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a b s t r a c t

Specific kinetic rates are key variables regarding metabolic activity in bioprocesses. They are non-linear
functions of concentrations and operating conditions and therefore of difficult access for process control.
In this paper, a multiple kinetic rates observer based on second-order sliding mode ideas is proposed.
The main difference with other proposals is that smooth estimates are achieved in finite-time without
adding additional dynamics. The resulting estimator is robust against uncertainty in the model of the
estimated variables. Experimental results from continuous fermentation of S. cerevisiae are presented,
where microbial specific growth rate and net ethanol production rate are estimated.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, biotechnological processes are applied in a wide
range of industries for the production of enzymes, recombinant
proteins, and high-value metabolic products. An important control
problem of these processes is to achieve a desired metabolic
condition (Jobé et al., 2003). The specific reaction rates contain
information that is closely related to microbial activity. The
knowledge of these signals have at least two relevant applications.
First, reaction rates can be used in closed-loop control for
improving process productivity. For instance, certain industrial
problems have been related to the problem of regulating the
specific growth rate (μ) of microorganism (Ren & Yuan, 2005;
Soons, Voogt, van Straten, & van Boxtel, 2006). Second, the on-line
availability of such information during the cultivation stage
enhances bioprocess monitoring, which is essential for quality
control, process reproducibility and early problem detection
(Vojinovi, Cabral, & Fonseca, 2006).

Regretfully, specific reaction rates are in general not accessible
since they are unmeasurable and uncertain non-linear functions of
states (concentrations) and operating conditions (temperature, pH,
ll rights reserved.
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pressure, etc). In this context, the use of observers (software
sensors) to obtain an on-line estimation of specific rates avoids
the problem of model identification while adds information for
closed-loop control schemes and culture studies (Farza, Busawon,
& Hammouri, 1998).

A survey of relevant methods applied to state estimation in
bioprocesses can be found in Venkateswarlu (2004). Particularly,
several model-based observers have been proposed for the reac-
tion rate estimation problem. They include adaptive estimator for
microbial growth rate in Bastin and Dochain (1986), extended
Kalman filter in Shimizu, Takamatsu, Shioya, and Suga (1989),
asymptotic observers for parameter estimation in Bastin and
Dochain (1990), high gain observers of specific rates in Farza
et al. (1998), Gauthier, Hammouri, and Othman (1992), and
Martinez-Guerra, Garrido, and Osorio-Miron (2001), and sliding
mode based observers in Picó, De Battista, and Garelli (2009),
Rahman, Spurgeon, and Yan (2010), and De Battista, Picó, Garelli,
and Vignoni (2011). Other approach, which does not rely on
process model but requires training data sets, is based on artificial
neural networks (Karakuzu, Türker, & Öztürk, 2006).

In the sliding mode observers (SMO), the idea is to enforce a
sliding regime on the subspace for which the state estimation
error is zero by means of a discontinuous action. Then, the
observer output copies the measured state despite disturbances
and allows the reconstruction of the signal of interest (De Battista,
Picó, Garelli, & Navarro, 2012; Edwards & Spurgeon, 1998). In the
problem of kinetic rates estimation, the unknown signals appear
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in the time-derivative of the states. First-order sliding mode
observers were developed in Picó et al. (2009) to deal with specific
growth rate and substrate estimation from on-line biomass
measurement. Although the exact estimation of μ was a
high-frequency discontinuous signal, it was useful for constructing
the substrate observer. The resulting estimates were robust under
typical model uncertainties while exhibiting first order dynamics.
In Rahman et al. (2010), substrate measurements were used to
estimate the substrate consumption rate. The observer error
dynamics is exponentially stable whereas model uncertainties
and disturbances are rejected. Thereafter, in De Battista et al.
(2011) a second-order sliding mode observer of μ was presented.
More precisely, the proposal is a modified version of the “super
twisting” algorithm, a high-order sliding mode algorithm pre-
sented in Levant (1998). In this case, the observer provides smooth
estimation that exhibits finite-time convergence and is robust to
typical process model uncertainties.

