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a b s t r a c t

In this paper we present a method for estimating unknown parameters that appear on
an avascular, spheric tumor growth model. The model for the tumor is based on nutrient
driven growth of a continuumof live cells, whose birth and death generate volume changes
described by a velocity field. The model consists of a coupled system of partial differential
equations whose spatial domain is the tumor, that changes in size over time. Thus, the
situation can be formulated as a free boundary problem. After solving the direct problem
properly, we use the model for the estimation of parameters by fitting the numerical solu-
tion with real data, obtained via in vitro experiments and medical imaging. We define an
appropriate functional to compare both the real data and the numerical solution. We use
the adjoint method for the minimization of this functional.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The interest in research for modeling cancer has grown enormously over the last years, for example [1,2] which focus
on computational methods for simulations, and [3–5] which show how the properties of biological tissues evolve in time. It
has become one of themost challenging topics involving appliedmathematicians workingwith researchers in the biological
sciences. One of the main motivations is the fact that, according to the World Health Organization, about six million people
die annually because of cancer, the second main fatal disease in industrialized countries.

Key comments on the importance of mathematical modeling on cancer can be found in a vast array of literature. For
example, in the work by Bellomo et al. [5], they emphasize the fact that ‘‘applied mathematics may be able to provide a
framework in which experimental results can be interpreted, and a quantitative analysis of external actions to control neo-
plastic growth can be developed’’. Moreover, ‘‘models and simulations can reduce the amount of experimentation necessary
for drug and therapy development’’.

Some developments in the last years include, among many others, cell-focused [6], hybrid [7,8] and continuum models
[9], each of them with some specific fields of applications.

In this paper we consider the case of avascular multicellular spheroids (MCS). Pioneers in this subject have been, for ex-
ample [10,11], where the first spatio-temporal models of MCS’ growth have been developed. The study of MCS is interesting
because they provide the best insight into the effects of varying nutrient concentrations or the effectiveness of chemother-
apeutic drugs on tumors in vivo, and their behavior can be studied experimentally (in vitro) by controlling environmental
conditions in which they grow: for example, the radii of the tumor can be monitored while changing the chemotherapeutic
drug or oxygen levels.
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In addition, other variables can be measured. If possible, experimentalists can get information about the distribution of
substances within the tumor. Moreover, via medical imaging, histopathology and potentially other sources, they can also
get data about the density of the different kind of cells conforming it: proliferating, quiescent, necrotic. For instance, as
documented in [12] the Boron Neutron Capture Therapy (BNCT) technique gives information about the evolution in size of
a melanoma, and in [13], they obtain information about the growth of a glioma via Magnetic Resonance Imaging (MRI).

That is why in this general approach of modeling, the key variables are the tumor size (radius), the concentration within
the tumor of growth-rate limiting diffusible chemicals (nutrients such as oxygen or glucose or a chemotherapeutic drug)
and the density of cells. Since the tumor changes in size over time, the domain on which the models are formulated must
be determined as a part of the solution process, giving a vast class of moving boundary problems [14,15].

In this article, we propose a framework for estimating unknownparameters via a PDE-constrained optimization problem,
following the PDE-basedmodel byWard and King [16], which is a two phase model with the two phases being live cells and
dead cells. This model is, to our knowledge, the first one in which the spatial structure of avascular tumors does not assume
distinct cell layers and one of its main advantages is that it accurately reproduces the early stages of a spheroid’s growth in
a quite simple way. However, it is worth stressing that some extensions have been done [17–19] and many improvements
can be considered from a biological point of view (for instance, vascularization and symmetry breaking).

This kind of problem constitutes a particular application of the so-called inverse problems, which are being increasingly
used in a broad number of fields in applied sciences. For example, problems referred to structured population dynamics [20],
computerized tomography and image reconstruction in medical imaging [21,22], and more specifically tumor growth
[23,13], among many others.

In a previous work [24, unpublished work] the authors solved an inverse problem using a Pattern Search algorithm to
obtain the efficiency of a drug. In this paper we are concerned with developing a robust PDE-constrained formulation that
let us find the best set of parameters of a tumor growth model that fits patient or experimental data. We want to find the
parameters that would be of interest by defining a functional to be minimized. In contrast to the previous work, in which
we used a free-derivative method, we now use the adjoint method in order to find the derivative of the functional to be
minimized. Since Pattern Search methods require a number of functional evaluations that grows with the number of pa-
rameters to be retrieved, they are not convenient for a multidimensional parameter space. That is the reason why we prefer
a gradient-based method.

The contents of this paper, which is organized into 7 sections, are as follows: Section 2 consists of some preliminaries
about the model and the definition of the direct problem. Section 3 deals with the motivation and formulation of the mini-
mization problem. Section 4 introduces the adjoint problem, deriving the optimality conditions for the problem. Specifically,
we show how the adjoint method may be used to find the derivative of the solution of a PDE with respect to a parameter
that does not appear explicitly in the equation. Section 5 refers to the resolution of the adjoint and reduced problems. In
particular, we develop amethod to dealwith some singularities in the PDEs, and it dealswith theminimizationmethod to be
used. In Section 6 we show some numerical simulations to give information on the behavior of the functional and its depen-
dence on the parameters. Section 7 presents the conclusions and introduces some future work related to the contents of this
paper.

