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In a recent paper [J.L. Riccardo, A. J. Ramirez-Pastor, F. Romá, Phys. Rev. Lett. 94 (2004) 186101], a new
fractional statistical theory of adsorption (FSTA) based on Haldane’s statistics was presented. Later [M.
Dávila, F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Surf. Sci. 600 (2006) 2011], a generalization of the clas-
sical quasi-chemical approximation (QCA) was developed in which the adsorbate can occupy more than
one adsorption site. In this paper, we describe the statistical thermodynamics of interacting polyatomic
adsorbates (k-mers) on homogeneous surfaces, by combining FSTA and QCA. The main thermodynamic
functions are obtained in terms of two parameters, g and a, which are related directly to the spatial con-
figuration of a polyatomic molecule in the adsorbed state. Analysis of simulated and experimental results
have been carried out in order to (i) explore the reach and limitations of the theoretical model and (ii)
evince the physical significance of g and a.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction namic theory of adsorption (FSTA) of polyatomics as to describe
The theoretical description of adsorption of polyatomic mole-
cules of arbitrary shape and size is a current and exciting topic of
research in surface science [1–5]. Adsorption experiments in the
laboratory and applications involve species larger than monoato-
mics. To practical purposes, the deeper our knowledge of the
influence of the various factors affecting adsorption, the better
our accuracy to characterize the surface and to design specific-
purposes adsorbents. The drawback in treating lattice gases of
polyatomic species within the framework of statistical mechanics
is to properly calculate the configurational entropy. Configuration
counting in the case of particles that occupy more than one lattice
site (dimers, trimers, etc.), seems a hopeless task, and it limits the
analytical developments in the field of adsorbed polyatomic gases.

Quantum fractional statistics (QFS) proposed by Haldane [6]
and Wu [7], based upon a generalization of the Pauli’s exclusion
principle, is a theoretical frame that allows us to rationalize the
site-exclusion effect that results from the multisite occupancy as
‘‘statistical interactions” characterized by a parameter g; this
parameter essentially accounts for the number of states (out of
the states available to a single particle) that a particle excludes
when adsorbed on the surface. Formally speaking, in quantum
mechanics, fermions and bosons correspond to g ¼ 1 and g ¼ 0,
respectively. However, particles obeying fractional statistics exist,
for which 0 < g < 1. In recent work [8–10], we extended these
ideas and presented the basis of a fractional statistics thermody-
ll rights reserved.

z-Pastor).
the thermodynamic properties of the adlayer when the adsorbate
occupies more than one adsorption site. The treatment of this com-
plex problem can be significantly simplified if looked at from this
perspective. In this case the parameter g varies within the interval
g > 1.

In our previous work we assumed that the molecules do not
interact each other but only interact with the substrate through
an adsorption energy per particle �0 (that depends on the molecu-
lar species), adsorbate–adsorbate interactions, however, play an
important role in determining the main properties for many ad-
sorbed systems [11–19].

In the present paper, we introduce the contribution of interac-
tions between molecules to the free energy obtained from FSTA,
through a quasi-chemical approximation (QCA) generalized to
structured adsorbates [20,21]. The new theoretical framework
provides a close approximation for two-dimensional systems
accounting multisite occupancy and lateral interactions between
admolecules.

The present work is organized as follows. In Section 2, we pro-
vide the theoretical formalism and derive the analytical form of the
main thermodynamic functions. The results of the theoretical ap-
proach are presented in Section 3, along with a comparison with
Monte Carlo simulation and experimental data. Finally, the conclu-
sions are drawn in Section 4.

2. Basic formalism: thermodynamic functions

We consider the general case of adsorbates containing k identi-
cal units, each of one occupying a lattice site. Small adsorbates
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with spherical symmetry would correspond to the monomer limit
ðk ¼ 1Þ. The distance between k-mer units is assumed in registry
with the lattice constant; hence exactly k sites are occupied by a
k-mer when adsorbed. Two different energies are considered in
the adsorption process: (1) U0, constant interaction energy be-
tween a k-mer unit and an adsorption site and (2) w, lateral inter-
action energy between two nearest-neighbor units belonging to
different k-mers. Then, the canonical partition function can be
written as [20]:

QðN;M; TÞ ¼ qN
X
N11

XðN;M;N11Þ exp½�bðwN11 þ kNU0Þ�; ð1Þ

where q is the partition function for a single adsorbed molecule; M
and N represent the number of adsorption sites and adsorbed k-
mers, respectively; N11 is the number of pairs of nearest-neighbor
units belonging to different k-mers; XðN;M;N11Þ is the number of
ways to array N k-mers on M sites with N11 pair of occupied sites
and b ¼ 1=kBT , being kB the Boltzmann constant.

As it is usual in the case of single-site occupation, it is conve-
nient to write the canonical partition function as a function of
N01, where N01 is the number of pairs formed by an empty site
adjacent to a occupied site. For this purpose, we calculate the rela-
tions between N11;N01 and N00 (N00 is the number of pairs of empty
nearest-neighbor sites):

2N11 þ N01 þ 2Nðk� 1Þ ¼ ckN; ð2Þ
2N00 þ N01 ¼ cðM � kNÞ; ð3Þ

where ‘‘number of 01 pairs” = ‘‘number of 10 pairs” = N01=2 and c is
the coordination number of the lattice. In the case of k ¼ 1, the well-
known relations for single-site occupation are recovered [20].