This work is intended to generalise preliminary results in
De Battista et al. (2011). The multiple rates estimation problem
requires to deal with an additional time-varying function. There-
fore, further modifications are required in both the observer's
structure as in the proposition of stability conditions. From
bioprocess control viewpoint, the goal is to add information about
the microorganism activity so as to increase on-line signals for
closed-loop control and bioprocess monitoring. Therefore, the
observer proposed here is applied to estimate p specific kinetic
rates of production or consumption based on p related on-line
measurements of process variables. The main difference with
other continuous time proposals is that the estimates are achieved
in finite-time and from then on, no additional dynamics is added.
Besides, differing from first-order SM proposals the resulting
estimations are smooth. Consequently, no additional smoothing
elements would be required in closed-loop configurations. Further,
robustness is expected since no model of each kinetic rate is
assumed.

The rest of the paper is organised as follows. In Section 2 the
problem to be solved and a typical state-space model for a
bioprocess in a stirred-tank are presented. Then, in Section 3,
the proposed observer is formulated. Section 4 presents results in
which microbial specific growth rate and net ethanol production
rate in continuous fermentation of Saccharomyces cerevisiae are
estimated from experimental data. Finally, in Section 5, concluding
remarks are given.
2. Bioprocess model and problem statement

A biotechnological process taking place in a stirred tank can be
described by the following state-space model (Bastin & Dochain,
1990):

dξ
dt

¼Krðξ; tÞ−DðtÞξðtÞ þ FðtÞ−Q ðξÞ; ð1Þ

where ξðtÞ∈Rn
þ is the state vector, K an ðn�mÞ pseudo-

stoichiometric coefficients matrix, rð�Þ∈Rm the reaction rates
vector, DðtÞ∈Rþ the dilution rate, FðtÞ∈Rn

þ the input flow rate
vector and Q ðξÞ∈Rn

þ the gaseous outflow rate vector.
Eq. (1) describes the dynamics of the (bio)chemical species in

the culture, which evolves according to m reaction rates rðξ; tÞ.
Since the reactions can take place only in the presence of certain
necessary reactants, rið�Þ is zero whenever the concentration of one
of the required reactants is zero. Then, the reactions can be
factorised as riðξ; tÞ ¼ αiðξ; tÞ∏j∈J i

ξj where αið�Þ is generally a non-
linear function and J i denotes the set of required reactants (Bastin
& Dochain, 1990). In matrix form, this results in

rðξ; tÞ ¼ Gðξ; tÞαðξ; tÞ; ð2Þ

where Gðξ; tÞ is an ðm�mÞ state-dependent diagonal matrix.
The αið�Þ defined in (2) are called the specific reaction rates per

unit of each reactant (other definitions such as per unit of biomass
are usually used, see Perrier, Feyo de Azevedo, Ferreira, & Dochain,
2000). These non-linear time-varying functions provide important
knowledge about the bioprocess (e.g. microbial specific growth
rate, oxygen specific uptake rate, specific production rate of
metabolites) but its modelling and parameter identification can
be extremely difficult. In order to add information about the
process (possibly for on-line process control), a software sensor
of specific reaction rates will be developed.

Particularly, the goal is to derive a robust observer of a subset of
p specific reaction rates, namely αpðtÞ ¼ ½α1ðtÞ;…; αpðtÞ�T . To this
end, let us consider that p available measurements of ξðtÞ are
rearranged in a vector z, i.e. zðtÞ ¼ ½ξ1ðtÞ;…; ξpðtÞ�T . Let Kp and Gpð�Þ
be the corresponding ðp� pÞ submatrices of K and Gð�Þ, respec-
tively whereas Fp and Q p are the corresponding ðp� 1Þ vectors
arranged from F and Q . Assume the following:

Assumption 1. The state variables are positive and bounded.

Assumption 2. Gp, Fp and Q p are available.

Assumption 3. A bound for each αi time derivative ρ i40
is known.

Assumption 4. The matrix Kp is invertible.