Some words about our notation. We use ⟨·, ·⟩ to denote the L2 inner product (the space is always clear from the con-
text) and we consider the sum of inner products for a Cartesian product of spaces. For a function F : Y × U → Z such
that (φ, p) → F(φ, p), we denote by F ′(φ, p) the full Fréchet-derivative and by ∂F

∂φ
(φ, p) and ∂F

∂p (φ, p) the partial Fréchet-
derivatives of F at (φ, p). For a linear operator T : Y → Z we denote T ∗

: Z∗
→ Y∗ the adjoint operator of T . If T is

invertible, we call T−∗ the inverse of the adjoint operator T ∗.

2. Some preliminaries about the model

We consider the model proposed in [16] where the resolution of a coupled system of spatio-temporal PDEs involving
initial and boundary conditions is discussed, with the additional difficulty that the boundary is also an unknown. In that
work the tumor is considered to be a spheroid consisting of a continuum of living cells, in one of two states: live or dead.
The rates of birth and death depend on the nutrient. It is supposed that those processes generate volume changes, leading
to cell movement described by a velocity field. Under this assumption, the system of equations to be studied is:

∂η

∂t
+

1
r2

∂(r2νη)

∂r
= [km(ς, θ) − kd(ς, θ)]η, (1)

∂ς

∂t
+

1
r2

∂(r2νς)

∂r
=

D
r2

∂

∂r


r2

∂ς

∂r


− βkm(ς, θ)η, (2)

1
r2

∂(r2ν)

∂r
= [VLkm(ς, θ) − (VL − VD)kd(ς, θ)]η, (3)

where the dependent variables η, ς and ν are the live cell density (cells/unit volume), nutrient concentration and velocity,
respectively. The independent variables are the radial position r inside the tumor and time t . Constants VL and VD correspond
to the volume of a living and a death cell, respectively. The number D is the diffusion coefficient of the nutrient and β is a



1106 D.A. Knopoff et al. / Computers and Mathematics with Applications 66 (2013) 1104–1119

positive constant related to the nutrient’s consumption rate. As it is described in [16], Eq. (1) states that the rate of change of
η is dependent on the difference between the birth km(ς, θ) and death kd(ς, θ) rates (θ is a vector of parameters associated
to these functions). The functions km and kd are taken to be generalized Michaelis–Menten kinetics with exponent 1, i.e.,

km(ς, θ) = A


ς

ςc + ς


, (4)

kd(ς, θ) = B

1 − σ

ς

ςd + ς


, (5)

with θ = [A, B, ςc, ςd, σ ]
T where A and B are the maximum birth and death rates theoretically attainable when ς tends to

infinity and ς = 0 respectively, the constants ςc and ςd are the standard half-saturation concentrations in the Michaelis–
Menten terms, and B(1−σ) is theminimum death rate attainable when the concentration tends to infinity with 0 ≤ σ ≤ 1.
As stated in the appendix of [16], there appears to be no appropriate data available on the parameters ςd and σ , constituting
one extra motivation for this work.

Inherent in this problem are two timescales: the tumor growth timescale (≈1 day) and the much shorter nutrient diffu-
sion (≈1 min), letting us to adopt a quasisteady assumption in the nutrient equation (see [16]). Therefore, we replace (2) by
the quasisteady approximation

1
r2

∂

∂r


r2

∂ς

∂r


=

β

D
km(ς, θ)η. (6)

As it was mentioned in [25], the model proposed byWard and King [16] has made significant contributions on avascular
tumor growth. One of the advantages of this model is that it does not appeal to the theory of porous media and the theory
of mixtures, and it uses a generalized Michaelis–Menten form for the rate constants for cell proliferation and death.

2.1. Initial and boundary conditions

As it has been mentioned, the tumor is assumed to be a spheroid that exhibits radial symmetry. That is why, not only
are the state variables η, ς and ν important, but also the tumor radius is a key variable to be determined. Since the tumor
changes in size over time, the domain on which the model is formulated (and the PDEs are valid) must be determined as
part of the solution.

Let S(t) be the tumor radius at time t . At t = 0 we will consider the tumor at a certain stage of its evolution. Hence the
initial conditions are a known radius S(0) and an initial live cell density

η(r, 0) = ηI(r).

Because symmetry is assumed about the tumor center, there is no flux there. That is why the boundary conditions at r = 0
are:

∂ς

∂r
(0, t) = 0, (7)

ν(0, t) = 0. (8)

Moreover, on the external boundary (which is also the boundary of the complement of the tumor as a subset of the body),
the following conditions are taken:

ς(S(t), t) = c0, (9)
dS
dt

= ν(S(t), t), (10)

where c0 is the external nutrient concentration.

2.2. Nondimensionalization and fixed domain method

Following the ideas exposed in [26,27,14,16,17], the mathematical model is rescaled and the domain [0, S(t)] of the
tumor is transformed onto the interval [0, 1]. This is a very useful approach when dealing with free-boundary problems, as
mentioned in [15]. Hence, let us define the following functions

N(y, t) = VLη(yS(t/A), t/A),

C(y, t) =
1
c0

ς(yS(t/A), t/A),

V (y, t) =
1
Ar0

ν(yS(t/A), t/A),
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S(t) =
1
r0

S(t/A),

a(c, ϑ) =
1
A
[km(c, ϑ) − kd(c, ϑ)],

b(c, ϑ) =
1
A
[km(c, ϑ) − (1 − δ)kd(c, ϑ)],

k(c, ϑ) = βkm(c, ϑ),

where r0 = (3VL/4π)1/3 is the radius of a single cell, δ = VD/VL,β = r20β/(VLc0D) and ϑ = [A, B, cc, cd, σ ] with cc = ςc/c0
and cd = ςd/c0. Thus, we obtain the following system to be solved:

Nt −
S ′

S
yNy +

V
S
Ny = N[a(C, ϑ) − b(C, ϑ)N], 0 < y ≤ 1, t > 0, (11)

Cyy +
2
y
Cy = k(C, ϑ)S2N, 0 < y ≤ 1, t > 0, (12)

Vy +
2
y
V = b(C, ϑ)NS, 0 < y ≤ 1, t > 0. (13)

The initial conditions for the transformed problem are:

N(y, 0) = NI(y), 0 ≤ y ≤ 1, (14)
S(0) = SI , (15)

where NI(y) = VLηI(yS(0), 0) and SI = S(0)/r0, and the boundary conditions are:

V (0, t) = 0, t > 0, (16)
Cy(0, t) = 0, t > 0, (17)

C(1, t) = 1, t > 0, (18)

S ′(t) = V (1, t), t > 0. (19)

From now on, Eqs. (11)–(19) will be referred to as the direct problem.

3. Formulation of the minimization problem

As described above, there is a set of parameters (some of them unknown) that determines the behavior of a tumor’s
growth. For this reason we propose to use an inverse problem technique in order to estimate them.

We define the following vectors:

φ = [N, V , C, S]T , (20)

p = [cc, cd, σ ]
T , (21)

where φ represents the solution of the direct problem (the components of φ are the state variables of the problem) for each
choice of the vector of parameters ϑ = (A, B, p), where A and B are assumed to be constants. Hence from now on, we will
use just p instead of ϑ as the vector of parameters.

Let us assume that experimental information is available during the time interval 0 ≤ t ≤ T . Then, the general problem
we are interested in solving can be formulated as:

Find a parameter p able to generate data φ = [N, C, V , S]T that best match the available (experimental)
information over time 0 ≤ t ≤ T .

For this purpose, we should construct an objective function which gives us a notion of distance between the experimental
(real) data and the solution of the system of PDEs for each choice of parameters p.

First of all, it is important to decidewhich variables aremeasurable experimentally. For instance, it is clear that the tumor
radius can be known at certain times tk, k = 1, . . . ,M via MRI, PET (Positron Emission Tomography) or CT (Computed
Tomography). For example, Fig. 1 is a microscopic field that shows the formation in vitro of neoplastic colonies which grow
as spheroids with an external nutrient supply. Such experiments could help to determine optimal variables and parameters
in order to control real tumor growth.

So, the first possibility for defining a functional could be:

J(S, p) =
1
2

 T

0
[S(t) − S∗(t)]2dt,
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Fig. 1. Microscopic image of neoplastic colonies that grow with an external nutrient supply. Courtesy of CNEA (Comisión Nacional de Energía Atómica).

where S(t) is the radius evolution obtained by solving the direct problem for a certain choice of p and S∗(t) =
1
r0

S∗(t/A) is
the evolution measured experimentally (real data).

Another variable that could be measured is the density of living cells, also via biomedical imaging. As it was mentioned
before, this could be done via PET technique for a tumor in vivo, or via immunofluorescence and electronic scan microscopy
technique for in vitro cases [28,29]. Thus, we are motivated to define a functional that reproduces in a better way the
knowledge we have about the process.

For instance, in [30], the mean size of a spheroid population was determined bymeasuring two orthogonal diameters on
spheroids using an inverted microscope fitted with a calibrated eyepiece reticule; in [31,32] a special procedure was used
with digital microscope photos to evaluate tumor growth; in [33] spheroids were photographed in an inverted phase con-
trast microscopewhile amicrometer scale was photographed at the samemagnification, and spheroid size was determined.

J(N, S, p) =
µ1

2

 1

0

 T

0
[N(y, t) − N∗(y, t)]2dtdy +

µ2

2

 T

0
[S(t) − S∗(t)]2dt, (22)

where N(y, t) and N∗(y, t) are the living cell concentrations for the direct problem solved with the parameters p and the
real data, respectively (both of them in the domain [0, 1] × [0, T ]). The positive constants µ1 and µ2 are introduced, as we
shall see, to take into account the different order of magnitude between N and S. Note that, for instance, if we take µ1 = 0
and µ2 = 1 in (22) we get the previous functional. In this way, these two parameters will give us some flexibility in order
to choose an appropriate functional according to the experimental method used to obtain the data.

It should be noted that the spatial integration is done over the interval [0, 1], because we are using the solution in the
fixed domain.

Let us define

E (φ, p) =



Nt − Ny
S ′

S
y +

V
S
Ny − N (a(C, p) − b(C, p)N)

Vy +
2
y
V − b(C, p)NS

Cyy +
2
y
Cy − k(C, p)NS2

V (1, ·) − S ′

V (0, ·)
C(1, ·) − 1
Cy(0, ·)

N(·, 0) − NI
S(0) − SI


. (23)

In this way we can rewrite the system of PDEs (11)–(19) described in the previous section as E(φ, p) = 0.
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The set of parameters that best matches the experimental data with the generated data provided by the direct problem
can be computed solving a PDE-constrained optimization problem, namely:

minimize
p

J(φ, p)

subject to E(φ, p) = 0,
p ∈ Uad,

(24)

where Uad denotes the set of admissible values of p. In our case, according to (21), Uad should be a subset of R3. Notice that
a solution (φ, p) must satisfy the constraints E(φ, p) = 0, which constitute the direct problem.