Now, the canonical partition function can be written in terms of
N01

QðN;M; TÞ ¼ qN expf�bN½kw=2þ kU0�g
X
N01

XðN;M;N01Þ

� expðbwN01=2Þ ð4Þ

and k ¼ ðc � 2Þkþ 2.
By using the standard formalism of the QCA, the number of

ways of assigning a total of ½cM=2� Nðk� 1Þ� independent pairs1

to the four categories 11, 10, 01, and 00, with any number 0 through
½cM=2� Nðk� 1Þ� per category consistent with the total, is

eXðN;M;N01Þ ¼
½cM=2� Nðk� 1Þ�!

½ðN01=2Þ!�2½cðM � kNÞ=2� N01=2�!½kN=2� N01=2�!
:

ð5Þ

This cannot be set equal to XðN;M;N01Þ in Eq. (4), because treating
the pairs as independent entities leads to some unphysical configu-
rations (see Ref. [20, p. 253]). Thus eX overcounts the number of con-
figurations. To take care of this, we must normalize eX:

XðN;M;N01Þ ¼ CðN;MÞeXðN;M;N01Þ ð6Þ

and

XðN;MÞ ¼
X
N01

XðN;M;N01Þ ¼ CðN;MÞ
X
N01

eXðN;M;N01Þ; ð7Þ

where XðN;MÞ is the number of ways to arrange N k-mers on M
sites. In general, XðN;MÞ depends on the spatial configuration of
the k-mer and the surface geometry. Even in the simplest case of
linear k-mers, there not exist the exact form of XðN;MÞ in two (or
more) dimensions. However, different approximations have been
developed for XðN;MÞ [22,23], which allow us to obtain CðN;MÞ.
1 The term Nðk� 1Þ is subtracted since the total number of nearest-neighbor pairs,
cM=2, includes the Nðk� 1Þ bonds belonging to the N adsorbed k-mers.
In order to calculate CðN;MÞ, we replace
P

N01
eXðN;M;N01Þ by

the maximum term in the sum, eXðN;M;N�01Þ. By taking logarithm
of Eq. (5), and using the Stirling’s approximation we obtain:

ln eXðN;M;N01Þ ¼ ½cM=2� ðk� 1ÞN� ln½cM=2� ðk� 1ÞN�
� N01 ln N01=2� ½cðM � kNÞ=2� N01=2�
� ln½cðM � kNÞ=2� N01=2� � ðkN=2

� N01=2Þ lnðkN=2� N01=2Þ: ð8Þ

Differentiating the last equation with respect to N01 yields

eX0ðN;M;N01Þ ¼
eXðN;M;N01Þ

2
ln
½cðM � kNÞ � N01�ðkN � N01Þ

N2
01

( )
:

ð9Þ

Setting eX0ðN;M;N01Þ ¼ 0 and solving for N�01, the value of N01 in the
maximum term of eX,

N�01 ¼
ckNðM � kNÞ

cM � 2ðk� 1ÞN ¼ kN � k2N2

cB
; ð10Þ

and

B ¼ M � 2ðk� 1ÞN=c: ð11Þ

Then,

eXðN;M;N�01Þ ¼
ðcB=2Þ!

kN=2� k2N2

2cB

� �
!

h i2
cB=2� kN þ k2N2

2cB

� �
! k2N2

2cB

� �
!

; ð12Þ

and, by simple algebra,

eXðN;M;N�01Þ ¼
B!

ðB� kN=cÞ!ðkN=cÞ!

� �c

: ð13Þ

Eq. (13) allows us to calculate CðN;MÞ,

CðN;MÞ ¼ XðN;MÞeXðN;M;N�01Þ
¼ XðN;MÞ ðB� kN=cÞ!ðkN=cÞ!

B!

� �c

: ð14Þ

Now, ln QðN;M; TÞ [see Eq. (4)] can be written as

ln QðN;M; TÞ ¼ N ln q� bN½kw=2þ kU0�

þ ln
X
N01

CðN;MÞeXðN;M;N01Þ expðbwN01=2Þ
( )

:

ð15Þ

As in Eq. (7), we replace
P

N01
CðN;MÞeXðN;M;N01Þ expðbwN01=2Þ by

the maximum term in the sum, CðN;MÞeXðN;M;N��01Þ expðbwN��01=2Þ.
Thus,

CðN;MÞeX 0ðN;M;N��01Þ expðbwN��01=2Þ
þ CðN;MÞeXðN;M;N��01Þ expðbwN��01=2Þbw=2 ¼ 0; ð16Þ

then,eX0ðN;M;N��01ÞeXðN;M;N��01Þ
¼ �bw=2: ð17Þ

From Eqs. (9) and (17),

ðcB� kN � N��01Þ kN � N��01

� �
¼ N��01

2 expð�bwÞ ð18Þ

and

½1� expð�bwÞ�N��01
2 � cBN��01 þ ðcB� kNÞkN ¼ 0: ð19Þ

Solving Eq. (19) we obtain

N��01

cB
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Að1� kN=cBÞðkN=cBÞ

p
2A

: ð20Þ
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where A ¼ 1� expð�bwÞ. The solution N��01=cB ¼ ð1þ ffiffiffiffiffiffi� � �p Þ=2A is
discarded for physical grounds.2

Finally, the canonical partition function can be written in terms
of N��01,

QðN;M; TÞ ¼ qN expf�bN½kw=2þ kU0�gXðN;MÞ

� ðB� kN=cÞ!ðkN=cÞ!
B!

