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Abstract

Postnatal stress alters stress responses for life, with serious consequences on the central
nervous system (CNS), involving glutamatergic neurotransmission and development of
voluntary alcohol intake. Several drugs of abuse, including alcohol and cocaine, alter glutamate
transport (GluT). Here, we evaluated effects of chronic postnatal stress (CPS) on alcohol intake
and brain glutamate uptake and transporters in male adolescent Wistar rats. For CPS from
postnatal day (PD) 7, pups were separated from their mothers and exposed to cold stress (4 �C)
for 1 h daily for 20 days; controls remained with their mothers. Then they were exposed to
either voluntary ethanol (6%) or dextrose (1%) intake for 7 days (5–7 rats per group), then killed.
CPS: (1) increased voluntary ethanol intake, (2) did not affect body weight gain or produce signs
of toxicity with alcohol exposure, (3) increased glutamate uptake by hippocampal
synaptosomes in vitro and (4) reduced protein levels (Western measurements) in hippocampus
and frontal cortex of glial glutamate transporter-1 (GLT-1) and excitatory amino-acid
transporter-3 (EAAT-3) but increased glutamate aspartate transporter (GLAST) levels. We
propose that CPS-induced decrements in GLT-1 and EAAT-3 expression levels are opposed by
activation of a compensatory mechanism to prevent excitotoxicity. A greater role for GLAST in
total glutamate uptake to prevent enlarged extracellular glutamate levels is inferred. Although
CPS strongly increased intake of ethanol, this had little impact on effects of CPS on brain
glutamate uptake or transporters. However, the impact of early life adverse events on
glutamatergic neurotransmission may underlie increased alcohol consumption in adulthood.
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Introduction

Adverse early life events constitute a major risk factor for the

development of mental disorders. Moreover, they may also

increase an individual’s vulnerability to substance abuse later

in adult life (Fumagalli et al., 2007). Manipulations such as

maternal separation (MS) have been used as an animal model

of early-life traumatic experience (Lehmann & Feldon, 2000).

Different experimental protocols of MS in rats have shown

alterations in central nervous system (CNS) functioning:

learning impediments, drug abuse and other behavioral

changes (Pryce et al., 2005; Sanders & Spears, 2007).

Drugs of abuse cause long-term changes in the CNS (Jain

& Balhara, 2010; Nestler, 2002). Alcohol is used as a social

drug and it is the second most widely consumed psychoactive

substance in the world after caffeine (Melchior et al., 2014).

Ethanol affects the activities of many receptors, ion channels,

carrier proteins and protein kinases in the CNS (Harris et al.,

2008). In regard to glutamate transmission, ethanol inhibits

N-methyl-D-aspartic acid (aspartate) (NMDA)-receptor acti-

vation (Smothers & Woodward, 2006) and interacts with

glutamate uptake (Othman et al., 2002).

Glutamate is the major excitatory amino acid in the

mammalian CNS, being implicated in several physiological

processes. Termination of excitatory activity is mediated by

high-affinity Na+-dependent glutamate transporters (GluTs),

principally located in glial cells surrounding synapses and in

post-synaptic neurons. A family of Na+-dependent trans-

porters is of prominent importance for glutamate uptake and

for regulating homeostasis in the CNS (Balcar, 2002; Thomas

et al., 2011). To date, five high-affinity GluTs have been

cloned from human and animal tissues, and they are identified

as glutamate aspartate transporter (GLAST), excitatory

amino-acid transporter-1 (EAAT-1) (Storck et al., 1992),

glial glutamate transporter-1 (GLT-1 and EAAT-2) (Pines

et al., 1992), excitatory amino-acid carrier-1 (EAAC-1 and

EAAT-3) (Kanai & Hediger, 1992), EAAT-4 (Fairman et al.,

1995) and EAAT-5 (Arriza et al., 1997). Unlike other

neurotransmitters, glutamate is not metabolized in the

synaptic cleft (Kanai et al., 1993). The primary means by

which it is removed from the synapse is by GluTs, including

GLAST and GLT-1 (EAAT2) (Anderson & Swanson, 2000).