We remark that, in general, there is a fundamental difference between the direct and the inverse problems. In fact, the
latter is usually ill-posed in the sense of existence, uniqueness and stability of the solution. This inconvenience is often
treated by using some regularization techniques [21,34,35], but in our case it was not necessary.

4. The adjoint problem

4.1. Formulation of the reduced and adjoint problems

In the following, we will consider a generic optimization problem, which has the form:

minimize
p

J(φ, p)

subject to E(φ, p) = 0,
p ∈ Uad,

(25)

where J : Y × Uad → R is an objective function and E : Y × Uad → Z is a state equation, for Y and Z Banach spaces and
Uad is a set of admissible points.

For completeness, in this section we will present a general theory in order to solve problem (25). According to the ideas
exposed in [36,37], we make the following assumptions:
(A1) Uad ∈ Rm is a nonempty, closed and convex set.
(A2) J : Y × Uad → R and E : Y × Uad → Z are continuously Fréchet-differentiable functions.
(A3) For each p ∈ Uad there exists a unique corresponding solution φ(p) ∈ Y such that E(φ(p), p) = 0. Thus, there is a

unique solution operator p ∈ Uad → φ(p) ∈ Y.
(A4) The derivative ∂E

∂φ
(φ(p), p) : Y → Z is a continuous linear operator, and it is continuously invertible for all p ∈ Uad.

Under these hypotheses φ(p) is continuously differentiable on p ∈ Uad by the implicit function theorem. Thus, it is
reasonable to define the following so-called reduced problem

minimize
p

J̃(p) = J(φ(p), p)

subject to p ∈ Uad,
(26)

where φ(p) is given as the solution of E(φ(p), p) = 0.
In order to find a minimum of the continuously differentiable function J̃ , it will be important to compute the derivative

of this reduced objective function. Hence, we will show a procedure to obtain J̃ ′ by using the adjoint approach. Since
J̃ ′(p), q


=


∂ J
∂φ

(φ(p), p), φ′(p)q

+


∂ J
∂p

(φ(p), p), q


=


φ′(p)

∗ ∂ J
∂φ

(φ(p), p) +
∂ J
∂p

(φ(p), p), q


we see that

J̃ ′(p) =

φ′(p)

∗ ∂ J
∂φ

(φ(p), p) +
∂ J
∂p

(φ(p), p). (27)

Let us consider λ ∈ Z∗ as the solution of the so-called adjoint problem:

∂ J
∂φ

(φ(p), p) +


∂E
∂φ

(φ(p), p)
∗

λ = 0 (28)

where


∂E
∂φ

(φ, p)
∗

is the adjoint operator of ∂E
∂φ

(φ, p). Note that each term in (28) is an element of the space Y∗.
An equation for the derivative φ′(p) is obtained by differentiating the equation E(φ(p), p) = 0 with respect to p:

∂E
∂φ

(φ(p), p)φ′(p) +
∂E
∂p

(φ(p), p) = 0, (29)

where 0 is the zero vector in Z.
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By using (27) we have that:

J̃ ′(p) =

φ′(p)

∗ ∂ J
∂φ

(φ(p), p) +
∂ J
∂p

(φ(p), p)

= −


∂E
∂p

(φ(p), p)
∗ 

∂E
∂φ

(φ(p), p)
−∗

∂ J
∂φ

(φ(p), p) +
∂ J
∂p

(φ(p), p)

=


∂E
∂p

(φ(p), p)
∗

λ +
∂ J
∂p

(φ(p), p),

where in the second equation we used (29) and for the last equation we used (28). Then:

J̃ ′(p) =
∂ J
∂p

(φ(p), p) +


∂E
∂p

(φ(p), p)
∗

λ. (30)

Notice that in order to obtain J̃ ′(p) we need first to compute φ(p) by solving the direct problem, followed by the calcu-
lation of λ by solving the adjoint problem. For computing the second term of (30) it is not necessary to obtain the adjoint of
∂E
∂p (φ(p), p) but just its action over λ.

4.2. Getting the adjoint equation for the concrete problem

For our case, let us define Ω = [0, 1] × [0, T ], the spatio-temporal domain of interest. Note that, according to (20), φ is
an element of a suitable vector space. Let us consider the function spaces

Y =

C1(Ω)

2
× C2(Ω) × C1([0, T ]),

Z =

C1(Ω)

2
× C2(Ω) ×


C1([0, T ])

4
× C([0, 1]) × R.

The spaces C1 and C2 inherit the inner product from L2, so the completeness of the spaces Y and Z are Hilbert spaces
(therefore we can identify Y∗ and Z∗ with Y and Z respectively). It is worth mentioning that we consider these vector
spaces because we look for strong solutions of the PDEs, i.e., we require differentiability of the state variables.

In order to obtain the adjoint operator of ∂E
∂φ

, we have to find


∂E
∂φ

∗

such that:
λ,

∂E
∂φ

g


=


∂E
∂φ

∗

λ, g

. (31)

Hence, we define the directions n, v, c , and s for the state variables N, V , C and S. Let g = [n, v, c, s]T , then

∂E
∂φ

(φ, p)g = lim
µ→0+

E(φ + µg, p) − E(φ, p)
µ

.