� �c eXðN;M;N��01Þ expðbwN��01=2Þ

ð21Þ

Taking logarithm and using the Stirling’s approximation yields:

ln QðN;M; TÞ ¼ N ln q� bN½kw=2þ kU0� þ bwN��01=2þ kN

� ln kN=c � cB ln Bþ ðcB=2Þ lnðcB=2Þ � N��01

� ln N��01=2þ cðB� kN=cÞ lnðB� kN=cÞ
� ðcB=2� kN=2� N��01=2Þ lnðcB=2� kN=2

� N��01=2Þ � ðkN=2� N��01=2Þ lnðkN=2

� N��01=2Þ þ ln XðN;MÞ: ð22Þ

The Helmholtz free energy per site, f ðN;M; TÞ ¼ FðN;M; TÞ=
M½bFðN;M; TÞ ¼ � ln QðN;M; TÞ�, can be obtained from Eq. (22), as
a function of surface coverage, h ¼ kN=M, and temperature,

bf ðh; TÞ ¼ � h
k

ln qþ b
h
k

kw
2
þ kU0

	 

� k

h
k

ln
kh
ck

þ c � 2
k� 1

k

	 

h

� �
ln 1� 2

c
k� 1

k

	 

h

� �
� c

2
� k� 1

k

	 

h

� �
ln

c
2
� k� 1

k

	 

h

� �
þ kh

2k
ln

kh
2k
� a

	 

� c 1� 2

c
k� 1

k

	 

h� kh

ck

� �
ln 1� 2

c
k� 1

k

	 

h� kh

ck

� �
þ c

2
� k� 1

k

	 

h� kh

2k

� �
ln

c
2
� k� 1

k

	 

h� kh

2k
� a

� �
� ln c

ð23Þ
where a is

a ¼ N��01

2M
¼ kc

2k
hð1� hÞ

c
2� k�1

k

� �
hþ b

� � ; ð24Þ

b ¼ c
2
� k� 1

k

	 

h

� �2

� kc
k

Ahð1� hÞ
( )1=2

ð25Þ

and

c ¼ XðN;MÞ1=M
: ð26Þ

The equilibrium properties of the adlayer can be obtained from Eq.
(22) along with the differential form of F in the canonical ensemble

dF ¼ �SdT �PdM þ ldN ð27Þ

where S;P and l represent the entropy, the spreading pressure and
the chemical potential, respectively.

Thus, the coverage dependence of the chemical potential,
l½¼ ð@F=@NÞM;T �, arises straightforwardly from Eqs. (22) and (27)

bl ¼ � ln KðTÞ þ bkw
2
� k ln

kh
ck
� 2ðk� 1Þ ln 1� 2h

c
þ 2h

ck

	 

þ ðk� 1Þ ln c

2
� hþ h

k

	 

þ ck lnð1� hÞ � ck

2

� ln
c
2
ð1� hÞ � a

h i
þ k

2
ln

kh
2k
� a

	 

� k

@ ln c
@h

; ð28Þ
2 If the positive sign is chosen in solving Eq. (19), N��01 becomes negative for
attractive interactions ðA < 0Þ and larger than cB=2 for repulsive interactions
ð0 < A < 1Þ.
where KðTÞ ¼ q expð�bkU0Þ is the equilibrium constant.
In this point, it is important to emphasize the main differences

between the results obtained in previous work [21] and the corre-
sponding ones in the present paper. In Ref. [21], a theory for
adsorption of interacting polyatomic molecules based on the
well-known QCA [20] was presented. The approach was obtained
by combining (i) the exact analytical expression for the partition
function of non-interacting linear k-mers adsorbed in one dimen-
sion and its extension to higher dimensions, and (ii) a generaliza-
tion of the classical QCA in which the adsorbate can occupy more
than one adsorption site. In this paper, we allow for the introduc-
tion of any of the configurational factors associated to adsorption
of non-interacting k-mers (Flory–Huggins factor [24,25], Guggen-
heim–DiMarzio factor [26,27], FSTA factor [8], semiempirical factor
[22], etc.). Accordingly, the main thermodynamic functions are
now explicitly written in terms of X (or c). This modification can
be better understood by comparing Eqs. (23) and (28) of the pres-
ent manuscript with Eqs. (25) and (29) of Ref. [21]. The new theo-
retical scheme allows us to deal with adsorbates of arbitrary shape
and size, beyond of the rigid linear molecules studied in Ref. [21].