Assumption 5. Diagonal matrices G1, G2 such that 0oG1≤
Gpð�Þ≤G2 holds are known.

Note that Assumption 1 holds for the bioprocess variables
(e.g. component concentrations and volume). Assumption 2 is a
common assumption in the literature regarding the availability of
certain on-line measurements (e.g Perrier et al., 2000). Assumption
3 states that a bound of each kinetic dynamics is available, which
can be determined from practice knowledge of the bioprocess.
Assumption 4 ensures that p reaction rates can be estimated from
the p measured variables. Otherwise, the measured vector would
not provide enough information about the reactions. From the
discussion of Eq. (2), the elements of Gp are products of state
variables which all remain positive and bounded. In the event that
one required reactant vanishes, then at least one reaction no longer
takes place. In that case, the estimation of the reaction rate has no
sense and consequently the estimation problem should be recon-
sidered. The diagonal elements of G1 and G2 in Assumption 5
should be selected by the user based on his own knowledge about
the particular process being monitored.

Now, from the model (1) and the previous discussion, the
following system is considered

dz
dt

¼KpGpð�Þαpðξ; tÞ−Dz þ Fp−Q p; ð3Þ

dαp

dt
¼ RρðtÞ; ð4Þ

in which αpðtÞ is the vector of specific kinetic rates to be estimated
and R¼ diagfρig arranges the bounds of the time derivatives. Note
that ρðtÞ is a vector of p unknown continuous functions where
‖ρðtÞ‖∞≤1 holds.
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3. A second-order observer of specific kinetic rates

3.1. Definitions

In this section the following notation is used:

Go ¼ ðG1 þ G2Þ=2; ð5aÞ

ΔG¼ ðG2−G1Þ=2; ð5bÞ

δ¼ ∥G−1
o ΔG∥∞; ð5cÞ

Ǧ
pð�Þ ¼ G−1

o Gpð�Þ; ð5dÞ
where ∥ � ∥∞ stands here for the induced ∞-norm of the matrix.

Remark 1. Recalling definition and assumptions for Kp, Go and R,
it is straightforward to see that KpGoR is nonsingular.

Let define an auxiliary vector r as

r¼ ðKpGoRÞ−1ðz−ẑÞ; ð6Þ
where ẑ is an estimation of z.

Finally, let SIGNð�Þ: Rp-Rp, ABSð�Þ: Rp-Rp�p, defined as

SIGNðrÞ ¼ colðsignðsiÞÞ; ð7Þ

ABSðrÞ ¼ diagfjsijg: ð8Þ
From Eq. (6), it follows that if there exists Tn40 such that r≡0

holds for all t4Tn, i.e. if the system can be steered to evolve over
the sliding surface defined by rðzÞ ¼ 0 in finite-time, then ẑ≡z is
achieved.

Since the previous comment is the core idea to estimate the
reaction rates, the objective now is the design of a dynamic system
which enforces Eq. (6) to vanish in finite-time.

3.2. Main result
Proposition 1. The system defined by

dẑ
dt

¼KpðGpð�ÞRu1 þ 2k2GoRu2Þ−Dz þ Fp−Q p; ð9aÞ

du1

dt
¼ k1SIGNðrÞ; ð9bÞ

u2 ¼ ðABSðrÞÞ1=2SIGNðrÞ; ð9cÞ

α̂ ¼ Ru1; ð9dÞ
is a second-order sliding mode observer for (3)–(4). There exists
suitable design constants k141 and k240 for which finite-time
convergence of specific reaction rates, i.e. α̂ðtÞ≡αpðtÞ ∀t4Tn for some
finite Tn40, is achieved.

