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Abstract

Real-time electronic speckle pattern interferometry (ESPI) was used for tuning and

visualization of natural frequencies of a trapezoidal plate. The plate was excited to resonant

vibration by a sinusoidal acoustical source, which provided a continuous range of audio

frequencies. Fringe patterns produced during the time-average recording of the vibrating

plate—corresponding to several resonant frequencies—were registered. From these inter-

ferograms, calculations of vibrational amplitudes by means of zero-order Bessel functions

were performed in some particular cases. The system was also studied analytically. The

analytical approach developed is based on the Rayleigh–Ritz method and on the use of non-

orthogonal right triangular co-ordinates. The deflection of the plate is approximated by a set

of beam characteristic orthogonal polynomials generated by using the Gram–Schmidt

procedure. A high degree of correlation between computational analysis and experimental

results was observed. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Electronic speckle pattern interferometry (ESPI) is a useful tool to carry out non-
destructive tests in a variety of fields such as optical metrology [1–4], industrial
process control, visual inspection line, etc. The technique is well suited to measure
deformations in mechanical systems subjected to stress under several boundary
conditions [5]. Particularly, the visualization and measurement of the mechanical
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vibration of elastic objects is one of the most useful applications. Vibration problems
have been extensively studied by means of computational methods, which provide
approximate solutions. The Rayleigh–Ritz method is a powerful computational
technique applicable to a variety of engineering problems [6,7].

In many cases, experimental and computational methods can be combined so that
the data obtained by one method can be used by the other one to verify the results
[8]. In this paper we are interested in comparing the results obtained by means of a
computational method with those obtained experimentally using time-average
speckle interferometry. As a test object we used a trapezoidal plate, mounted in
cantilever, subjected to a periodic load and excited to different resonant vibrations
by a sinusoidal acoustic source. Real-time displays of interference fringe patterns
allow high precision tuning of normal modes of vibration, so that measurement of
the corresponding resonant frequencies can be done. Once the resonant mode is
attained, images of the fringe pattern are recorded and stored for later analysis and
comparison with the predicted computational solutions.

2. Experimental set-up

The experimental set-up for time-average recording of ESPI is depicted in Fig. 1.
One beam of a split He–Ne laser light is expanded and collimated by lens L1 and
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Fig. 1. Experimental set-up: O, object; S, speaker; H, holder; P polarizer; BS1, BS2, beam splitter; D,

diffuser; SF, spatial filter; M, mirror; L1, collimating lens; CCD, digital camera. The inset shows the plate

and its dimensions.
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illuminates the object surface. In the figure, vectors K1 and K2 define the
illumination and observation directions, respectively. The other beam is expanded
and passes through a diffuser D, which results in the speckled reference beam. The
light dispersed by the object and the reference beam are brought together by the
beamsplitter BS2 and directed to the CCD camera. To improve the contrast, a
polarizer P is put on the object beam path behind the beamsplitter BS2. The object is
a trapezoidal plate of constant thickness, with geometrical parameters indicated in
the inset. The plate is clamped on the left edge and acoustically stressed by the
speaker S, driven by a variable frequency sine wave function generator.

3. Measurement of resonant frequencies

At the beginning of one experiment, when the object is stationary in equilibrium,
irradiances I0ðx; yÞ; produced by interference of the object and reference field, are
recorded by the CCD camera and stored in the frame grabber memory. This
irradiance equals

I0ðx; yÞ ¼ Iobðx; yÞ þ Ireðx; yÞ

þ 2½Iobðx; yÞIreðx; yÞ�1=2 cos½jðx; yÞ�; ð1Þ

where Iobðx; yÞ and Ireðx; yÞ are the intensities at the co-ordinate ðx; yÞ of the object
and reference beam, respectively and jðx; yÞ is the phase difference between the two
interfering beams, which is assumed to be randomly distributed.