As it was discussed in Section 1, we are interested in obtaining a
theoretical description in the framework of the fractional statistics.
For this purpose, the function c will be calculated from FSTA.

In the following, we summarize the basis of the FSTA descrip-
tion [8], which allows to describe the configurational entropy
through a single function (parameter), namely the statistical exclu-
sion, g, accounting for the configuration of the molecules in the ad-
sorbed state. In this approximation, the interaction of one isolated
molecule with a solid surface confined in a fixed volume is repre-
sented by an adsorption field having a total number G of local min-
ima in the coordinate space necessary to define the adsorption
configuration. Thus, G is the number of equilibrium states of a sin-
gle molecule at infinitely low density. In general, more than one
state out of G are prevented from occupation upon adsorption of
a molecule. Furthermore, because of possible concurrent exclusion
of states by two or more molecules, the number of states excluded
per molecule, gðNÞ, being a measure of the ‘‘statistical” interac-
tions, depends in general on the number of molecules N within
the volume. From the definition of the number of states available
for a Nth molecule after ðN � 1Þ ones are already in the volume
V ; dN ¼ G�

PN�1
N0¼1gðN0Þ ¼ G� G0ðNÞ, a generalization of the expres-

sion introduced by Haldane [6], the generalized configurational
factor, XðN;GÞ ¼ ðdN þ N � 1Þ!=½N!ðdN � 1Þ!�, can be calculated.
Consequently,

@ ln X�

@n
¼ ln

½1� eG0ðnÞ�
eG 00

n½1� eG0ðnÞ þ n�ðeG 00�1Þ

8<:
9=;; ð29Þ

where n ¼ N=G is the density (n finite as N;G!1Þ;X� �
limN;G!1XðN;GÞ1=G

; eG0ðnÞ � limN;G!1G0ðNÞ=G and eG00 � deG0=dn.
Furthermore, by taking the simplest approximation within

FSTA, namely g ¼ constant (eG0ðnÞ ¼ gn and eG00 ¼ g), a particular
function arises from Eq. (29)

ln
½1� eG0ðnÞ�

eG 00
n½1� eG0ðnÞ þ n�ðeG 00�1Þ

24 35 ¼ ln
½1� ahg�g

ah½1� ahðg � 1Þ�g�1

( )
ð30Þ

n ¼ ah; h being either the ratio N=Nm or the ratio v=vm, where NðvÞ
is the number of adsorbed molecules (adsorbed amount) at given
ðl; TÞ and NmðvmÞ is the one corresponding to monolayer
completion.

For molecules constituted by k identical units, each of which
can occupy an adsorption site, Nm ¼ M=k; h ¼ kN=M (as it was de-
fined above) and G ¼ mM, where mð� mðc; kÞÞ is the number of dis-
tinguishable configurations of the molecule per lattice site (at zero
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density) and depends on the lattice/molecule geometry. Then, from
Eqs. (29) and (30),

k
@ ln c
@h
¼ ln

½1� ahg�g

ah½1� ahðg � 1Þ�g�1

( )
: ð31Þ

Replacing Eq. (31) in Eq. (28), a new adsorption isotherm is ob-
tained, which combines FSTA and QCA.

The parameters a and g in the last equation have a precise phys-
ical meaning and can be obtained from adsorption experiments.
They are related directly to the spatial configuration of a poly-
atomic molecule in the adsorbed state. Alternatively, Eq. (31) can
be used assuming some approach to calculate a and g as a function
of the model’s parameters. Thus, given shape and size of adsorbate,
the adsorption isotherm is straightforwardly obtained. In the next
section, Eq. (31) will be used in both ways.
4 As it has been reported in the literature [15,16], two low-temperature ordered
phases appear at coverage h1 ¼ 5=9 and h2 ¼ 2=3 for repulsive dimers on honeycomb
3. Results

In a first stage, MC simulations were used in order to test the
applicability of the new theoretical approach. The system chosen
for the comparison was a lattice-gas of interacting dimers,3 whose
Hamiltonian can be written as:

H ¼ w
X
hi;ji

cicj � Nwþ Uo

X
i

ci; ð32Þ

where hi; ji represents pairs of nearest-neighbor sites and ci is the
occupation variable, which can take the following values: ci ¼ 0 if
the corresponding site is empty and ci ¼ 1 if the site is occupied.
The term Nw is subtracted in Eq. (32) since the summation over
all the pairs of nearest-neighbor sites overestimates the total energy
by including N bonds belonging to the N adsorbed dimers. In the
simulations, Uo is set equal zero, without any lost of generality.