In order to prove Proposition 1, given ~α ¼ αp−α̂ , the error
coordinates dynamics ðr; ~αÞ is
dr
dt

¼ R−1ðǦ
pð�Þ ~α−2k2Ru2Þ; ð10Þ

d ~α
dt

¼ R ρðtÞ−k1SIGNðrÞð Þ: ð11Þ

Applying the change of coordinates ðx1; x2Þ ¼ ðRu2; ~αÞ to system
(9), yields

dx1
dt

¼ RðABSðx1ÞÞ−1 −k2x1 þ
Ǧ
pð�Þ
2

x2

 !
; ð12Þ

dx2
dt

¼ RðABSðx1ÞÞ−1ðABSðx1ÞρðtÞ−k1x1Þ; ð13Þ
where the identities

SIGNðx1Þ ¼ SIGNðrÞ;
ABSðx1Þ ¼ RðABSðrÞÞ1=2;

were used (see Eq. (9c)).
Recalling definitions (5a)–(5d) it is seen that

Gpð�Þ∈fGo þ ΔGUpg; ð14aÞ

Ǧ
pð�Þ∈fIp þ G−1

o ΔGUpg; ð14bÞ
where Ip denotes the ðp� pÞ identity matrix and Up is a ðp� pÞ
diagonal matrix such that ∥Up∥∞≤1.

Therefore, using (14) the following differential inclusion holds:

dx
dt

∈
R½ABSðx1Þ�−1 0
0 R½ABSðx1Þ�−1

 !
−k2Ip 1

2 ðIp þ δUpÞ
−ðk1Ip−UpÞ 0

 !
x:

ð15Þ
Now, given the ith kinetic rate arrange a vector ζ i with the ith

components of x1 and x2 (i.e. ζ i ¼ ½x1i x2i�T ). The corresponding
differential inclusion is

dζ i
dt

¼ ρ i
jx1ij

AðtÞζ i∈
ρ i
jx1ij

−k2 1
2 ð1þ δUiÞ

−ðk1−UiÞ 0

 !
ζ i; ð16Þ

where Ui is the (i,i) entry of Up.
It will be shown that each of these coordinates converges in

finite time to the origin independently of the others. For this
purpose, the candidate Lyapunov function V ðζ iÞ ¼∑iζ

T
i Pζ i (Moreno

& Osorio, 2008) is considered. The time derivative of V(t) results in

_V ðtÞ ¼∑
i

ρ i
jx1ij

ζTi AT ðtÞP þ PAðtÞ
� �

ζ i; ð17Þ

with AðtÞ given in (16). The goal is to determine P≻0 such that
_V ðtÞo0 along any non-zero solution of Eq. (16). To this end,
consider the following proposition.

Proposition 2. Consider the polytopic linear differential inclusion

_ζ ¼ AðtÞζ; AðtÞ∈A ð18Þ
with

A¼ co⋃
i
Ai; i¼ 1;…;4

Ai ¼
−k2 1

2 ð1þ δviÞ
−ðk1−uiÞ 0

" #
;

u¼ f−1;−1;1;1g; v¼ f−1;1;−1;1g: ð19Þ

Then, for every k141 and 0oδo1 there exists suitable values of k2
such that (18) is quadratically stable for all AðtÞ∈A.

Stability of system (18) was proved in De Battista et al. (2011)
for the case δ¼ 0 with the Lyapunov function VðζÞ ¼ ζTPζ . This
proposition is an extension of the one proposed in De Battista et al.
(2011) to deal with δ40. The main difference consists in the
requirement of a grid covering the space ðk1; δÞ instead of k1 in
order to include all the possible systems described by Eq. (18).

A polytopic linear differential inclusion is said quadratically
stable if there exists VðζÞ ¼ ζTPζ , P≻0 that decreases along every
non-zero trajectory of system (18).

