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Abstract 21 

The honey bee Apis mellifera is the most abundant managed pollinator in diverse crops 22 

worldwide. Consequently, it is exposed to a plethora of environmental stressors, among 23 

which are the agrochemicals. In agroecosystems, the herbicide glyphosate (GLY) is one of 24 

the most applied. In laboratory assessments, GLY affects the honey bee larval development 25 

by delaying its moulting, among other negative effects. However, it is still unknown how 26 

GLY affects larval physiology when there are no observable signs of toxicity. We carried 27 

out a longitudinal experimental design using the in vitro rearing procedure. Larvae were fed 28 

with food containing or not a sub-lethal dose of GLY in chronic exposure (120 h). 29 

Individuals without observable signs of toxicity were sampled and their gene expression 30 

profile was analyzed with a transcriptomic approach to compare between treatments. Even 31 

though 29% of larvae were asymptomatic in the exposed group, they showed 32 

transcriptional changes in several genes after the GLY chronic intake. A total of 19 33 

transcripts were found to be differentially expressed in the RNA-Seq experiment, mainly 34 

linked with defensive response and intermediary metabolism processes. Furthermore, the 35 

enriched functional categories in the transcriptome of the exposed asymptomatic larvae 36 

were linked with enzymes with catalytic and redox activity. Our results suggest an 37 

enhanced catabolism and oxidative metabolism in honey bee larvae as a consequence of the 38 

sub-lethal exposure to GLY, even in the absence of observable symptoms.  39 

 40 

 41 

 42 

Keywords: Apis mellifera, RNA-Seq, in vitro rearing, transcriptomic, energy 43 

metabolism44 
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1. Introduction 45 

Animal pollination is a crucial ecosystem service for biosphere provided mainly by 46 

different species of bees and other insects. Nevertheless, in most crops worldwide, the 47 

honey bee Apis mellifera is the most used pollen vector (IPBES 2016). This generalist 48 

pollinator is managed by pollination services placing beehives in agricultural settings. 49 

Consequently, honey bees are exposed to different environmental stressors such as 50 

landscape fragmentation, large-scale monocultures, extreme climate conditions, pathogens, 51 

parasites and especially exposure to agrochemicals (Foley et al. 2005; Potts et al. 2010). In 52 

croplands and surroundings, several routes of acute or chronic exposure to agrochemicals 53 

occur, including the contact with spray drift, residues in vegetation and dust (IPBES 2016, 54 

Krupke et al. 2012, Peruzzo et al. 2008). Once the food incomes into the beehive, there is a 55 

rapid distribution of contaminated pollen, nectar and water among nestmates (Thompson et 56 

al. 2014, Orantes-Bermejo et al. 2010, Blasco et al. 2003). All these concomitant factors in 57 

sublethal exposure and in addition to their cumulative biological response make the honey 58 

bee exposome (Traynor et al. 2016, Miller and Jones 2013). This concept places the toxic 59 

exogenous agents in a broader context in which they interact with the inner physiology of 60 

each animal, including its diet, behaviour and endogenous agents (e.g., metabolites and 61 

microbiota). A maladaptive biological response of some individuals could affect the colony 62 

survival. In this context, the honey bee becomes a suitable sentinel species for pollinator 63 

community (Gerhardt 2002, Pham-Delegue et al. 2002, Bromenshenk et al. 1985), 64 

especially those individuals under development within beehives, given that they are much 65 

more vulnerable to environmental challenges (Wu et al. 2011). The interaction between 66 

environment and individual’s physiology in chronic adaptation can lead to a high allostatic 67 

load and subclinical diseases (Juster et al. 2010). Therefore, the disturbed development of 68 

honey bees could cause a long-term negative effect on the pollination service in 69 

commercial crops.  70 

One of the most applied agrochemicals in agriculture landscapes worldwide is the 71 

active ingredient so-called glyphosate [N-(phosphonomethyl)glycine], henceforth: GLY 72 

(Benbrook 2016, Duke and Powles 2008, Giesy et al. 2000). This biocide chemical takes 73 

part in a wide range of herbicide formulations with broad-spectrum action. GLY became 74 
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extensively and intensively applied since the late 1990s due to the technological advances 75 

in genetically modified crops and no-till farming (Benbrook 2016, Duke and Powles 2008). 76 