Evidence indicates that chronic alcohol exposure not only
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leads to functional increases in glutamate output but also to

impaired function of GluTs.

Knowing that aversive events in early life can induce drug

abuse, we were interested to study the effects of postnatal stress

on voluntary ethanol intake to obtain a model of voluntary

intake induced by stress in order to study the mechanisms

involved in this relationship. There is evidence that the frontal

cortex (FC) and hippocampus are involved in regulating the

hypothalamic–pituitary–adrenocortical (HPA) axis and are

vulnerable to effects of stress. The hippocampus is an

anatomical structure responsible for diverse memory processes

(Kessels et al., 2001) and is particularly sensitive to chronic

stress and to glucocorticoids (Conrad, 2008). The FC is directly

linked to reward systems (dopaminergic projections of the

ventral tegmental area (VTA) (Kalivas, 2009). It has been

demonstrated that ethanol regulates neuronal GluT expression

in vitro (Kim et al., 2005), and that GluT expression is

downregulated in the cortex of alcohol preferring rats

(Schreiber & Freund, 2000). We aimed to analyze glutamate

uptake and GluT expression in the FC and hippocampus in a

voluntary ethanol intake animal model, using young adult rats

exposed to chronic postnatal stress (CPS) and their controls.

We hypothesized that CPS increases ethanol intake and alters

glutamatergic transmission.

Methods

Animals

Pregnant Wistar rats were obtained from the School of

Pharmacy and Biochemistry, University of Buenos Aires. All

the rats were maintained under standard laboratory conditions

(12 h light–dark schedule, lights on from 08:00 to 20:00 h,

temperature: 21 ± 2 �C) with food and water ad libitum. The

pregnant rats were housed three per cage. All the animal

procedures were performed in accordance with the Guide on

Care and Use of Laboratory Animals, US National Research

Council, 1996 and approved (Res. CD N�2962/10) by the

Institutional Committee for care and use of laboratory

animals (CICUAL), School of Medicine, University of

Buenos Aires. All the efforts were made to minimize

animal suffering. The rats were weighed and general health

assessed weekly.

Chronic postnatal stress

The MS procedure was based on a standardized protocol

(Ogawa et al., 1994), with slight modifications. Whole litters

were randomly assigned to one of two rearing conditions:

prolonged MS or non-MS (control). For MS litters, dams were

removed from the home cage and placed in an adjacent cage.

The whole litter was left in the home cage at 4 �C in a cold

room with the light on for 1 h during 20 days from postnatal

day (PD) 7 (Ladd et al., 1996; Odeon et al., 2010, 2013) (day

of birth was designated PD1). No mortality was observed with

this procedure. Rat pups are capable of behavioral thermo-

regulation as early as the first week of postnatal life, and can

produce heat metabolically without shivering (Farrell &

Alberts, 2007).

The separation cages contained abundant 3 cm deep

bedding material so that pups could thermoregulate by

contact with littermates and by burrowing into the bedding.

Under such conditions, pup core temperature is maintained,

indicating effective behavioral and physiological thermoregu-

lation (Farrell & Alberts, 2007). After 1 h, the mother was

returned to the home cage. Separations were carried out

between 10:00 and 11:00 h. Except for routine cage cleaning,

the control litters remained with the dams undisturbed until

weaning age at PD22. Such a group is considered the most

appropriate control for MS studies (Lehmann & Feldon,

2000). After weaning, rats were housed by sex in standard

cages and conditions. At PD27, male pups were selected for

the next experiments described here. All the rats were handled

daily by the same investigator to minimize stress reactions to

manipulation. Unrelated rats were used to avoid confounding

litter effects (each experimental group was made up of rats

from at least 3 l).

Stress treatment across 20 days began at PD7. At PD27,

they were exposed to either voluntary ethanol (6%) or

dextrose (1%) intake as well as plain water for 7 days. For

this part of the study, three rats were housed per cage, with six

to seven cages per experimental group.

The rats had free access to the drinking bottles, as in the

two-bottle free choice method (Crabbe et al., 2011). At the

end of 7 days with free access to ethanol or dextrose, the rats

were killed. The age of the rats at this point was 34 days

(Figure 1).