Since _V ðζÞ ¼ ζT ðAT ðtÞP þ PAðtÞÞζ , a necessary and sufficient
condition for quadratic stability is

P≻0;

AT ðtÞP þ PAðtÞ≺0 ∀AðtÞ∈A: ð20Þ

This is equivalent to determine the existence of a common
Lyapunov matrix P for all the vertices of the polytope A, i.e. that
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verifies the following constraints:

F ¼
P≻0
Q i≜−ðAT

i P þ PAiÞ≻0

( )
: ð21Þ

for i¼ 1…4.
Now rewriting Ai in a convenient way,

Ai ¼ k2A0 þ An

i ; ð22Þ
where

A0 ¼
−1 0
0 0

� �
;

An

1 ¼
0 1

2 ð1þ δÞ
−ðk1−1Þ 0

" #
;

An

2 ¼
0 1

2 ð1þ δÞ
−ðk1 þ 1Þ 0

" #
;

An

3 ¼
0 1

2 ð1−δÞ
−ðk1−1Þ 0

" #
;

An

4 ¼
0 1

2 ð1−δÞ
−ðk1 þ 1Þ 0

" #
: ð23Þ

The existence of a common Lyapunov P for any k141 and
0oδo1 can be determined by checking the feasibility of the
following generalised eigenvalue problem (GEVP) in P and k2
(Boyd, El Ghaoui, Feron, & Balakrishnan, 1994):

min k2
s:t: k240; P≻0; F n; ð24Þ
with

F n ¼ fðAnT

i P þ PAn

i Þ þ k2ðAT
0P þ PA0Þ≺0g; ð25Þ

for i¼ 1…4.
A GEVP is a quasi-convex optimisation problem. In this case, it

can be solved using a bisection algorithm on k2 and determining
the feasibility of the remaining linear matrix inequality (LMI).
A grid covering the desired values of k1 for some desired value δ
was made, and the corresponding LMIs were solved with YALMIP
(Löfberg, 2012). Fig. 1 shows the set of values of k1 and k2 for which
the LMI problem is feasible, for different values of the parameter δ.
For all points within the resulting sets of parameters, Proposition
2 holds.

Now, values of k1 and k2 for Proposition 1 follow from the
application of Proposition 2. That is, given k141 and certain δ, the
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.5

1

2

10
0.00
0.07
0.17
0.35
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0.72
0.80
0.86
0.90

k 2

k1

Fig. 1. Values of k1 and k2 for which system (18) is quadratically stable.
value of k2 is selected such that Eq. (18) is quadratically stable.
Recall that δ stands for the maximum element of ∥G−1

o ΔG∥ thus
this value is suitable to get _V ðtÞo0 for all the reaction rates.

Finally, for suitable k1 and k2 the system reaches a neighbour-
hood of the sliding surface and thus the sliding-mode regime is
established. From then on, the so-called invariance condition (r≡0)
holds (Utkin, Guldner, & Shi, 1999). Consequently, for certain Tn,
ẑðtÞ≡zðtÞ ∀t4Tn. By equating expressions (3) and (9a),
α̂ðtÞ ¼ αpðξ; tÞ is obtained. Note in Eq. (9c) that when the system
is restricted to the sliding surface r¼ 0 the matrix ABSðrÞ is the
zero matrix, and thus u2 ¼ 0.
4. Experimental results

In this section, the sliding mode observer developed in Section
3 is evaluated experimentally. The application consists in estimat-
ing the specific production rate of ethanol (qe) and the specific
growth rate (μ) of the strain S. cerevisiae (T73) in a continuous-
mode fermentation. To this end, on-line measurements of biomass
(x) and ethanol (e) concentrations were collected. Biomass mea-
surements were taken with a sensor based on measurement of the
optical density (Navarro, Pico, Bruno, Pico-Marco, & Valles, 2001).
Samples taken every 12 s are filtered over a time-window of 120 s.
Ethanol concentration was monitored using a Raven Biotech's
stand-alone methanol sensor with sample time of 120 s. The
volume was 3L and the total fermentation time was 93 h. During
the first 23 h batch cultivation was carried out. After that, the
dilution rate profile shown with dash-dotted line in Fig. 3 was
applied. A set-point step in D from 0.18 to 0:22h−1 is produced at
t≈50 h.