This molecule inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), 77 

part of the shikimate pathway, which exists only in higher plants, algae and bacteria (Duke 78 

and Powles 2008). The disruption of the aromatic amino acid biosynthesis is the main 79 

mechanism for toxicity of GLY. However, different studies have shown detrimental effects 80 

of GLY on the development and growth in a wide variety of animals (Seide et al. 2018, 81 

Dutra et al. 2011, Paganelli et al. 2010, Cauble and Wagner 2005, Marc et al. 2004, Tate et 82 

al. 1997). Indeed, a previous work reported an increased prevalence of delayed moulting in 83 

honey bee larvae exposed to GLY (Vázquez et al. 2018). This effect was observed mainly 84 

as reduced growth and prolonged duration of early larval stadia. In addition, other studies 85 

showed that GLY acts as a stressor during the larval development of A. mellifera under in 86 

vitro rearing by modulating some immune/detoxifying genes (e.g., antibacterial proteins 87 

and some cytochrome P450 monooxygenases) and inducing high levels of cell apoptosis in 88 

the gut epithelium (Gregorc et al. 2012, Gregorc and Ellis 2011). Although there is no a 89 

clear molecular mechanism of action, recent researches proved the disruption of gut 90 

microbiota in honey bees after GLY ingestion (Blot et al. 2019, Dai et al. 2018, Motta et al. 91 

2018). This result is consistent with the biocide action of GLY in bacteria, but its direct or 92 

indirect connection with delayed growth or the occurrence of other harmful effects in bees 93 

is still unknown (Farina et al. 2019). After chronic exposure to GLY, young worker honey 94 

bees reared in the laboratory showed impaired associative learning, reduced sucrose 95 

sensitivity and depleted antioxidants associated with carotenoid–retinoid system (Goñalons 96 

and Farina 2018, Helmer et al. 2015, Herbert et al. 2014). The accumulated evidence 97 

suggests that chronic exposure to GLY is not harmless for bees; however, little is known 98 

about its consequences on brood physiology after the intake of contaminated food (El 99 

Agrebi et al. 2019, Berg et al. 2018, Chamkasem and Vargo 2017, Rubio et al. 2014). 100 

Thus, a toxicogenomic approach could provide a better understanding of the internal state 101 

of larvae exposed to this herbicide, even in the absence of external symptoms.   102 

The aim of the present work has been to measure how GLY affects honey bee larva 103 

when there are no observable signs of toxicity. For this purpose, we carried out a 104 
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longitudinal randomized experiment in brood fed with food containing or not GLY, and 105 

assessed a transcriptomic analysis to compare gene expression between groups.  106 

 107 

2. Materials and Methods 108 

2.1. Study site and animals  109 

The rearing experiment was performed in January 2018  (summer season in the 110 

southern hemisphere). Female honey bee larvae were sampled from brood frames from 111 

three healthy colonies (henceforth: A, B and C) and reared in vitro (see section 2.2). The 112 

colonies were housed in Langstroth hives at the experimental apiary of the Universidad de 113 

Buenos Aires, Argentina (34° 32’ S, 58° 26’ W). The queens from the three colonies are 114 

not genetically related and they had been naturally inseminated by multiple mates during 115 

free flights in the field (i.e., inter and intra-colony genetic diversity).  116 

 117 

2.2. In vitro rearing  118 

An empty frame was introduced into each  colony (A-C) and monitored for 8 hours 119 

until the queen laid enough eggs. Three days later the brood frames were withdraw and 120 

carried to a room with suitable environmental conditions for grafting. Around 60 first 121 

stadium larvae were grafted (0-8 hour old post-hatching) from the brood frame to plastic 122 

cups and placed in Petri dishes (Crailsheim et al. 2013). This number of larvae represents 123 

around 5 % of a cohort (eggs laid in one day by the queen) and up to 0.5 % of colony in an 124 

average hive. The same person carried out this procedure to avoid variability in grafting 125 

effect. Larvae were reared inside an incubator with constant temperature and relative 126 

humidity (34.5 °C and 95%, respectively) during five days. To standardize larval food 127 

administration and GLY exposure, 110 µL of food spread in five aliquots of increasing 128 

volume were provided to each larva during the 5 days of the feeding period: 10 µL during 129 

grafting, 10 µL at 24 h, 20 µL at 48 h, 30 µL at 72 h and 40 µL at 96 h (Aupinel et al. 130 