After some algebraics, it can be shown that ∂E
∂φ

(φ, p) g is given by:



nt +
V − yS ′

S
ny −

s′S − S ′s
S2

Nyy + Ny
vS − Vs

S2
− (a − bN)n − N


∂a
∂C

c −
∂b
∂C

Nc − bn


vy +
2
y
v −

∂b
∂C

NSc − bSn − bNs

cyy +
2
y
cy − kS2n −

∂k
∂C

NS2c − 2kNSs

v(1, ·) − s′

v(0, ·)
c(1, ·)
cy(0, ·)
n(·, 0)
s(0)


. (32)

Note that E(φ, p) and λ should have the same number of components. Also, each component of λ must be in a subspace
of the corresponding component of E. For example, the first three components of λ must depend on space and time, the
fourth one only on time, the last one is just a real number, and so on.

So we define:

λ(y, t) = [λ1(y, t), λ2(y, t), λ3(y, t), λ4(t), λ5(t), λ6(t), λ7(t), λ8(y), λ9]
T . (33)
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An inspection over Eqs. (31) and (32) shows that, roughly speaking, we should remove the spatial and temporal deriva-
tives from g and pass them to λ. To achieve this goal, we shall obtain equivalent expressions for each of the nine terms of
the summation ⟨

∂E
∂φ

g, λ⟩. Denoting as ∂Ei
∂φ

the i-th component of (32), we have the following equivalences:

Constraint 1. Using integration by parts repeatedly and the facts that V (1, t) = S ′(t) and V (0, t) = 0, it yields
Ω

∂E1
∂φ

λ1dtdy =


Ω


−λ1t −


V − yS ′

S


λ1y −


Vy − S ′

S
+ a − 2bN


λ1


n dtdy

+


Ω

Ny

S
λ1v dtdy −


Ω

N


∂a
∂C

−
∂b
∂C

N


λ1c dtdy

+


Ω


yNyt

S
λ1 +

yNy

S
λ1t −

NyV
S2

λ1


s dtdy

+

 1

0
(λ1(y, T )n(y, T ) − λ1(y, 0)n(y, 0)) dy

+ s(0)
 1

0

yNy(y, 0)λ1(y, 0)
S(0)

dy − s(T )

 1

0

yNy(y, T )λ1(y, T )

S(T )
dy. (34)

Constraint 2. In this case we have to integrate by parts just in the first term, because it is the only one that has a derivative
of g , in this case vy. So we obtain that the second term in the inner product is

Ω

∂E2
∂φ

λ2dtdy =


Ω


−λ2y +

2
y
λ2


v −

∂b
∂C

NSλ2c − bSλ2n − bNλ2s

dtdy

+

 T

0
(λ2(1, t)v(1, t) − λ2(0, t)v(0, t)) dt. (35)

Constraint 3. Because of the presence of second order derivatives we integrate by parts twice. In order to perform the calcu-
lations, we assume that λ3(y, t)c(y, t) → 0 when y → 0. Applying l’Hôpital’s rule, we get

Ω

∂E3
∂φ

λ3dtdy =


Ω


λ3yy −

2
y
λ3y +


2
y2

−
∂k
∂C

NS2


λ3


c − kS2λ3n + 2kNSλ3s


dtdy

+

 T

0


2λ3(1, t)c(1, t) + λ3(1, t)cy(1, t) − λ3y(1, t)c(1, t)


dt

−

 T

0


3λ3(0, t)cy(0, t) + λ3y(0, t)c(0, t)


dt. (36)

Constraint 4. Since there is just one derivative of g involved in the corresponding term, we integrate by parts obtaining T

0

∂E4
∂φ

λ4dt =

 T

0
[λ4(t)v(1, t) + λ4t(t)s(t)] dt − λ4(T )s(T ) + λ4(0)s(0). (37)

Constraint 5. Because this term is free of derivatives, there is nothing to do with it, remaining: T

0

∂E5
∂φ

λ5dt =

 T

0
λ5(t)v(0, t)dt. (38)

Constraint 6. In this case, again, the corresponding term in the inner product remains: T

0

∂E6
∂φ

λ6dt =

 T

0
λ6(t)c(1, t)dt. (39)

Constraint 7. Even though this term has the derivative cy, it remains unchanged because function λ7 depends only on time: T

0

∂E7
∂φ

λ7dt =

 T

0
λ7(t)cy(0, t)dt. (40)

Constraint 8. Once more, because of the lack of derivatives the term remains unchanged: 1

0

∂E8
∂φ

λ8dy =

 1

0
λ8(y)n(y, 0)dy. (41)

Constraint 9. In this case, the term is just the product of two real numbers:

∂E9
∂φ

λ9 = λ9s(0). (42)
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Obtaining the adjoint equations. On the other hand, by (22) we have that

∂ J
∂φ

g = µ1


Ω

[N(y, t) − N∗(y, t)]n(y, t)dtdy + µ2

 T

0
[S(t) − S∗(t)]s(t)dt. (43)

Recall that we have to find λ satisfying Eq. (28) which is equivalent to

0 =


∂ J
∂φ

+


∂E
∂φ

∗

λ, g


=


∂ J
∂φ

, g

+


λ,

∂E
∂φ

g

,

for any direction g ∈ Y.
So, putting together Eqs. (43) with (34)–(42) and choosing the directions conveniently, we get the following system of

equations which constitutes the adjoint problem:

−λ1t −


V − yS ′

S


λ1y −


Vy − S ′

S
+ a − 2bN


λ1 − bSλ2 − kS2λ3 = µ1(N∗

− N), (44)

λ2y −
2
y
λ2 −

Ny

S
λ1 = 0, (45)