The adsorption process is simulated through a grand canonical
ensemble Monte Carlo (GCEMC) method [28–30]. For a given value
of the temperature T and chemical potential l, an initial configura-
tion with N dimers adsorbed at random positions (on 2N sites) is
generated. Then an adsorption–desorption process is started,
where a pair of nearest-neighbor sites is chosen at random and
an attempt is made to change its occupancy state with probability
given by the Metropolis rule [31]:

P ¼minf1; expð�bDHÞg ð33Þ

where DH ¼ Hf � Hi is the difference between the Hamiltonians of
the final and initial states. A Monte Carlo step (MCS) is achieved
when M pair of sites have been tested to change their occupancy
state. The equilibrium state can be well reproduced after discarding
the first m0 ¼ 105 � 106 MCS. Then, averages are taken over
m ¼ 105 � 106 successive configurations. The mean coverage h is
obtained as simple average:

h ¼ 1
M

XM

i

hcii ¼ 2
hNi
M

ð34Þ

where hNi is the mean number of adsorbed particles and h� � �imeans
the time average over the Monte Carlo simulation runs.

The computational simulations have been developed for honey-
comb, square and triangular L� L lattices, with L ¼ 144, 144 and
150, respectively, and periodic boundary conditions. With these
lattice sizes we verified that finite-size effects are negligible. Note,
3 The dimer is the simplest case of a polyatomic adsorbate and contains all the
properties of the multisite-occupancy adsorption.
however, that the linear dimension L has to be properly chosen
such that the adlayer structure is not perturbed.4 All calculations
were carried out using the BACO parallel cluster (composed by
60 PCs each with a 3.0 GHz Pentium-4 processor) located at Labor-
atorio de Ciencias de Superficies y Medios Porosos, Universidad
Nacional de San Luis, San Luis, Argentina.

In order to evince the physical significance of a, we write this
parameter as5 a ¼ ðkmÞ�1, where m is the number of distinguishable
configurations of the molecule per lattice site at zero density. mðc; kÞ
is, in general, a function of the connectivity and the size of the adsor-
bate. It is easy to show that,

mðc; kÞ ¼
c=2 for rigid k-mers

½cðc � 1Þðk�2Þ�=2�m0 for flexible k-mers

(
ð35Þ

the term m0 is subtracted in Eq. (35) because the first term overes-
timates mðc; kÞ by including m0 configurations providing overlaps in
the k-mer.

On the other hand, a relates to the low-density limit
ðh! 0Þ; bl � ln ah� ln KðTÞ, where KðTÞ ¼ q expð�bkU0Þ. Fig. 1
shows ln h vs. bl for dimers adsorbed at low coverage on honey-
comb, square and triangular lattices. Symbols and lines corre-
sponding to results obtained from MC simulations and theory
[Eqs. (28), (31) and (35)], respectively. The agreement between
theoretical curves and simulation data supports the results given
by Eq. (35). In addition, given that the effect of lateral interactions
is negligible in the low-density limit, the results in Fig. 1 do not de-
pend on w.

The study above allows us to calculate a from the spatial config-
uration of the adsorbed molecule at low density. Then, given the
shape (and size) of the adsorbate and the surface geometry, the
theoretical adsorption isotherm can be written in terms of an un-
ique parameter g. By following this line of reasoning, simulated
adsorption isotherms of interacting dimers on two-dimensional
lattices were examined in terms of the new isotherm function. In
our analysis, the parameter g was obtained in two different ways.
Namely, (1) by fitting the simulation data; and (2) by assuming a
simple approximation of adsorption site independence (AASI). Un-
der this consideration, if one molecule has m different ways of
adsorbing on one site, g ¼ mk states are excluded when one k-
mer is adsorbed occupying k sites on the lattice.

Fig. 2 presents the adsorption isotherms for dimers on square
lattices with different repulsive [part (a)] and attractive [part (b)]
values of the lateral interaction energy. Symbols represent simula-
tion results and lines correspond to theory. In the theoretical equa-
tions [Eqs. (28) and (31)], we fix k ¼ 2; c ¼ 4; a ¼ 1=4 and set bw
according to the computational data. With respect to g, solid and
dashed lines correspond to curves calculated by using a value of
the exclusion parameter obtained from the best fit to the numeri-
cal data and by assuming AASI, respectively. A similar study was
also done for honeycomb and triangular lattices (data not shown
here for brevity). The values of the parameters used in the adjust-
ments are collected in Table 1.

The system presents different behavior according to the sign of
the lateral interaction energy. For repulsive interactions [part (a) in
Fig. 2], two well-defined and pronounced structures appear in the
adsorbate (steps in the isotherms) at coverage h1 ¼ 1=2 and
h2 ¼ 2=3. For h ¼ 1=2 [2/3], a ð4� 2Þ ordered phase [a ‘‘zigzag”
(ZZ) ordered phase], characterized by alternating files of dimers
lattices, h1 ¼ 1=2 and h2 ¼ 2=3 for square lattices and h1 ¼ 2=5 and h2 ¼ 2=3 for
triangular lattices. Thus, in order to allow the formation of the ordered structures in
the adlayer, the number of sites in each direction L is required to be a multiple of 9, 6
and 15 for honeycomb, square and triangular lattices, respectively.

5 Note that n ¼ N=G;n ¼ ah; h ¼ kN=M and G ¼ mM. Then, a ¼ ðkmÞ�1.
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separated by 2 adjacent empty sites [characterized by domains of
parallel ZZ strips oriented at ±45� from the lattice symmetry axes],
is separated from the disordered state by a order–disorder phase
transition occurring at a finite critical temperature [17,18]. The
locations of the ordered phases depend on the geometry of the sub-
strate, being h1 ¼ 5=9 and h2 ¼ 2=3 for honeycomb lattices, and
h1 ¼ 2=5 and h2 ¼ 2=3 for triangular lattices [16].