Determination of hepatic transaminases

We assessed liver function through measurement of plasma

levels of transaminase activities (AST, aspartate aminotrans-

fere and ALT, alanine aminotransferase) by a routine

spectrometric assay. Enzymatic transamination consists of

the enzyme catalyzed reversible transfer of the alpha amino

Figure 1. Experimental design. Postnatal
stress or no disturbance (Control) from
postnatal days (PD) 7–27. From PD 27–34
given to drink either: water, and dextrose: 1%
solution (g/100 ml); or water, and ethanol: 6%
solution (g/100 ml).

2 M. M. Odeon et al. Stress, Early Online: 1–8
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nitrogen of an amino acid to an alpha-keto acid with the

synthesis of a second amino acid and a second alpha-keto

acid. Enzymes catalyzing different transamination reactions

are found widely distributed in animal tissues and have been

shown to change in activity in some tissues during disease

(Karmen et al., 1995).

Following decapitation without anesthesia, blood was

collected from the trunk in a 15-ml conical tube with heparin.

Plasma was separated by centrifugation (3000 g, 15 min, 4 �C)

and frozen at �70 �C.

Glutamate uptake

Preparation of tissue

Rats were decapitated without anesthesia, and the brains were

removed from five to six rats in each group. FC and

hippocampus were dissected on a Petri dish at 0 �C, according

to Glowinski & Iversen (1966) and homogenized with a glass-

PTFE homogenizer in 20 vols of 0.32 M sucrose.

Homogenates were centrifuged at 800 g for 15 min at 4 �C,

the supernatant was then centrifuged at 20,000 g for 20 min at

4 �C. The pellet (P2¼ crude synaptosomal fraction) was

suspended with a glass-PTFE homogenizer in fresh 0.32 M

sucrose and again centrifuged at 20,000 g for 20 min at 4 �C.

This procedure was repeated 3 times. The resulting pellet was

resuspended and the suspension was used in uptake experi-

ments within 5 h of preparation. Measurements were made

separately on the preparations from each rat (Odeon et al.,

2010, 2013; Takarada et al., 2003).

Tissue measurements

Uptake experiments were carried out using fresh synaptosome-

enriched fractions from 20 mg of the original tissue (wet

weight) per 1 ml of incubation medium. This consisted of

125 mM NaCl, 3.5 mM KCl, 1.5 mM CaCl2, 1.2 mM MgSO4,

1.25 mM KH2PO4, 25 mM NaHCO3, 10 mM HEPES and

10 mM D-glucose, pH adjusted to 7.4. The tissue (FC or

hippocampus) was first incubated for 5 min at 30 �C, (as

described by Takarada et al., 2003), followed by addition of

pure 10 nM radiolabeled substrate, [3H]-L-glutamate (specific

activity: 46.9 Ci/mmol, from Perkin Elmer, NEN, Life Science

Inc., Boston, MA), without addition of non-radiolabeled

substrate, followed by incubation for 1–30 min, for time-

course studies. The incubation was ended by vacuum filtration

through Whatman glass fiber filters (type D) and three rapid

washes with isotonic saline solution (at 2–4 �C). The radio-

activity on the filter was measured using liquid scintillation

counting. Parallel experiments were always performed without

any incubation to obtain radioactivity that was not specifically

taken up into brain preparations. Using the known specific

activity, the net uptake of [3H]-L-glutamate by the synapto-

somes was calculated and expressed as fmol/mg protein/min.

All the measurements were made in triplicate. Protein content

was estimated by the Lowry technique (Lowry et al., 1951)

using bovine serum albumin as standard.

Inhibition experiments were performed in the presence of

500 lM dihydrokainate (DHK, Tocris Bioscence) which

was added to the membranes immediately before the 5-min

[3H]-glutamate uptake measurement (Guillet et al., 2002).

The assay was performed in all the groups with and without

inhibitor and the percentage of inhibition as the difference in

uptake was calculated.

Western blotting

This analysis was used to measure levels of GLT-1, GLAST

and EAAT-3 protein expression in hippocampus and FC.