λ3yy −
2
y
λ3y +


2
y2

−
∂k
∂C

NS2


λ3 −
∂b
∂C

NSλ2 − N


∂a
∂C

−
∂b
∂C

N


λ1 = 0, (46)

λ1(y, T ) = 0, (47)
λ2(1, t) = −λ4(t), (48)
λ3y(0, t) = 0, (49)

λ3(1, t) = 0, (50)

λ4t(t) =

 1

0


NyV
S2

λ1 −
y
S

∂

∂t
(Nyλ1) + bNλ2 + 2kNSλ3


dy + µ2(S∗(t) − S(t)), (51)

λ4(T ) = −

 1

0

Ny(y, T )λ1(y, T )

S(T )
ydy, (52)

λ5(t) = λ2(0, t),
λ6(t) = λ3y(1, t) − 2λ3(1, t),
λ7(t) = 3λ3(0, t),
λ8(y) = λ1(y, 0),

λ9 = −

 1

0

yNy(y, 0)λ1(y, 0)
S(0)

dy − λ4(0).

The above equations shall be solved in order to get λ. Notice that the adjoint equations are posed backwards in time,
with a final condition at t = T , while the state equations are posed forward in time, with an initial condition at t = 0.

Now, we can obtain an expression for J̃ ′(p) by using (30). Since ∂ J
∂p (φ, p) = 0 and


∂E
∂p (φ, p)

∗

λ ∈ R3, we obtain the
following expressions

∂ J̃
∂cc

(p) =


Ω


C

(C + cc)2
N(1 − N)λ1 +

C
(C + cc)2

NSλ2 +

βC
(C + cc)2

NS2λ3


dtdy,

∂ J̃
∂cd

(p) =


Ω


σBC

A(C + cd)2
N(1 − (1 − δ)N)λ1 +

σBC
A(C + cd)2

(1 − δ)NSλ2


dtdy,

∂ J̃
∂σ

(p) =


Ω


BC

A(C + cd)
N((1 − δ)N − 1)λ1 −

BC
A(C + cd)

(1 − δ)NSλ2


dtdy.

5. Resolution of the adjoint and reduced problems

5.1. Designing an algorithm to solve the adjoint problem

It isworth stressing that obtainingmodel parameters viaminimization of the objective function J̃ is in general an iterative
process requiring the value of the derivative. To compute J̃ ′ we just solve two systems of PDEs per iteration: the direct and
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Fig. 2. Evolution of the tumor radius in time.

Fig. 3. Live-cell density within the tumor for two different times. Blue (upper) line corresponds to t = 0 and red (bottom) line corresponds to t = 2.5.
Note that from t = 0 to t = 2.5 the tumor has also grown in size. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the adjoint problems. This method is much cheaper than the sensitivity approach [37] in which the direct problem is solved
many times per iteration.We developed an implementation in Fortran 2003 using an object-oriented strategy (with Fortran
Intel Compiler 12.0.3). In order to solve the adjoint problem we need to solve first the direct problem. Fig. 2 shows the
evolution of the tumor radius in time, and Fig. 3 represents the living cell density within the tumor for two different times.

Although the adjoint problem is quite similar to the direct one, its resolution involvesmore difficulties. For example, there
is no explicit boundary condition for λ2. In our particular case, it is not necessary to compute {λi}

9
i=4 in order to calculate

the derivative of J̃ with respect to p, because {Ei}9i=4 does not depend on the parameters p (see Eqs. (23) and (30)). However,
λ4 is required since it gives us the boundary condition for λ2 (see Eq. (48)). Notice that an explicit expression for λ4 can be
obtained from Eq. (51).

To design a numerical procedure we perform the following steps at time T :

– Eq. (47) states that λ1(·, T ) = 0.
– By Eq. (52) we have that λ4(T ) = 0, which gives us a boundary condition for λ2 (see Eq. (48)).
– Eq. (45) can be solved analytically getting λ2(·, T ) = 0.
– Eqs. (46), (49) and (50) allows us to obtain λ3(·, T ).

Knowing the solution at time t , we obtain the solution at time t − 1t in the following way:

– By Eq. (44) we first obtain λ1t(·, t). Then we get λ1(·, t − 1t) using a backward finite difference.
– Using Eq. (51), we integrate numerically to obtain λ4t(t) and then we get λ4(t − 1t) by means of backward finite

differences.
– With the value of λ4(t − 1t) we obtain λ2(1, t − 1t) via Eq. (48).
– Eq. (45) can be solved numerically to get λ2(·, t − 1t).
– Solving Eqs. (46), (49) and (50) we obtain λ3(·, t − 1t).

As well as in the direct problem, in the adjoint onewe have to be careful with the singularities in the PDEs. For example, if
we take a look at Eq. (46) together with the boundary conditions (49) and (50), for a fixed time t , we can ask ourselves about
the solvability of this problem around y = 0. However, there is a difference between the direct and the adjoint problems
regarding the kind of singularities that Eqs. (12) and (46) have in the origin.