2005). A previously established diet was used: 6% D-glucose, 6% D-fructose, 1% yeast 131 

extract (Sigma-Aldrich) and 50% commercial royal jelly (Kaftanoglu et al. 2011, 132 

Vandenberg and Shimanuki 1987). In order to prevent bacterial or fungal contamination 133 

dead larvae were removed every day. 134 
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 135 

2.3. Exposure to GLY  136 

The accurate concentration of GLY in brood food (bee bread or royal/worker jelly) 137 

offered to larvae inside the hive during field exposure have not yet been determined, but the 138 

herbicide is actually ingested by larvae (Farina et al. 2019, Thompson et al. 2014, USEPA 139 

2012, Raina-Fulton 2014). Therefore, the worst-case exposure scenario was assumed, and a 140 

chronic exposure (0-120 h post-hatching) was chosen, considering the highest 141 

concentration of GLY reported in agricultural landscapes and its median expected 142 

environmental concentration (Farina et al. 2019). Two treatments for larva reared in vitro 143 

were defined: control group (food without herbicide) and exposed group, food with 2.5 mg 144 

a.e. (acid equivalent) of GLY (analytical standard provided by Sigma-Aldrich, purity of 145 

99.2 %) per litre of food. For this, a GLY stock solution of 100 mg a.e. L-1 (bi-distilled 146 

water as solvent) was diluted in food solution. Food was renewed once a week due to the 147 

slight photodegradation of GLY (Duke and Powles 2008).  148 

 149 

2.4. Endpoints  150 

The status of each larva during the 120 h of exposure was daily checked. Each 151 

larval stadium can be identified by its morphological traits (Human et al. 2013). Whenever 152 

a larva had a smaller size or different characteristics from the stadium in that is expected to 153 

be, it was classified as “in delay” and separated from the remainders with an optimal 154 

growth (Vázquez et al. 2018; Wu et al. 2011). Besides, larvae were classified as dead when 155 

their colour changed to brownish, they developed oedema or remained immobile 156 

(Crailsheim et al. 2012). The “relative risk ratio” and its confidence interval (Katz et al. 157 

1978) were calculated when significant differences in either survival or successful moulting 158 

proportions were observed. 159 

 160 

2.5. Biological samples and RNA isolation  161 

 After the chronic in vitro exposure, larvae with optimal growth (i.e., with a success 162 

moult in each moulting event and similar size) represented the asymptomatic 163 

subpopulation, regardless if they belonged to GLY exposed or control groups. The 164 
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biological replicates for the gene expression experiments were pools of 6 asymptomatic 165 

larvae (2 larvae from each colony A-C) per treatment. Larvae were sampled in TRIzol® 166 

reagent (Sigma-Aldrich) and temporally stored in liquid nitrogen. We sampled only 5-day 167 

old larvae with complete intake to homogenize nutritional state. Each larva was weighed 168 

with a precision balance (Mettler Toledo AG285, ±0.1 mg). Therefore, the 110 µL of 169 

ingested food was equivalent to a dose of 0 in the control group or 275 ng a.e. of GLY in 170 

exposed group. Pooled larvae were homogenized using sterilized pestles in cold and total 171 

RNA was extracted using TRIzol® according to the supplier’s protocol and resuspended in 172 

90 µL of DEPC-treated water. RNA integrity and quality were assessed by means of a 1% 173 

agarose electrophoresis gel and in Agilent 2100 Bioanalyzer (Agilent Technologies). 174 

 175 

2.6. RNA sequencing  176 

The gene expression profiling of pooled larvae (section 2.5) was carried out with 3 177 

biological replicates per treatment (control vs. GLY exposed). Library construction and 178 

high-throughput sequencing services were hired at Novogene Corporation Inc. 179 

(Sacramento, USA). A total of 6 cDNA libraries were constructed using the NEB Next® 180 

Ultra™ RNA Library Prep Kit (New England Biolabs) with an insert length of 250-300 181 

base pairs (bp). The libraries were sequenced using Illumina HiSeq2000 equipment (paired-182 

end 150 bp) with a sequencing depth of at least 21 million paired-end reads per library 183 

(Conesa et al. 2016, Rajkumar et al. 2015, Fang and Cui 2011). The raw sequence dataset 184 

is available at the NCBI BioProject database with the accession number PRJNA587756 185 