The proposal is assessed for two possible scenarios. First, the
SMO is tested in the conditions described above and second, the
observer is evaluated for two typical sensor failures which were
digitally generated. In the latter case, the results are compared
with a high gain observer. Particularly, the continuous time
estimator described by

d
dt

x̂

ê

 !
¼ x̂ 0

0 x̂

 !
μ̂

q̂e

 !
−
Fin
v

x̂

ê

 !
−2θ1

x̂−x
ê−e

 !
; ð26aÞ

d
dt

μ̂

q̂e

 !
¼−θ21

x̂
x̂−x
ê−e

 !
; ð26bÞ

which is presented in Farza et al. (1998) was implemented.
The main difference of this class of observers with the SMO is

that in the former there is an addition of dynamics. This fact is
important regarding closed loop applications. For instance, if
Eq. (26) is applied for feedback, 2p integrators are added to closed
loop dynamics. Consequently, closed loop stability must be ana-
lysed when the feedback signals are taken from the high gain
observer. The same comment holds for other algorithms such as
asymptotic observers. On the other hand, the SM approach
provides convergence in finite-time to the target variables and
from then on no additional dynamics is added. This fact simplifies
the control system design.

The mass-balance equations for the process are

dx
dt

¼ μx−Dx ð27aÞ

ds
dt

¼ qsxþ Dðsr−sÞ; ð27bÞ

de
dt

¼ qex−De; ð27cÞ

where D¼ Fin=v is the dilution rate, s the substrate concentration,
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Fig. 3. Estimated specific growth rate μ̂ðtÞ with SMO (black) and Eq. (29) (grey),
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sr the input substrate concentration and v the (constant) working
volume.

Since x and e are the measured state variables, the correspond-
ing subsystem is of dimension p¼2. Note in (27) that μ and qe are
the specific kinetic rates per unit of biomass. The corresponding
subsystem in the form of Eq. (3) is

dz
dt

¼ 1 0
0 1

� �
x 0
0 x

� � μ

qe

 !
−Dz; ð28Þ

where z¼ ½x e�T , αp ¼ ½μ qe�T and Fp ¼Q p ¼ 0. In this factorisation
Kp ¼ I2 and Gp ¼ xI2.

Therefore, matrices G1 and G2 (see Eqs. (5)) are determined
bounding for above (x) and below (x) the expected biomass
excursion. The values x ¼ 2 g L−1 and x ¼ 18 g L−1 were selected,
which resulted in conservative enough bounds. Accordingly, the
matrices G1 and G2 are

G1 ¼ 2I2;

G2 ¼ 18I2;

and therefore Go ¼ 10I2, ΔG¼ 8I2 and δ¼ 0:80.
The bounds ρ i were selected as 0.1 and 0.25, and therefore

R¼ diagf0:1 0:25g. These bounds can in practice be adjusted
according to the previous experience about the bioprocess and
from model simulations (De Battista et al., 2012; Perrier et al.,
2000).

The resulting values of k2 for several values of k1 were obtained by
solving the problem (24)–(25). These results are depicted in Fig. 1. It
is seen for any δ that the lower is k1, the greater is the minimum k2.
In order to get a feasible minimisation problem for δ¼ 0:8 with
a small k2, k1 ¼ 1:35 was selected. From problem (24)–(25), the
minimum k2 is 1.5715 and then k2 ¼ 1:75 was selected. Other
possibility for the designing of the gains includes the adaptive-gain
approach, see for instance Shtessel, Moreno, Plestan, Fridman, and
Poznyak (2010) and Evangelista, Puleston, Valenciaga, and Fridman
(2013).
30 40 50 60 70 80 90
−1

Time

Fig. 4. Estimated specific ethanol production rate q̂eðtÞ with SMO (black) and
Eq. (29) (grey) (above); switching coordinate s2 (below).
4.1. Results

The SMO was initialised with the first samples, i.e.
ẑðt0Þ ¼ ðxðt0Þ; eðt0ÞÞ and ðμ̂ðt0Þ; q̂e ðt0ÞÞ ¼ ð0;0Þ. Fig. 2 shows biomass
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Fig. 2. Time profile of x(t) (blue-solid), x̂ðtÞ (red-dash) and e(t) (blue-solid), êðtÞ
(red-dash) in the continuous fermentation (27). (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
article.)
and ethanol time profiles and their corresponding variables ẑ1 and
ẑ2 almost overlapped, respectively.