The second term in (46), for instance, looks harmless because λ3y(0, t) = 0 by (49), so upon expanding λ3y by Taylor
about 0 and dividing by y, the singularity disappears. On the other hand, the problemwith the third term is harder, because
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we get a blowup in the origin. To solve this problem we transform Eqs. (46), (49) and (50) into a first order ODE for a fixed
time t , namely:

u
v

′

=

 v
2
y
v −


2
y2

− NS2
∂k
∂C


u −


N2 ∂b

∂C
− N

∂a
∂C


λ1 + NS

∂b
∂C

λ2

 , (53)

u(1) = 0, (54)
v(0) = 0, (55)

where u(y) = λ3(y, t) and v(y) = λ3y(y, t). Then, for a fixed ϵ > 0 we propose a parameter q = v(1), and solve the system
(53)–(55) in the interval [ϵ, 1]with boundary conditions u(1) = 0 and v(1) = q, obtaining a solution [uq, vq]

T . Using Taylor
expansions near y = 0 we extend these solutions to the whole interval [0, 1] (see [38]).

uq(0) ≈ uq(ϵ) − ϵu′

q(ϵ), (56)

vq(0) ≈ vq(ϵ) − ϵv′

q(ϵ). (57)

The next step is to define a function

F(q) = vq(0), (58)

and to find a root of F , i.e., to find q̂ such that F(q̂) = 0. Then, the solution of the system will be [uq̂, vq̂]
T extended to the

interval [0, 1].
To solve the first order ODE (45) for λ2(·, t)with boundary condition λ2(1, t) known from (48), we also solve the problem

in the interval [ϵ, 1] and then extend the solution to the interval [0, 1] using a first order Taylor expansion.
In general, the derivatives that appear in the adjoint system of PDEs are approximated using a finite difference scheme.

For example, in order to solve Eq. (44) we consider

λ1(y, t − 1t) ≈ λ1(y, t) − λ1t(y, t)1t,

and using (44) we get

λ1(y, t − 1t) ≈ λ1(y, t) + 1t
V (y, t) − yS ′(t)

S(t)
λ1y

+ 1t

Vy(y, t) − S ′(t)

S(t)
+ a(C(y, t)) − 2b(C(y, t))N(y, t)


λ1(y, t)

+ 1t

b(C(y, t))S(t)λ2(y, t) + k(C(y, t))S(t)2λ3(y, t) + µ1(N∗(y, t) − N(y, t))


.

Notice that we are now able to obtain the solution of the adjoint problem in terms of the solution of the direct problem
(the vector φ = [N, V , C, S]T ), i.e. the vector λ, and that will let us compute the derivative of the objective function, as we
show in the following subsection. This derivative must be used to design any gradient-based optimization method.

5.2. Optimization

It iswell-known [39] that gradient-based optimization algorithms require the evaluation of the gradient of the functional,
and besides that, nonheuristic optimization is based on gradient-related algorithms [40]. One important advantage of
evaluating the gradient through adjoints is that it requires to solve the adjoint problem only once per iteration, regardless
the number of inversion variables. Note that the derivative of the functional can be approximated by using finite differences,
but this is an expensive approach because it needs, for each optimization iteration, to solve the direct problem asmany times
as the number of inversion variables.

The method we will use for minimizing the functional J̃ can be summarized as follows:

Algorithm 5.1 (Adjoint-Based Minimization Method).

1. Give an initial guess p0 for the vector of parameters.
2. Given the vector pk in step k, solve the direct and adjoint problems at this step.
3. Obtain the derivative of the functional, i.e. J̃ ′(pk), using (30).
4. Move in the direction of −J̃ ′(pk), i.e., compute pk+1

= ΠUad


pk − α J̃ ′(pk)


, where α is a positive parameter to be chosen,

and ΠUad denotes the projection on the set of admissible points.
5. Stop when J̃


pk+1


is less than a tolerance TOL1 > 0, or when the distance between two consecutive iterations is less

than a tolerance TOL2 > 0, that is, ∥pk+1
− pk∥ < TOL2.
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Fig. 4. Functional value of J (22) in terms of cc and cd for constant σ = 0.9. Note that the surface reaches a minimum near cc = 0.1 and cd = 0.05.

6. Numerical experiments

The goal of this section is to test and evaluate the performance of an adjoint-based optimization method, by executing
some numerical simulations of Algorithm 5.1 for some test-cases.

We took a spatial grid consisting of 31 equidistant points 0 = y0 < · · · < y30 = 1, and a temporal grid tk consisting of
steps of length 0.01.

In order to performStep 2 of Algorithm5.1, for a given vector of parameters pk, we solve the direct problem from t = −4.5
up to t = T where T = 0.5. This means that the tumor is first detected at time t = 0, by which time it has grown following
the model [16]: originally, at an adimensional time t = −4.5, a single cell started to take nutrients from the environment,
letting it growup to a dimensionless size SI and a living cell densityNI . One example for the initial profileNI could be the blue
line in Fig. 3. After solving the direct problem, the adjoint problem is solved following the procedure explained in Section 5.1.

To compute the derivative of the functional J , Step 3 of Algorithm 5.1, we use Eq. (30). To work with functional (22), it is
necessary to have the measurements at each tk (by interpolating if necessary). For simplicity, we approximate the integral
by a quadrature using the spatial and temporal grids (yl, tk). The factors µ1 and µ2 are taken to be 100 and 1 respectively
(to scale the two terms in (22)), and the parameter α used in the projection over the admissible set is taken to be 0.1.

6.1. Model-generated data

Consider first an optimization problem that consists in minimizing the functional (22), where N∗(y, t) and S∗(t) are
generated by solving the direct problem, for a choice of the model parameters cc = 0.1, cd = 0.05, σ = 0.9 as suggested
in [16].

Fig. 4 shows the value that the functional (22) takes for different values of cc and cd, remaining σ as a constant equal to
0.9. It is worth mentioning that J looks convex and that the variations are greater with respect to cc compared to those with
respect to cd.