(Table S1 and S2). 186 

 187 

2.7. Bioinformatic analysis 188 

Differential expression analysis was performed with an empirical Bayes approach 189 

for small samples based on a negative binomial distribution using the edgeR package 190 

(Robinson et al. 2010) (for details in the bioinformatic procedure and cites see 191 

Supplementary information). Those genes with a false discovery rate (FDR) < 0.1 were 192 

considered as differentially expressed between control and exposed groups and genes with 193 

logarithm2-fold-change more than ± 0.5 were considered with relevant biological signal. 194 
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Enrichment analysis of all genes of the transcriptomic result was carried out with the 195 

ermineR package using the Gene Score Resampling method (Gillis et al. 2010). The 196 

functional categories were determined using Gene Ontology (GO) terms from BeeBase 197 

(Gene Ontology Consortium 2018, Elsik et al. 2016, Honey Bee Genome Sequencing 198 

Consortium 2014).  199 

 200 

2.8. qRT-PCR  201 

The differential expression results from RNA-Seq were complemented with qRT-202 

PCR (Everaert et al. 2017). For this purpose, we selected 5 genes from the set of 203 

differentially expressed genes (DEGs). Their expression level was analysed using 4 204 

biological replicates per treatment (control and exposed group) independent from those 205 

used for RNA-Seq and prepared as described above (section 2.5). A total of 1.5 µg of  total 206 

RNA were treated with DNaseI (Promega). cDNA was synthesized with 15.5 µL of treated 207 

RNA per sample by means of the M-MLV reverse transcriptase system (Promega). qRT-208 

PCRs were performed in an AriaMx Real-Time PCR System (Agilent Technologies) using 209 

6 µL of FastStart Universal Master Mix (Hoffmann-La Roche), 0.5 µL of a 10 µM forward 210 

and reverse primer solution and 1.5 µL of 4-fold diluted cDNA in final volume of 12 µL. 211 

Primers were designed using Primer3 v4.0.0 (http://primer3.wi.mit.edu) and efficiency was 212 

calculated for each primer pair (Table S2). Reactions were performed in technical triplicate 213 

under the following conditions: 10 min at 95 °C; 40 cycles of 20 s at 95 °C; 20 s at 56-58 214 

°C and 30 s at 72 °C. In all qRT-PCR experiments, no-template controls were included. 215 

The efficiency and amplification of a single fragment was evaluated for each primer pair 216 

(Table S3) (Taylor et al. 2010). The expression of GAPDH, Rp18S and Rp49S was used to 217 

normalize target gene expression (Table S4 and Fig S1A). These genes were previously 218 

described as stable reference genes in A. mellifera (Lourenço et al. 2008, Scharlaken et al. 219 

2008). Gene expression ratio was calculated by means of the Pfaffl formula (Pfaffl 2001).    220 

 221 

2.9. Statistics  222 

We performed data analysis and graphics in R (for details and cites see 223 

Supplementary Information). Survival and developmental data were analyzed with Cox 224 
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Proportional Hazard models (CPH). Weighing data were transformed with Box-Cox 225 

method to meet the statistical assumptions and analyzed with generalized linear models 226 

(GLM). Gene expression data from qRT-PCR were analyzed with principal components 227 

(PCA) and Mann-Whitney U test for comparison between treatments for each gene. The 228 

alpha level was set at 0.1 and p-value corrected for multiple post-hoc comparisons with 229 

Benjamini-Hochberg procedure.  230 

 231 

3. Results 232 

3.1. Signs of toxicity in larvae fed with GLY 233 

In order to detect changes in the physiology of honey bee larvae without observable 234 

signs of disturbed development after ingesting GLY (Table S5), we tracked brood during 235 

the exposure period (0-120 h) searching for the occurrence of the endpoints (death or delay, 236 

Figure 1).  237 

Thirty percent of the brood in the control group died at the age of 84 ± 27 h, around 238 

the last larval moult. Those larvae exposed to GLY dead  at a similar age (80.9 ± 24 h) and 239 

did not differ with the control group in survival proportion (CPH model: survival ~ [GLY] 240 

+ strata(colony), χ2 (1) = 1.74, P = 0.187, N = 364). However, a significant increase in the 241 

proportion of larvae with delayed development during the exposure to GLY was observed 242 

