

34.810 3600 26.559 542
– 3600 30.532 187
109.960 3600 48.548 1502
– 3600 56.061 1718
428.146 3600 19.085 720
– 3600 84.438 262
23453.744 3600 87.943 3600
– 3600 515.876 1478
– 3600 62.910 3600
– 3600 70.209 3600
– 3600 117.909 3600
– 3600 134.624 3600



Fig. 7. Best schedule for I.01 (30-product case: min. makespan under UIS policy).

Fig. 8. Best schedule for I.07 (60-product case: min. total weighted lateness under UIS policy).
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6.2. Results and discussion

The proposed solution strategy has been tested on a total num-
ber of twelve complex problem instances in order to validate its
performance. A time limit of 1 CPU hour has been imposed on
the solution of every problem instance. All problem instances have
been solved in a Dell Inspiron 1520 2.0 GHz with 2 GB RAM using
CPLEX 11 via a GAMS 22.8 interface (Brooke et al., 1998).

Table 3 presents the constructive step’s solution (initial solu-
tion) and the best solution found for every problem instance. The
computational time for the constructive step (1st stage) as well
as the total computation time are also included to the same table.
Note that feasible schedules are obtained in a short amount of time
in most cases. Problem instance I.11 is the most time-demanding
problem instance since almost half a CPU hr was needed in order
to obtain a feasible solution. The remaining problem instances
reached a feasible solution in relatively low computational time;
from some CPU seconds and no more than 7 CPU minutes.

The MIP-based solution strategy is able to quickly generate fea-
sible solutions and then gradually enhance these solutions. It was
observed that the necessary computational time to improve a gi-
ven solution mainly depends on: (i) the total number of batches
to be scheduled, (ii) the objective function, (iii) the storage policy,
and (iv) the core mathematical model. Obviously, the lower the to-
tal number of bathes the faster the problem is solved. It has been
observed that the case studies considering ZW storage policy are
solved faster comparing them with the problem instances under
UIS policy. Finally, the mathematical model used depends on the
optimization goal. Roughly speaking, the more complicated the
Fig. 9. Best schedule for I.12 (60-product case: min. total
objective function the bigger the size of the model; such is the case
of minimizing operating and changeovers costs.

All problem instances were also solved by using the original
undecomposed mathematical formulations in order to underline
the high complexity of the problems addressed and to highlight
the practical benefits of our proposed solution approach. Table
4 contains the computational features of the original mathemati-
cal models and the best solution found, for all problem instances,
within the predefined time limit of 1 CPU hour. It is worth men-
tioning that the number of the sequencing binary variables is
strongly augmented by increasing the number of product orders.
Note that the least complex problem instances (I.01 and I.02) re-
sult into a MIP model of 10,230 equations, 5326 binary variables,
and 295 continuous variables, while, the most sophisticated prob-
lem instances (I.11 and I.12) result into a huge MIP model of
161,828 constraints, 41,056 binary variables, and 81,626 continu-
ous variables. Observe that a feasible solution was not found by
the original mathematical models in 8 of the 12 problem in-
stances. In the remaining problem instances, feasible but very
bad solutions (i.e., with big integrality gap) were obtained. For
example, the original GP model in problem instance I.01 reported
a makespan equal to 34.810 hours, with an integrality gap of
57.71%, after 1 CPU hr while our solution approach gave a make-
span of 26.559 hours in just 542 CPU seconds. The solution found
by the original GP model is 31.07% worse than that of our ap-
proach. It is worth mentioning that all problem instances were
also solved by the original MIP models without setting a time
limit. However, in all cases the MIP solver terminated because
memory capacity was exceeded.
operating and changeovers costs under ZW policy).
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According to Table 4, it is evident that the proposed MIP-based
solution strategy overwhelms the original MIP models. By using
our approach, highly complicated scheduling problems in multi-
product multistage batch plants can be solved, as the current
experimental study reveals. Although optimality cannot be guaran-
teed, feasible solutions can be obtained in relatively short compu-
tational time. Bear in mind that feasibility is the principal goal in
scheduling. To the best of our knowledge, no other standard solu-
tion methods nor heuristics exist for tackling the studied schedul-
ing problem efficiently.