For attractive interactions [part (b) in Fig. 2], adsorption iso-
therms shift to lower values of chemical potential and their slopes
increase as bw increases. For temperatures below the critical value,
the adlayer undergoes a first-order phase transition (with a clus-
tering of the ad-particles), which is visualized as a clear discontinu-
ity in the simulation isotherms and as a loop in the theoretical
isotherms. In this situation, which has been observed experimen-
tally in numerous systems [32,33], the only phase which one ex-
pects is a lattice-gas phase at low coverage, separated by a two-
phase coexistence region from a ‘‘lattice-fluid” phase at higher cov-
erage. The lattice-fluid can be considered as a version of the regis-
tered ð1� 1Þ phase (where every available site of the lattice is
occupied) diluted with vacancies. This condensation of a two-
dimensional gas to a two-dimensional liquid is similar to that of
a lattice-gas of attractive monomers [20]. However, the symmetry
particle-vacancy (valid for monoatomic particles) is broken for k-
mers and the isotherms are asymmetric with respect to h ¼ 0:5.

On the other hand, the critical value at which the condensation
occurs, bwc , depends on the structure of the lattice, being approx-
imately 3, 1.5 and 1, for honeycomb, square and triangular lattices,
respectively [15,16]. A simple explanation for this behavior is the
following: to take a dimer out of a ð1� 1Þ structure and to destroy
the island in the adsorbate, one needs an energy equivalent to
2ðc � 1Þw. For this reason, the structure is energetically more sta-
ble as c increases, so bwc is shifted to lower values.

To complete the description of Fig. 2, the insets in parts (a) and
(b) show a comparison between MC simulation (symbols), the
present theory with fitted g (solid line) and a typical mean-field
approximation (MFA) (dotted line), for two limit cases [bw ¼ 4 in
Table 1
Table of parameters used in the fitting of simulation data.

Adsorbate Geometry mðc; kÞ

Fig. 1 Dimers ðk ¼ 2Þ c ¼ 3 3/2
Fig. 2 Dimers ðk ¼ 2Þ c ¼ 4 2
Fig. 3 Dimers ðk ¼ 2Þ c ¼ 6 3
part (a) and bw ¼ �1 in part (b)]. In the framework of MFA, the
adsorption isotherm takes the form [34],

bl ¼ � ln q� ln
ck
2
þ bðkU0 þ kwhÞ þ ln hþ ðk� 1Þ

� ln 1� ðk� 1Þ
k

h

� �
� k lnð1� hÞ: ð36Þ

Several conclusions can be drawn from the study in Fig. 2 (and data
not shown for honeycomb and triangular lattices):
a g ¼ mkðAASIÞ Fitted g eg %

1/3 3 2.906(2) 3.13
1/4 4 3.790(8) 5.25
1/6 6 5.560(6) 7.33
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Table 2
Table of parameters used in the fitting of experimental data.

System k m g vm (molecules/cavity) Hst (kcal/mol) w (kcal/mol)

C3H8=13X 3 1 3 5.45 �6.94 �0.7
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(1) In all cases, an excellent agreement is obtained between the-
oretical and simulation data. In other words, there exists a
wide range of bw’s, where the new theoretical framework
provides an excellent fit to the simulation data. This finding
is very important because (i) most of the experiments in sur-
face science are carried out in this range of interaction
energy, and (ii) the range studied includes values of bw’s
in the vicinity of the critical regime, where the disagreement
between standard mean-field approximations and simula-
tion data turns out to be significantly large (see insets in
Fig. 2).

(2) The values of g calculated by fitting are very close to that
predicted by AASI (see Table 1). Consequently, very small
deviations appear between solid and dashed lines. Even
though there exist similarities between the behavior of the
system for the different geometries, the differences between
fitted and theoretical values of g increase as the connectivity
increases. These differences can be much easily quantified

with the help of the percentage error, eg% ¼ 100: gfitted�gtheor

gtheor

 ,
which takes the values of 3.13%, 5.25%, and 7.33% for honey-
comb, square and triangular lattices, respectively. The expla-
nation of this effect is simple: the value of g obtained from
AASI overestimates the number of excluded states because
of simultaneous exclusion of neighboring particles and this
simultaneous exclusion increases as the number of neigh-
bors increases. Note that eg% ¼ 0 for c ¼ 2, given that for
rigid k-mers adsorbed on one-dimensional lattices, it is
straightforward to show that m ¼ 1, and g ¼ k, yields the
exact adsorption isotherm obtained independently in Ref.
[23].

(3) An unique value of g provides the best fit in the whole range
of bw’s. Then, once this value is obtained by fitting the
adsorption isotherm for bw ¼ 0, the rest of the adsorption
isotherms (for bw–0) are calculated without any adjustable
parameters. The procedure demonstrates that an accurate
description of the coverage and temperature dependence
of the free energy of non-interacting k-mers and the use of
the quasi-chemical approximation lead to a precise determi-
nation of the main adsorption properties of interacting
polyatomics.