(CPH model: successful moulting ~ [GLY] + strata(colony). χ2 (1) = 10.57, P = 0.001, N = 243 

364). Forty-four percent of the brood in the control group displayed a delay in at least one 244 

moult with delay of 55.0 ± 26 h. Nevertheless, sixty-two percent of larvae in the group 245 

exposed to GLY displayed a moulting process with delay of 60.7 ± 33 h. Hence, the 246 

relative risk ratio associated with the delayed development and the exposure to GLY was 247 

1.43 (confidence interval of 95%: 1.20-1.69). Therefore, GLY affected the larval 248 

development of a subpopulation of brood in the longitudinal experiment, increasing the 249 

incidence of delayed moulting.  250 

 At the end of the experiment (120 h), 53% of brood in the control group and 29% in 251 

the exposed group did not show disruptions in the larval development (delay, death or 252 

both). Thereupon, we sampled from these asymptomatic subpopulations those larvae with 253 

full intake and similar size (89. 89 ± 8.8 mg in control group and 89.95 ± 12.44 mg in 254 
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exposed group. GLM model: Box-Cox(weight) ~ [GLY]. F(1,94) = 0.64, P = 0.426, N = 255 

96). 256 

 257 

3.2. Gene expression profiling of asymptomatic larvae 258 

 The transcriptomes derived from the samples of asymptomatic larvae with or 259 

without the intake of GLY allowed us to explore differences in gene expression using 260 

RNA-Seq. Less than 10% of the raw read pairs were eliminated after quality control. 261 

Between 20 and 24 million of clean reads were obtained per library (biological replicate). 262 

More than 88% of reads mapped to the honey bee genome (Table S1 and S2). 263 

Nineteen coding transcripts (0.22% of protein-coding genes expressed in samples) 264 

were found to be differentially expressed (7 up and 12 down-regulated in exposed larvae 265 

relative to control group) (Figure 2 and Table S6). The magnitude of the fold change ranged 266 

from 0.6 to 0.1 for the genes under-expressed and from 1.7 to 2.7 for the genes over-267 

expressed in the exposed group. The DEGs were characterized by information about their 268 

function and dominant expression in tissues provided by different genome databases (Table 269 

S7). Moreover, all genes in the transcriptomes were classified according to functional 270 

categories based on the Gene Ontology classification (Table 1). The most enriched GO 271 

terms of biological processes and molecular functions in the exposed larvae were lipid 272 

metabolism (with a high percentage of genes with low FDR) and oxidoreductase activity 273 

(with a high percentage of genes with large fold-change).  274 

Finally, we choose 5 transcripts from the DEG set (CYP6AS3, GB46620, SLC1, EST 275 

and UGT1-3) to quantify their expression levels by qRT-PCR in independent biological 276 

replicates from the same cohort under study (Figure 3). UGT1-3 showed a significant up-277 

regulation between treatments while SLC1 and EST showed a meaningful biological 278 

modulation on their average expression ratio, 50% of down-regulation and 83% of up-279 

regulation respectively (Mann Whitney U test: CYP6AS3: W = 4, P = 0.248. GB46620: W 280 

= 8, P = 1. SLC1: W = 14, P = 0.08. EST: W = 2, P = 0.08. UGT1-3: W = 1, P = 0.04). 281 

Furthermore, two principal components (PC1 and PC2) achieving 68% of the cumulative 282 

proportion of deviation were obtained from a PCA with the 5 genes (Table S8). Although 283 

there was variation in the gene expression ratio among samples in qRT-PCR (Table S9), the 284 
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PCA showed more similarity among samples from the same treatment in the internal state 285 

based on those genes (Figure S1B). Lastly, the effect of GLY exposure in the transcript´s 286 

abundance of UGT1-3 had similar response in direction (over-expression) in both qRT-287 

PCR and transcriptomic procedures, with high read counts and moderate variability in the 288 

latter (Table S6).        289 

 290 

4. Discussion 291 

4.1. Transcriptional changes in asymptomatic larvae 292 

In agreement with previous results (Vázquez et al 2018), the chronic self-dosing of GLY in 293 

the honey bee brood has sub-lethal effects in the larval development under in vitro rearing 294 

conditions. GLY acts as a risk factor increasing the incidence of delayed moults. Moreover, 295 

the gene expression profiling in the asymptomatic subpopulation suggests alterations in 296 

their physiology after the chronic intake of GLY. A set of 19 coding transcripts was found 297 

to be differentially expressed in their whole body. This modulation was mainly restricted to 298 

genes related to the defensive response against environmental stressors (37%) and the 299 

intermediary metabolism (26%) (Table S7). Furthermore, the most enriched functional 300 

categories in the whole transcriptome (Table 1) were those associated to enzymes with 301 

catalytic and redox activities. Most of the DEGs have been reported in Drosophila 302 

melanogaster with predominant transcription in the gut epithelium, integument and 303 