Dissected tissues were homogenized with a glass-PTFE

homogenizer in lysis buffer containing Tris Base 50 mM,

NaCl 150 mM, EDTA 2 mM, sodium dodecyl sulfate (SDS)

0.05%, Triton X-100 1%, phenylmethanesulfonyl fluoride

(PMSF) 100 g/ml and leupeptin 1 lg/ml. The homogenates

were centrifuged at 12,000 g for 5 min at 4 �C. An aliquot

from the supernatant was taken for protein determination by

the Lowry technique (Lowry et al., 1951). Aliquots (total

proteins 20 lg) were separated on 12% SDS–polyacrylamide

gel (SDS–PAGE) at 130 V and transferred to a nitrocellulose

membrane using a blot system (Transblot, BioRad). FC and

hippocampus preparations from each rat were run separately.

The membranes were incubated in blocking buffer (1�Tris-

buffered saline (TBS) and 5% non-fat dry milk) for 1 h at

room temperature (RT) and then incubated overnight at 4 �C
with one of the following specific primary antibodies: guinea

pig anti-GLT-1(1/500) (AB1520, Millipore Chemicon), rabbit

anti-actin (1/1000) (A2066, Sigma Chemical), rabbit anti

GLAST (1/500) (AB1783, Millipore Chemicon) or rabbit

anti-EAAC1 (1/500) (sc-25658, Santa Cruz Biotechnology).

Blots were then washed 3 times for 10 min in 1�TBS with

0.3% Tween-20 (TBST) at RT and then incubated for 1 h at

RT with goat anti rabbit IgG (1/2000) (Santa Cruz

Biotechnology) or goat anti-guinea pig (1/2000) (Santa Cruz

Biotechnology) conjugated to horseradish peroxidase. They

were then washed 3 times for 10 min in 1�TBS-T 0.1% at

RT. Inmunodetection of bands was accomplished using the

Pierce Super Signal Chemiluminescence Kit (Kit-ECL,

Western blotting substrate from Pierce, Thermo Scientific

IL) and exposure on X-ray film. For quantification of band

intensity, blots were scanned and analyzed using Image J PC

software analysis. The expression level corresponds to the

number of black pixels of each band. The results were

expressed as optical density (OD) in arbitrary units. Actin was

used as a loading control. The amount of protein was

expressed as a ratio between the protein and actin.

Statistical analysis

All data are expressed as mean ± standard error of the mean

(SEM). Statistical significance was assessed with two-way

analysis of variance (ANOVA) followed by post hoc Tukey

test, except for alcohol intake data, which were analyzed by

Student’s t-test. Each group comprised six rats. Each rat in a

group came from a different cage. Significance was set at

p50.05.

Results

Body weight gain

The general state of the rats were monitored, and the rats

exposed to CPS were in good general condition, as judged by

appearance of the coat and posture. The body weights of the

DOI: 10.3109/10253890.2015.1041909 Alcohol, stress and brain glutamate 3
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rats were not significantly different (two-way ANOVA,

F3,25¼ 0.3477, p¼ 0.911) among the experimental groups

throughout the experiment. Percent body weight gains in the

last week were: control: 46.3 ± 2.54% (body weight:

110 ± 7.16 g, n¼ 10), control + EtOH: 46.0 ± 2.35% (body

weight: 109 ± 5.56 g, n¼ 10), stress: 49.2 ± 1.98% (body

weight: 92.4 ± 6.06 g, n¼ 10) and stress + EtOH:

50.4 ± 2.20% (body weight: 105.2 ± 20.8 g, n¼ 10).

Ethanol intake

The data in Figure 2(A) show ethanol consumption as g/kg rat

body weight/day and in Figure 2(B) shows the volume of 6%

ethanol intake per cage of three rats per day. In the CPS

group, compared with non-stressed controls, there were

significant increases in the estimated amount ingested each

day (g/kg rat body weight/day) (t¼ 7.58, df¼ 12) and in

ethanol intake volume per cage of three rats, (t¼ 5.54,

df¼ 12). We did not find any significant differences in

dextrose intake (data not shown).