To conclude, some representative Gantt charts of the best
schedules for some of the problem instances are included in order
to provide the reader with a visual demonstration of the complex-
ity of the addressed problems. Concretely, Fig. 7 presents the best
solution found for solving the 30-product case by minimizing Cmax

under UIS policy (problem instance I.01). Fig. 8 shows the best
schedule reported for solving the 60-product case by minimizing
total weighted lateness under UIS policy (problem instance I.07).
Finally, Fig. 9 depicts the best schedule found for solving the 60-
product case by minimizing total operating and changeovers costs
under ZW storage policy (problem instance I.12).
7. Final considerations

An iterative two-step MIP-based solution strategy has been pre-
sented for the resolution of large-scale scheduling problems in
multiproduct multistage batch plants. Besides, a benchmark sched-
uling problem in a multiproduct multistage pharmaceutical batch
plant has been introduced in this work. The proposed solution
technique is able to generate feasible and good solutions in rela-
tively short time, as the several problem instances of the pharma-
ceutical scheduling problem reveal. Also, have in mind that the
user can appropriately define the degrees of freedom of the deci-
sion variables by balancing the trade-off between computational
time and solution quality. The solver search space is reduced by
degenerating the degrees of freedom of the decision variables thus
favoring the faster resolution of the scheduling problem; reducing
probably the solution quality. The proposed solution strategy can
be also applied to other types of scheduling problems by adopting
a different MIP model that describes the particular scheduling
problem. Moreover, this work aims to be a step towards reducing
the gap between scheduling theory and practice, since it has
clearly demonstrated that real-world industrial problems can be
solved by using effective MIP-based optimization solution strate-
gies. The results obtained are promising and the further enhance-
ment of the proposed solution method seems a challenging
future research task. Other authors are encouraged to validate
and compare their solution methods in the large-scale benchmark
pharmaceuticals scheduling problem. In particular, comparisons of
the proposed solution method with elaborate metaheuristics
would be of great interest.
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Appendix

Algorithm 1. Pseudo-code for iterative procedure in
constructive step

Set step = 1, initial = 1 & pos(i) parameter. Also, set Iin = ;
FOR z = initial to card (i) by step

LOOP i
IF pos (i) 6z

Iin = yes
END IF

END LOOP
SOLVE MIP model
fix Yisj & Xii0 j binary variables "i 2 Iin

END FOR

Algorithm 2. Pseudo-code for iterative procedure in
improvement step

hh Refer to Méndez and Cerdá (2003) for an explanation of
parameter n, subsets ISi; ISSii0 , and Reordering-MIP model.ii

Set itermax, n = 1, order (i), reins = 1 parameters & ISi subset
fixYisj ¼ Yisj; fixXii0j ¼ Xii0j (solution of constructive step)
iteration = 1
WHILE (OFreins is better than OFreord or iteration = 1)
? Reordering Stage
Yisj = fixYisj

iter = 1
WHILE (OFiter better than OFiter�1 and iter 6 itermax)

CLEAR ISSii0 subset
assess ISSii0 subset
CLEAR all variables apart from Yisj

SOLVE Reordering-MIP model
iter = iter + 1

END WHILE
save best solution of reordering stage:
CLEAR fixXii0j, and set fixXii0j ¼ Xii0j & OFreord = OFiter�1

? Reinsertion Stage
iter = 1
FOR z = reins to card (i) by reins

LOOP i
IF order (i) 6 z-reins + 1

CLEAR all variables related to i (e.g., Yisj;Xii0j;Cis,
etc.)

ELSE
Yisj = fixYisj & Xii0j ¼ fixXii0j

END IF
END LOOP

SOLVE MIP model
IF OFiter is better than OFreord

Save Solution (iter) (e.g., save OF;Yisj;Xii0j;Cis, etc.)
END IF
iter = iter + 1

END FOR
save best solution of reinsertion stage:
CLEAR fixYisj; fixXii0j & OFreins

OFreins is equal to the best OFiter

set fixYisj ¼ Yisj; fixXii0j ¼ Xii0j only for OFiter = OFreins

iteration = iteration + 1
END WHILE
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejor.2010.06.002.
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