Malpighian tubules (Table S7) (Thurmond et al. 2019). These organs are directly exposed 304 

to the herbicide which would indicate an inner adjustment of the larval physiology as a 305 

consequence of the oral and epidermal exposures.  306 

A complete correlation between RNA-Seq and RT-qPCR results should be 307 

expectable for those experiments dealing with an acute treatment with a relative simple 308 

mode of action and a great modulatory effect on gene expression. In the current study, we 309 

identified transcriptional changes triggered by chronic exposure to a chemical whose action 310 

mechanism is unknown in insects and seems to act at different levels, e.g. in gut microbiota 311 

(Blot et al. 2019, Dai et al. 2018, Motta et al. 2018). Besides, Vázquez and co-workers 312 

(2018) observed that the impact of GLY among colonies was not homogeneous. Even 313 

individuals of the same colony could present different response profiles to GLY due to the 314 
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different self-dosing of each larva and the variation in susceptibility of its microbiota 315 

(Motta et al. 2018, Vázquez et al. 2018). Hence, the results presented here are a snapshot of 316 

a dynamic process and several individuals within the same group could have been caught in 317 

different points along their toxicological response. We consider both RNA-Seq and RT-318 

qPCR as complementary procedures to identify changes, that in our case we expect to be 319 

subtle. Therefore, the current detection of signs of transcriptional modulation constitutes a 320 

meaningful piece of information revealing a physiological reaction of the larva against the 321 

herbicide in an allostatic process (Juster et al. 2010), even in the absence of evident 322 

symptoms of toxicity.  323 

 324 

4.2. Signs of detoxification and dysbiosis 325 

Phytochemicals and pesticides present in food or nest were shown to modulate similar 326 

genes during the defensive response in honey bees (Poquet et al. 2016, Mao et al. 2013, 327 

James and Xu 2012, Johnson et al. 2012). In the current study, genes related to immunity 328 

(pacifastin and MME), plant-herbivore interaction (G12-like protein), epigenetic 329 

mechanisms of disrupted microbiota (GB46620) and detoxification were modulated by 330 

GLY. In the latter process, three genes belong to phase I (CYP6AS3) and phase II (a 331 

sulfotransferase and UGT1-3) in the biotransformation of xenobiotics (Timbrell 2008, 332 

Claudianos et al. 2006). Previous works showed that CYP6AS3 detoxified xenobiotics 333 

present in honey and beebread, such as quercetin (Mao et al. 2013, Johnson et al. 2012). 334 

Meanwhile, the UDP-glycosyltransferase gene (UGT1-3) was related to the glycosylation 335 

(UDP-glucose as sugar donor) of small hydrophobic molecules (Ahn et al. 2012). Many 336 

endogenous compounds are glycosylated, such as ecdysteroid hormones and cuticle tanning 337 

precursors (Hu et al. 2019, Ahn et al. 2012). The xenobiotic metabolism and immunity 338 

have been consistently modulated by the intake of GLY in honey bee brood in different 339 

experiments (Vázquez et al. 2018, Gregorc et al. 2012). Nevertheless, it is currently 340 

unknown if these enzymes metabolize GLY or other chemical that could be generated 341 

secondarily, e.g. toxins from the dysbiosis in gut microbiota (Blot et al. 2019, Dai et al. 342 

2018, Motta et al. 2018). Therefore, the long-term trend in gene modulation does not 343 

necessarily reflect a specific gene activation or repression capacity of GLY (Samsel and 344 
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Seneff 2013). Besides that, expression of an apoptotic signalling gene (SMPD1) was 345 

significantly modulated in our experiment. The induction of apoptosis suggested by this 346 

result is in agreement to a previous study (Gregorc and Ellis 2011). Furthermore, the most 347 

up-regulated transcript was a metalloprotein related to inflammatory response (MME). 348 