Hepatic transaminases

Aspartate aminotransferase (AST) and alanine aminotransfer-

ase (ALT) activities were measured and the ratio AST/ALT

used as an indicator of liver damage was calculated. No

significant differences (F3, 22¼ 0.404, p¼ 0.75) were found

among the different groups. The ratios of AST/ALT activities

were: control: 1.02 ± 0.06, control + EtOH: 1.03 ± 0.08,

stress: 0.7 ± 0.05 and stress + EtOH: 0.9 ± 0.05 (n¼ 4).

Glutamate uptake by FC and hippocampal
synaptosemes

We measured Na+-dependent uptake of [3H]-L-glutamate by

FC and hippocampus synaptosomes (Figure 3). Time-course

experiments verified that glutamate uptake was essentially

linear up to 5 min at the respective incubation temperature

(30 �C). In all the cases, uptake reached a plateau by �10 min.

There was a significant increase in glutamate uptake in the

CPS groups: in hippocampus (at 2 min: F3,15¼ 16.17,

p¼ 0.001; at 3 min: F3,15¼ 10.81, p¼ 0.001; at 5 min:

F3,15¼ 7.27, p¼ 0.004 and at 10 min: F3,15¼ 5.25, p¼ 0.01)

and FC (at 10 min: F3,15¼ 5.68, p¼ 0.01 and at 30 min:

F3,15¼ 5.26, p¼ 0.02) as compared to the respective control

groups. We found a more pronounced increase in glutamate

uptake in hippocampus in the CPS groups (Figure 3).

The GLT-1-specific blocker, DHK (500 lM), inhibited

glutamate uptake by both the FC and hippocampal synapto-

somes (Figure 4). However, the percentage inhibition of GluT

in the hippocampal (but not FC) preparations was signifi-

cantly greater in the stressed groups than in the control groups

(F3,15¼ 7.53, p¼ 0.043).

Western-blot analysis of glutamate transporters in FC
and hippocampus

The Western blots revealed that the homogenates include

GLT-1, GLAST and EAAT-3 proteins (Figure 5A and B).

Single bands were seen in homogenates at 88, 69 and 61 kDa

for EAAT-3, GLT-1 and GLAST, respectively. The levels of

expression of both GLT-1 and EAAT-3 were decreased in the

hippocampus (F3,15¼ 30.92, p¼ 0.001; F3,15¼ 39.33,

p¼ 0.001) and FC (F3,15¼ 116.1, p¼ 0.0001; F3,15¼ 63.94,

p¼ 0.0001) in the CPS groups compared with their respective

control groups. In hippocampus, there was a more pronounced

decrease of GLT-1 in the group that consumed ethanol (27%

in stressed group versus 74% in stress-ethanol group with

respect to control group). Conversely, GLAST expression

increased in the hippocampus (F3,15¼ 117.5, p¼ 0.001) and

the FC (F3,15¼ 87.25, p¼ 0.001). In all the samples run, glial

fibrillary acidic protein (GFAP) was found and there were no

significant differences among the different groups (data not

shown). Hence the samples obtained from brain homogenates

contained a glial fraction and the amount was not modified by

treatment.

Discussion

The present results provide evidence that both ethanol intake

and activity and protein expression of GluTs in certain areas

of the rat brain are affected by CPS. The main findings of this

study are as follows: (1) CPS increased voluntary ethanol

intake, (2) CPS did not modify activity of hepatic transamin-

ases in plasma, and body weight increase was not affected by

treatment, (3) CPS increased glutamate uptake in FC and

hippocampal synaptosomes and (4) in the FC and hippocam-

pus, CPS reduced both GLT-1 and EAAT-3 protein expres-

sion, and increased GLAST protein level.

The finding that in our experimental model of early life

stress voluntary alcohol intake was increased in adolescent/

adult male rats, establishes an experimental protocol

to study early environmental influence on behavior and

Figure 2. Ethanol intake. (A) Voluntary
ethanol expressed in grams of ethanol
(EtOH) consumed/kg body weight/day. (B)
Indicates volume of 6% ethanol intake per
cage (of three rats) per day. Values are the
mean ± SEM for seven cages. t-test,
****p50.0001, ***p50.01.