(4) The differences between MC simulation and MFA are very
appreciable. In addition, the simplest approximation within
FSTA, namely g ¼ constant, provides results comparable to
those obtained with the scheme presented in Ref. [21]. These
findings (i) show that the present approach represents a
qualitative advance in the description of the adsorption k-
mers with respect to the existing theories based on MFA;
and (ii) suggest the potentiality of the model proposed in
supporting the interpretation of experimental data of poly-
atomics species of different shape and size, beyond of the
rigid linear molecules studied in Ref. [21].

Next, we compare our results to experimental data. For this pur-
pose, experimental adsorption isotherms of propane in 13X zeo-
lites [35] were examined in terms of the new isotherm function.
In our analysis, Eqs. (28) and (31) were used assuming AASI. In
addition, given that the analyzed experimental isotherms were re-
ported in adsorbed amount v , against pressure p, we rewrite the
variables in Eqs. (28) and (31) in a more convenient form. Thus,
where h ¼ v=vm; bl ¼ lnðp=p0Þ and KðTÞ ¼ K1 expð�bHstÞ;Hst

being the isosteric heat of adsorption.
For small molecules adsorbed in zeolites, the use of a two-

dimensional lattice is widely accepted. As an example, this hypoth-
esis is strongly supported by detailed simulations on zeolites 5A,
where density profiles of O2 and N2 along the cavity radius show
sharp peaks close to the wall [36]. On the other hand, an alkane
chain can be considered as a ‘‘bead segment”, in which each methyl
group is represented as a single site (bead) [37]. In this frame, pro-
pane would correspond to k ¼ 3. In addition, (i) the length of pro-
pane (6.7 Å) is relatively large with respect to the diameter of the
cavity of a zeolite 13X (11.6 Å); and (ii) previous work indicates
that 5–6 molecules can be adsorbed per cavity [35]. These findings
suggest that the molecules should adsorb aligned along a preferen-
tial direction (otherwise, 5–6 molecules would hardly fit in the
cavity).

The cases described in the paragraph above are some examples
out of a whole variety of adsorption configurations that the pro-
posed formalism allows to deal with. In the first case, the gas is ad-
sorbed principally on the cavity walls forming a two-dimensional
phase with c=2 possible orientations and this would correspond
to g ¼ ck=2ðm ¼ c=2Þ. In the case studied here, the calculation of
the properties of the aligned state reduces to the calculation of a
one-dimensional problem and, consequently, the exclusion param-
eter g is chosen equal to 3 (k ¼ 3 and m ¼ 1).

With respect to the energies involved in the adsorption process,
and according to previous studies [8], we fix Hst ¼ �6:94 kcal/mol
and w ¼ �0:7 kcal=mol. Then, we determine, by multiple fitting,
the value of vm leading to the best fit to the experimental data of
C3H8=13X from Ref. [35] in the whole pressure and temperature
range. The results are shown in Fig. 3 and the values of the param-
eters used in the fitting are collected in Table 2. Lines correspond to
the present theory and symbols represent experimental data from
[35]. The agreement between experimental and theoretical data is
very good. In addition, as in the experiment, the resulting value of
the monolayer volume, vm ¼ 5:45 molecules=cavity, is smaller
than six molecules per cavity and the fractional value of vm is
indicative that some molecules may stand across the cavity’s
windows.
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This comparison with a set of experimental results provides just
an example of the scope of this theory, which considers simply the
cavities of the 13X zeolite as a linear array of adsorptive sites, the
propane molecule as three bead units, and the lateral coupling as a
constant interaction energy between two nearest-neighbor units
belonging to different k-mers. Despite the present result, further
research is clearly needed in order to conclusively evaluate the
reliability and accuracy of this approach. However, note that a
rather artificial model with eight fitting parameters was necessary
to interpret analogous data in Ref. [35].

4. Conclusions

In the present paper, an analytical approach to the adsorption of
interacting polyatomic adsorbates (k-mers) has been proposed.
The new formalism was obtained by combining (i) the recently re-
ported fractional statistics thermodynamic theory of adsorption of
polyatomics, and (ii) a generalization of the classical QCA in which
the adsorbate can occupy more than one adsorption site.

The proposed model is simple, easy to apply in practice, and
provides an accurate description of the adsorption of interacting
polyatomics. Physically, these advantages are a consequence of
properly considering (i) the configurational entropy of the adsor-
bate and (ii) the lateral interactions in the adlayer. This treatment
bears theoretical interest because it represents a qualitative ad-
vance with respect to the existing models of multisite-occupancy
adsorption.

The new theory was compared with Monte Carlo simulation
and analytical results from the classical Bragg-Williams approxi-
mation. Two main conclusions can be drawn from the comparison:
(1) the theory is greatly improved by introducing the lateral inter-
actions by following the configuration-counting procedure of the
QCA; and (2) appreciable differences can be seen between BWA
and the theory introduced here, with the last being the most accu-
rate for all cases.