These are toxicity signs frequently associated with dysbiosis (Samsel and Seneff 2013).  349 

 350 

4.3. Signs of metabolic stress 351 

Triggering of stress compensatory mechanisms induces energy consumption (Wang et al. 352 

2019, Li et al. 2017, Avigliano et al. 2014), which could disrupt the moulting process in 353 

honey bees due to a trade-off between growth and defensive response. The herbicide 354 

showed adverse effects in growth of various invertebrates including honey bees (Vázquez 355 

et al. 2018, Dutra et al. 2011, Marc et al. 2004, Tate et al. 1997). Although more 356 

physiological experiments should be performed, the functional analysis presented here 357 

provides evidence of alterations in the energetic metabolism. On one hand, the most down-358 

regulated transcripts were a branched-chain-amino-acid transaminase (GB49819) and a 359 

fatty acid hydroxylase (GB40899) related to protein and lipid catalytic metabolism 360 

respectively. Lipids and amino acids contribute to energy metabolism by providing carbon 361 

source into the Krebs cycle, especially when the primary sources of energy (trehalose and 362 

glycogen) are scarce (Nation 2015) (GO:0006629 and GO:0008610). On the other hand, 363 

one of the most enriched functional categories was iron-binding proteins (GO:0005506). 364 

These are important metalloproteins that contribute in solute transport (SLC1) and defense 365 

response, such as MME and CYP450s (Dlouhy and Outten 2013, Claudianos et al. 2006, 366 

De Sousa et al. 1988). The other most enriched category was alcohol oxidoreductase 367 

enzymes (GO:0016614 and EC 1.1). These enzymes are mainly dehydrogenases and also 368 

take part in the energetic metabolism and phase I in xenobiotic metabolism (IUBMB 1992). 369 

Isocitrate dehydrogenase is the major control point in the Krebs cycle modulated by the 370 

concentration of ATP and other metabolites (Nation 2015). In addition, cells use the 371 

coenzyme FAD (Flavin Adenine Dinucleotide) associated with flavoproteins (GO:0050662 372 

and GO:0050660) in many energetically difficult oxidation reactions such as 373 

dehydrogenation, because it is a very strong oxidizing agent. Flavoproteins take part in a 374 
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large variety of energetic metabolic pathways including beta-oxidation of fatty acids and 375 

amino acid catabolism (Nation 2015, Iida et al. 2007, Patterson and Bates 1989). All the 376 

mentioned enzymes and biological processes have a crucial role in the redox homeostasis. 377 

Disturbances in the normal redox state of cell can cause toxic effects through the 378 

production of reactive oxygen species. Oxidative stress is associated with increased 379 

production of oxidizing compounds during catabolism and severe oxidation can trigger 380 

apoptosis and energy depletion (Lelli et al. 1998). These toxic oxidants are removed by 381 

antioxidant metabolites and different enzymes. In this sense, in a previous laboratory 382 

assessment with adult honey bees exposed chronically to GLY, the authors reported a 383 

decrease in antioxidants (Helmer et al. 2015).   384 

 385 
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4.4. Implications in field assessments 386 

The present results suggest that open or semi-field assessments need to consider 387 

measurements of internal state regarding conspicuous endpoints, such as death or delayed 388 

development (Thompson et al. 2014). The hazard analysis of stressors, one at a time, in 389 

laboratory gives the advantage to identify useful biomarkers of effect or exposure for 390 

biomonitoring (Gerhardt 2002). Although samples of whole body insects makes more 391 

difficult the detection of organ-specific changes, this kind of sampling allowed us to 392 

describe in a holistic way changes in the transcriptional state of brood and establish a 393 

reference due to the unfeasible dissections of larvae in situ. Finally, in open field assays it is 394 

important not to lose sight of the exposome of each honey bee colony that is a result of 395 

different kind of acute or chronic disturbances in brood or adults honey bees (Traynor et al. 396 

2016, Miller and Jones 2013). These exposures could affect the biological fitness to cope 397 

with concomitant stressors, as previously demonstrated for GLY and mosquitoes (Riaz et 398 

al. 2009) even if there are not observable signs of toxicity.  399 

 400 

Conclusion 401 

Our results suggest an increase of the catabolism and oxidative metabolism in honey bee 402 

asymptomatic larvae chronically exposed to GLY. A maladaptive physiological response in 403 

early stages in life cycle could lead to long-term negative effects on bee populations. 404 
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Tables 719 