4 M. M. Odeon et al. Stress, Early Online: 1–8
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neurochemistry. Also, body weight gain was not affected by

treatments, thus indicating that CPS in this model did not

reduce food intake and growth, while the rats otherwise

appeared healthy (Niemelä & Alatalo, 2010).

As CPS did not modify circulating levels of hepatic

transaminases, this argues against the possibility that alcohol

intake might have a toxic effect which would be evidenced by

hepatic injury. Transaminase levels are reliable markers of

hepatocellular necrosis. Alcohol abuse is but one of many

causes of increased plasma transaminase levels (Giannini

et al., 2005). In the present type of experiment, we did not

find changes in levels of transaminases (Nyblom et al., 2004).

Figure 3. Time course of [3H]-L-glutamate
uptake in fresh synaptosome-enriched frac-
tions of frontal cortex (FC) and hippocampus
(Hic). Samples were incubated with [3H]-L-
glutamate at 10 nmol/l substrate concentra-
tions, for 1–30 min. Values are the
mean ± SEM (n¼ 5–6 rats per group), all the
experiments were done in triplicate. Control,
no postnatal stress; stress, chronic postnatal
stress; dex, water and 1% dextrose to drink;
EtOH, water and 6% ethanol to drink.
Two-way ANOVA with repeated measures,
*p50.05, **p50.01, ***p50.001.

Figure 4. Effect of glial glutamate transporter-1 (GLT-1) inhibitor dihydrokainate (DHK, 500 mM) on 5 min [3H]-L-glutamate uptake. Fresh
synaptosome-enriched fractions from frontal cortex (FC) and hippocampus (Hic). Values are the percentage of inhibition, calculated as the difference in
uptake with and without inhibitor (n¼ 5–6 rats per group) all the experiments were done in triplicate. Values are mean + SEM. Two-way ANOVA and
main effects, *p50.05.

DOI: 10.3109/10253890.2015.1041909 Alcohol, stress and brain glutamate 5
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AST is a cytosolic enzyme found in high concentrations in

the liver, which is relatively specific for this organ.

However, hepatocellular injury and cell death do not

necessarily trigger the release of these enzymes into the

circulation. ALT is less specific and less sensitive as an

indicator of liver damage.

A number of animal models have been developed that

make it possible not only to observe the effects of specific

social circumstances on alcohol intake (McBride & Li, 1998)

but also to evaluate the involvement of particular neural or

genetic factors (Anacker & Ryabinin, 2010). Wistar rats are

commonly used in studies of alcohol drinking and, in

Figure 5. Western-blot analysis for glutamate
transporter proteins. Measurements were
made on glutamate aspartate transporter
(GLAST; MW �66 kDa), glial glutamate
transporter-1 (GLT1; MW �52 kDa) and
excitatory amino-acid transporter-3 (EAAT3;
MW �57 kDa) in homogenates of frontal
cortex, FC (A) and hippocampus, Hic (B).
Band densities were quantified and are shown
as a bar chart (OD: optical density). The
expression level corresponds to the number of
black pixels of each band counted using
Image J. Actin (MW �42 kDa) served as a
loading control. Glial fibrillary acidic protein
(GFAP; MW �49 kDa) served as a glial
marker. Blots are representative of three
experimental groups for each blot. Control
(C), no postnatal stress; stress (S), chronic
postnatal stress; dex, water and 1% dextrose
to drink; EtOH, water and 6% ethanol to
drink. The FC and hippocampus from each
rat was run separately. Data are mean ± SEM
(n¼ 5 rats per group). Two-way ANOVA and
main effects, *p50.05, **p50.01.