Finally, experimental data of C3H8 adsorbed in 13X zeolite were
very well fitted by using the new model. Even though further com-
prehensive analysis of experimental isotherms needs to be done,
the new theory seems to be a promising approach toward a more
accurate description of the adsorption thermodynamics of inter-
acting polyatomic molecules.
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[1] W. Rudziński, D.H. Everett, Adsorption of Gases on Heterogeneous Surfaces,
Academic Press, London, 1992.

[2] T. Nitta, M. Kuro-oka, T. Katayama, J. Chem. Eng. Jpn. 17 (1984) 45.
[3] T. Nitta, A.J. Yamaguchi, J. Chem. Eng. Jpn. 25 (1992) 420.
[4] A.W. Marczewski, A. Derylo-Marczewska, M. Jaroniec, J. Colloid Interface Sci.

109 (1986) 310.
[5] J.L. Riccardo, F. Romá, A.J. Ramirez-Pastor, Int. J. Mod. Phys. B 20 (2006) 4709.
[6] F.D.M. Haldane, Phys. Rev. Lett. 67 (1991) 937.
[7] Y.S. Wu, Phys. Rev. Lett. 73 (1994) 922.
[8] J.L. Riccardo, F. Romá, A.J. Ramirez-Pastor, Phys. Rev. Lett. 93 (2004) 186101.
[9] J.L. Riccardo, F. Romá, A.J. Ramirez-Pastor, Appl. Surf. Sci. 252 (2005) 505.

[10] F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Ind. Eng. Chem. Res. 45 (2006)
2046.

[11] K.R. Paserba, A.J. Gellman, Phys. Rev. Lett. 86 (2001) 4338.
[12] K.R. Paserba, A.J. Gellman, J. Chem. Phys. 115 (2001) 6737.
[13] A.J. Gellman, K.R. Paserba, J. Phys. Chem. B 106 (2002) 13231.
[14] A.J. Phares, F.J. Wunderlich, J. D Curley, D.W. Grumbine Jr., J. Phys. A: Math.

Gen. 26 (1993) 6847.
[15] A.J. Ramirez-Pastor, J.L. Riccardo, V. Pereyra, Surf. Sci. 411 (1998) 294.
[16] J.E. González, A.J. Ramirez-Pastor, V. Pereyra, Langmuir 17 (2001) 6974.
[17] F. Romá, A.J. Ramirez-Pastor, J.L. Riccardo, Phys. Rev. B 72 (2005) 035444.
[18] F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Phys. Rev. B 77 (2008) 195401.
[19] P.M. Pasinetti, F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Phys. Rev. B 74 (2006)

155418.
[20] T.L. Hill, An Introduction to Statistical Thermodynamics, Addison Wesley

Publishing Company, Reading, MA, 1960.
[21] M. Dávila, F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Surf. Sci. 600 (2006)

2011.
[22] F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Langmuir 22 (2006) 3192.
[23] A.J. Ramirez-Pastor, T.P. Eggarter, V. Pereyra, J.L. Riccardo, Phys. Rev. B 59

(1999) 11027.
[24] P.J. Flory, J. Chem. Phys. 10 (1942) 51;

P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, NY,
Cornell, 1953.

[25] M.L. Huggins, J. Chem. Phys. 46 (1942) 151;
M.L. Huggins, Ann. NY Acad. Sci. 41 (1942) 151;
M.L. Huggins, J. Am. Chem. Soc. 64 (1942) 1712.

[26] E.A. Guggenheim, Proc. Royal Soc. London A183 (1944) 203.
[27] E.A. DiMarzio, J. Chem. Phys. 35 (1961) 658.
[28] K. Binder (Ed.), Monte Carlo Methods in Statistical Physics, Topics in Current

Physics, vol. 7, Springer, Berlin, 1978.
[29] D. Nicholson, N.D. Parsonage, Computer Simulation and the Statistical

Mechanics of Adsorption, Academic Press, London, 1982.
[30] K. Binder (Ed.), Applications of the Monte Carlo method in statistical physics,

Topics in Current Physics, vol. 36, Springer, Berlin, 1984.
[31] N. Metropolis, A. W Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem.

Phys. 21 (1953) 1087.
[32] A. Clark, The Theory of Adsorption and Catalysis, Academic Press, New York

and London, 1970.
[33] A. Patrykiejew, S. Sokolowski, K. Binder, Surf. Sci. Rep. 37 (2000) 207.
[34] A.J. Ramirez-Pastor, J.L. Riccardo, V. Pereyra, Langmuir 16 (2000) 10167.
[35] M. Tarek, R. Kahn, E. Cohen de Lara, Zeolites 15 (1995) 67, and references

therein.
[36] D. Razmus, C. Hall, AIChE J. 37 (1991) 769.
[37] L.J. Gallego, C. Rey, M.J. Grimson, Mol. Phys. 74 (1991) 383.


	Fractional statistical theory and use of quasi-chemical approximation  for adsorption of interacting k-mers
	Introduction
	Basic formalism: thermodynamic functions
	Results
	Conclusions
	Acknowledgement
	References