Table 1. 720 

ID Description N° genes P-value FDR 

GO:0016614 § 
oxidoreductase activity, acting 

on CH-OH group of donors 
46 1.00E-12 2,48E-10 

GO:0005506 * iron ion binding 66 2.03E-05 2,48E-10 

GO:0050660 § 
flavin adenine dinucleotide 

binding 
45 1.00E-12 1,24E-10 

GO:0050662 § coenzyme binding 134 7.61E-07 1.22E-06 

GO:0008610 * lipid biosynthetic process 73 0.011 2.94E-06 

GO:0006629 * lipid metabolic process 152 0.022 0.015 
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Figures Captions 723 

Fig 1. Endpoint assessment in honey bee larvae exposed in vitro to GLY. A) The 724 

proportion of survival and B) the proportion of larvae with successful moulting (without 725 

delay events) during the chronic exposure (0-120 h post-hatching) to contaminated food 726 

with GLY (0 or 2.5 mg a.e. of herbicide per litre). The curves are plotted with their 727 

confidence interval (95%) and with different colours per treatment: control group in blue 728 

and exposed larvae in orange. The + indicates time points with censoring data. Both 729 

survival and developmental data were fitted to CPH models (survival or successful 730 

moulting ~ [GLY] + strata(colony)). The number of assessed larvae and p-values for each 731 

test are shown in the graph.   732 

Figure 2. Effect of GLY on gene transcription in asymptomatic larvae. Heatplot of 733 

differentially expressed genes (FDR < 0.1, Table S6) comparing transcription levels among 734 

samples of pooled bees (6 asymptomatic larvae, i.e. without signs of toxicity after chronic 735 

exposure of 120 h to GLY) in both treatments (control: C or exposed: T, total dose of 0 or 736 

275 a.e. ng of GLY respectively). Transcription levels per gene (fragments per kilobase per 737 

million, a.k.a. FPKM) were standardized with z-score and represented by means of a color 738 

scale, in which blue/red represent lowest/highest expression respect to average FPKM 739 

among all samples per gene. The density subplot allows to identify the trend in 740 

transcription level. Genes are identified by their symbol or Beebase code (GB-number). A 741 

bar color code identifies the functional category of genes: violet for intermediary 742 

metabolism, green for defensive response, yellow for cellular processes, blue for 743 

development and grey for genes without functional information (Table S7). Dendrograms 744 

were plotted with hierarchical clustering among samples and genes based on Euclidean 745 

distances and Ward method for clustering.  746 

Figure 3. Gene expression measured with qRT-PCR. Mean gene expression ratio (Pfaffl 747 

formula) of 5 genes (differently expressed in RNA-Seq, Table S6) has been performed with 748 

4 samples of pooled larvae (6) per treatment (control or exposed) using qRT-PCR. The 749 

samples were different from those in sequencing data. GAPDH, Rp18S and Rp49S 750 

expression levels (Table S3) has been used to normalize the expression level of every gene. 751 

Bars indicate means + s.e.m. The p-values for each test to compare between treatments 752 

(Mann-Whitney U test) are shown in the graph for each gene.  753 

 754 

 755 

 756 
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Tables Captions 758 

Table 1. GO enrichment analysis of the RNA-Seq data. Gene Set Enrichment Analysis 759 

was performed with the list of filtered genes (8567) from the RNA-Seq result (see 760 

Supplementary). Functional gene sets were defined using the Gene Ontology (GO) 761 

annotations (2554) of the Apis mellifera genome in BeeBase (93% of the filtered genes). 762 

Gene Score Resampling method (GSR) applied to identify significantly enriched functional 763 

categories with high-scoring genes (§ mean absolute fold-change or * mean –log10(FDR) 764 

from the RNASeq result). The reported IDs correspond to the significantly enriched GO 765 

terms (FDR with multifunctionality correction < 0.1).  766 



Highlights 

1. Honey bee larvae were chronically fed in vitro with food containing glyphosate. 

2. At the end of the cohort study, larvae without signs of toxicity were sampled. 

3. Exposed asymptomatic larvae showed differentially expressed genes in RNA-Seq. 

4. Enriched functional categories suggested high catalytic and oxidative metabolism. 
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