6 M. M. Odeon et al. Stress, Early Online: 1–8
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appropriate circumstances; they exhibit high ethanol prefer-

ence and intake (Simms et al., 2008). These rats may be

referred to as a standard, outbred strain of rats and their

alcohol preference is within the range observed in other

outbred rodent strains. A study in Fawn-Hooded rats by

Lodge & Lawrence (2003) demonstrated that activation of the

HPA axis was important for the observed ethanol preference

in stressed rats. The early postnatal period and the bond

between mother and infant seem essential in the development

and shaping of normal stress responses and emotional

behavior (Ellenbroek & Cools, 2000; Pryce et al., 2005;

Robinson, 1998). In our experiments, we found that control

groups exposed to CPS and offered voluntary dextrose in a

two-bottle choice procedure did not show altered dextrose

consumption. Studies using other models of early life stress

similarly indicate that these models selectively increase

ethanol intake without altering the consumption of sweetened

solutions (McCool & Chappell, 2009).

Social isolation has been used extensively as an animal

model to investigate the impact of early life social deficits on

brain and behavior. There is a critical period during which

social isolation has the most profound and often irreversible

effects. Emerging evidence indicates that many aspects of

alcohol and drug dependence involve changes in glutamate

transmission. A number of studies have reported that drugs of

abuse, including alcohol and cocaine (Chappell et al., 2013),

alter GluT (Rao & Sari, 2012). Smith & Navratilova (1999)

found that the effects of ethanol on glutamate transport may

be mediated in part, by the level of Ca2+/calmodulin kinase

activity in astrocytes. Similarly, Othman et al. (2002)

indicated that in rat cortical astrocytes in vitro ethanol affects

[3H]-L-glutamate uptake by affecting protein kinase C (PKC)

modulation of transporter activity.

We also found changes following CPS in the glutamatergic

system. These could be an effect of glucocorticoid. It is

known that this hormone may regulate GluT expression

(Danbolt, 2001) and ethanol intake (Costin et al., 2013). The

net effect is observed in the increased glutamate uptake,

however protein levels of the main transporters, both glial

(GLT-1) and the neuronal (EAAT-3) transporters, were

decreased. Importantly, the third transporter that was

analyzed, GLAST, which is present in glia (Balcar, 2002),

located in both the FC and hippocampus, showed increased

protein expression levels after the CPS treatment. It might be

that the decreased expression of the major uptake proteins for

glutamate and the possible excitotoxic consequence could

trigger a compensatory mechanism through the increase in

GLAST that was seen. There is extensive evidence for a

differential regulation of the expression of GLT-1 and GLAST

(Danbolt, 2001; Gegelashvili et al., 2000; Schlag et al.,

1998). Inhibitors of GluTs are a crucial tool for elucidating

the physiological roles of these transporters in detail. It would

also be important to work with specific inhibitors of GluT-

mediated uptake in order to better understand the functioning

of the system and the effects of treatment. We made

experiments with the compound DHK, a selective inhibitor

of GLT-1 (Arriza et al., 1994; Bernardinelli & Chatton,

2008) and saw a significant diminution of glutamate uptake in

synaptosomes from both the FC and hippocampus. Notably,

the percentage inhibition of uptake when GLT-1 was blocked

was reduced in the CPS groups. This leads us to infer that the

proportion of re-uptake of glutamate by GLT-1 was lower in

the CPS-treated groups. Thus, it is possible that the role of

GLAST in these rats was greater than in controls in

accordance with the increment in GLAST protein expression

levels. Thus, the decrease in the percentage inhibition by

DHK could explain the increase in uptake, despite the

decrease in GLT-1 and EAAT-3 protein expression. GLT-1

and GLAST are often described as the glial-specific GluT,

while GLT-1 accounts for 490% of the total glutamate

uptake, and it is an essential contributor to GluT homeostatic

roles, as well as EAAT-3 that has been found predominantly

in neurons.

In summary, we found that CPS induced a decrement in

GLT-1 and EAAT-3 protein expression levels in the FC and

hippocampus. The changes in the glutamatergic system

include a greater role for GLAST in total glutamate uptake

with a significant increase in GLAST protein expression

levels, leading to increased glutamate uptake, as seen, and

preventing enhanced extracellular glutamate levels. The

finding that CPS altered glutamate regulation in the FC and

hippocampus and increased voluntary alcohol intake indicates

a possible role for altered glutamate regulation in the causal

relationship between early life stress and drug abuse (Pautassi

et al., 2010; Sommer & Saavedra, 2008). This requires

testing in further studies.
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