Fig. 3 shows μ̂ðtÞ and the switching coordinate s1. In this
fermentation the feeding profile was applied in open-loop opera-
tion, i.e. μwas not regulated by feedback. Recall that if steady-state
operation of continuous fermentation is reached then μ¼D (see
Eq. (27a)). However, it can be seen between hours 67 and 79 that μ
was greater than D due to depletion of ethanol. This illustrates
monitoring capabilities of the proposal.

The on-line estimation of qe(t) gives the net production of
ethanol, i.e. the balance between excreted ethanol due to fermen-
tative growth on s and consumed ethanol due to oxidative growth
on e. Fig. 4 shows q̂eðtÞ and the switching coordinate s2.
The decrease observed in qe from t≈67 h is in accordance with
the growth observed in Fig. 3.

Eq. (29) presents the crude estimation of αðtÞ obtained by
model inversion from (3)

α̂ðtÞ ¼ G−1
p K−1

p
dz
dt

þ Dz−Fp þ Q p

� �
: ð29Þ

Although this solution is simpler than most of the proposed
algorithms, the result is strongly affected by measurement noise
as shown in Figs. 3 and 4 in grey lines. A possible solution would
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be to add a lowpass filter, but the delay and filter dynamics could
be detrimental in closed-loop configuration.
4.2. Comparison with high gain observers under sensor failure

Fig. 5 shows two typical sensor failures in biomass concentra-
tion measurement: a drift in the time interval [57,63] and some
spikes at t¼81 h. This type of problem should be early detected to
take corrective actions. Note in Eqs. (27) that a problem in x affects
estimation of both μ and qe.

Algorithm (26) was initialised with the same conditions as the
SMO. It was tuned with parameter θ1 ¼ 4:0 looking for a compar-
able response with the SMO. Although θ1 can be chosen high
enough to ensure fast speed of convergence, this parameter tuning
involves a trade-off between convergence speed and noise sensi-
tivity. Besides, given its simplicity there is only one parameter to
tune which in turn may be problematic when the measurements
have different levels of noise (as in the case of biomass and ethanol
measurements presented in Fig. 2).
The result for the high gain algorithm under sensor failure is
presented in Fig. 6. Given the drift in x, a response with large
overshoot in μ̂ appears. Besides, the spikes in x generates addi-
tional fast changes in μ̂. Although this output behaviour shows a
failure, it would not be acceptable in closed-loop control. On the
other hand, the result of μ estimation with the SMO under the
same scenario is presented in Fig. 7. As can be observed, the
coordinate s1 early detects the fault exhibiting a problem detec-
tion feature of the proposal. Even more important, the effect of the
drift on μ̂ is strongly reduced because the time derivative of each
α̂ i is bounded by the observer. In fact, the corresponding ρ i allows
to adjust that bound. Note that the spikes at t¼81 h are com-
pletely rejected in the estimator and detected by the residual s1.

Finally, the result for qe estimation is presented in Fig. 8. For the
selected gain, the high gain approach exhibits worse response
than the SMO until t¼70 h.
5. Conclusions

The on-line kinetic rates estimation problem in bioprocesses
was addressed. The proposed second-order SM observer is able to
estimate multiple specific kinetic rates from related measurements
of process variables even though no particular model of each
kinetic rate was assumed.

Certainly, only upper bounds of the time derivatives are
required. Global finite-time convergence is achieved by choosing
a suitable observer structure. This property is particularly impor-
tant in control applications because the observer does not add
dynamics that might destabilise the closed loop.

The observer performance was assessed using experimental data
from continuous-mode fermentation of S. cerevisiae. Microbial spe-
cific growth rate and net ethanol production rate were estimated.
The proposed algorithm was compared with a high gain observer
under normal operation and for two typical sensor faults. Particularly,
the SMO showed better noise rejection in the noisiest signal and
better transient response under sensor drifts and spikes.
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