The idea of this test case is to investigate how close the original value of the parameter can be retrieved. However, it
is not a trivial one, because we cannot prove analytically if the optimization problem has a solution or, in that case, if it is
unique or if the method converges to another local minima.

We emphasize that we have run the algorithm several times using different initial points and in all cases the results had
relative errors of the same order. They can be summarized as:

– Stopping criteria: TOL1 = 10−6 or TOL2 = 10−6

– Iterations/elapsed time: 140 iterations in 12.7 min
– Initial point: p0 = [0.16, 0.03, 1.0]
– Final point: pf = [0.1006492, 0.084465653, 0.9297853]
– Functional final value: J(pf ) = 0.991496220 × 10−6
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Fig. 5. Evolution of the functional value of J (22) with the number of iterations.

Fig. 6. Evolution of the cc and σ values with the number of iterations (solid lines) and real values of cc and σ (dashed lines).

– Relative error of the initial point: 60% for cc , 40% for cd, 11.11% for σ ,
– Relative error of the final point: 0.6492% for cc , 68.9313% for cd, 3.3095% for σ .

Fig. 5 represents the evolution in the value of J with the number of iterations. Fig. 6 shows the evolution of cc and σ
respectively, and the real value of this parameters. Due to the flatness of the functional J with respect to cd, the relative error
at the final point has the same magnitude of the relative error at the initial point. Thus, we have not included the evolution
of cd in Fig. 6.

The Algorithm 5.1 stops because the functional reaches values less than TOL1.

6.2. Model-generated data with Gaussian random noise

It is well known that the presence of noise in the data may imply the appearance of strong numerical instabilities in the
solution of an inverse problem [41].

The outputs of the detectors and experimental equipmentswhere the variablesN∗ and S∗ aremeasured are often affected
by perturbations, usually random ones. As stated in [23], it is in general valid to consider a 5% of Gaussian random noise.

After running the algorithm several times using different initial points, the obtained results had relative errors of the
same order. They can be summarized as:

– Stopping criteria: TOL1 = 10−6 or TOL2 = 10−6

– Iterations/elapsed time: 143 iterations in 13 min
– Initial point: p0 = [0.16, 0.03, 1.0]
– Final point: pf = [0.1592, 0.0481, 0.9811]
– Functional final value: J(pf ) = 0.01830000000
– Relative error of the initial point: 60% for cc , 40% for cd, 11.11% for σ ,
– Relative error of the final point: 3.3045% for cc , 33.6894% for cd, 6.8348% for σ .

Fig. 7 shows the value that the functional (22) takes for different values of cc and cd, remaining σ as a constant and
assuming that S∗ and N∗ are obtained with 5% of Gaussian random noise.
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Fig. 7. Functional value of J (22) in terms of cc and cd for constant σ = 0.9, for data with 5% of Gaussian random noise.

Fig. 8. Evolution of the functional value with the number of iterations, for data with 5% of Gaussian random noise.

Fig. 8 represents the evolution in the value of J with the number of iterations. A comparison with Fig. 5 shows that the
functional values are greater in this case, but the algorithm stops because the variations become small. Fig. 9 shows the
evolution of cc and the real value of this parameter.

We can choose one of the variables considered in the functional (22) and look for difference between the real value of
this variable and the value that corresponds to the solution of the direct problem for the parameters obtained after running
the algorithm.

The case in which we considered model-generated data with 5% of Gaussian random noise is, as expected, not as precise
as the case inwhich the data is generatedwithout noise. The Algorithm 5.1 stops by a different reason because the difference
between two consecutive iterates is less than TOL2.

7. Conclusions

The scientific community agrees that life’s sciences, like biology ormedicine, need the development of new tools in order
to build models able to reproduce and to predict real phenomena. Over the last decades, a number of mathematical models
for cancer onset and growth have been proposed [27,5], and it became clear that these models are expected to success if the
parameters involved in themodeling process are known. Or eventually, taking into account that some biological parameters
may be unknown (especially in vivo), the model can be used to obtain them [23,21].
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Fig. 9. Evolution of the cc and σ values with the number of iterations (solid lines) for data with 5% of Gaussian random noise and real values of cc and σ

(dashed line).

This paper, as alreadymentioned in Section 1, aims at offering amathematical tool for the obtention of phenomenological
parameters which can be identified by inverse estimation, by making suitable comparisons with experimental data. The
inverse problem,whichwas stated as a PDE-constrained optimization problem, has been solved by using the adjointmethod,
which has shown to work efficiently. In addition, the gradient of the proposed functional is obtained and the methodology
can be extended, in principle, to any number of unknown parameters.

Focusing on further developments of the mathematical tools, it is worth mentioning that the numerical resolution pro-
posed in this paper is in some aspects challenging and several numerical procedures were introduced in order to deal with
non-linearities and singularities in the adjoint system of PDEs.

There already exist in the literature some other works which focus on parameter estimation via resolution of the adjoint
problem, for instance the paper by Hogea et al. [13]. However, for the best of our knowledge, this is the first time that this
technique has been applied to a free boundary model for tumor growth.

In addition, we remark that the parameter estimation via PDE-constrained optimization is a general approach that can
be used, for instance, to consider the effects of chemotherapy. We are currently working in this line and also in the reso-
lution of the optimization problem but after discretizing the original system of PDEs, in order to compare and contrast the
performance of both methods.
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