When the object is vibrating sinusoidally in one of its resonant modes, at a single
frequency f ; the phase change of the object beam is given by

yðx; y; tÞ ¼ kðx; yÞsin 2pft where kðx; yÞ ¼ 4paðx; yÞ=l ð2Þ

(if K1 ¼ �K2; i.e. with normal illumination and viewing directions) in which aðx; yÞ
is the vibration amplitude at the object point ðx; yÞ and l is the laser light wavelength.
Irradiances Iðx; y; tÞ result from the interference of the time varying object field and
the reference field. If the TV frame integration time is much longer than the vibration
period, as is the case in these experiments, the irradiances will be time averaged
during the exposure time and can be written as

Iavðx; yÞ ¼ Iobðx; yÞ þ Ireðx; yÞ

þ 2ðIobðx; yÞIreðx; yÞÞ
1=2cos jðx; yÞJ0½kðx; yÞ�; ð3Þ

in which J0 is a zero-order Bessel function of the first kind. This frame is recorded
and subtracted from the stored reference frame, I0ðx; yÞ; and displayed in real time
on the TV monitor. This procedure provides time-averaged information about the
vibration amplitude resulting in a fringe pattern in the form of a Bessel function, as it
will be derived in Section 5.

Fringes of constant speckle contrast represent regions of constant amplitude
vibration on the object surface. A resonant condition of the object is easily achieved
by looking at the fringes displayed on the monitor while tuning the audio generator
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until a stationary fringe pattern is observed. Once this condition is attained, the
resonant frequency is measured from the signal generator, previously calibrated by
means of an oscilloscope.

In Fig. 2, several interferograms corresponding to different resonant frequencies
are shown. Several fringes of different speckle contrast can be seen, each one
representing regions of constant vibration amplitudes. Dark fringes represent nodal
regions. In the figure, it is also possible to observe, on the right of each
interferogram, the nodal patterns obtained by means of the Ritz method, in
conjunction with a set of beam characteristic orthogonal polynomials as
approximating functions, representing the modal shapes of the plate. It can be seen
a remarkable agreement between the calculated modal shapes and the corresponding
fringe pattern. Resonant frequencies are indicated in each diagram.

4. Resonant frequencies calculation

The analytical method distinguishes each resonant mode by means of a
dimensionless frequency parameter O; which takes into account the geometrical
shape and boundary condition of the modelled object. The assumed shape functions

Fig. 2. From left to right: (a) interferograms; (b) calculated nodal patterns; and (c) calculated modal

shapes. The corresponding resonant frequencies are indicated on each diagram.
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for using the Rayleigh–Ritz procedure are give by

W ðx; yÞ ¼
X

i

X
j

cijp!ıðxÞqjðyÞ; ð4Þ

where piðxÞ and qjðyÞ are the orthogonal polynomials, and cij are the arbitrary
coefficients which are to be determined. Bhat [9,10] has developed the procedure for
the construction of the orthogonal polynomials. The maximum kinetic energy of the
freely vibrating plate with amplitude W ðx; yÞ and radian frequency o is given by

Tmax ¼
hro2

2

Z Z
R

W 2ðx; yÞ dx dy; ð5Þ

where r is the mass density of the plate material, h is the plate thickness and the
integration is carried out over the entire plate domain R: The maximum strain energy
of the plate is given by

Umax ¼
1

2
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þ
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� �2
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� �2
" #)

dx dy; ð6Þ

where D is the flexural rigidity and is given by

D ¼
Eh3

12ð1 � m2Þ
; ð7Þ

where E is the Young’s modulo and m is the Poisson’s ratio.
The natural frequencies are obtained from the Rayleigh quotient [11] as

o2 ¼
Umax

Tmax
: ð8Þ

Minimization of the Rayleigh quotient with respect to each parameter cij ; leads to
the necessary conditions

qo2

qcij

¼ 0: ð9Þ

Substituting the approximating function, Eq. (4), into Eq. (9) leads to the
governing eigenvalue equationX

i

X
j

ðKijkh � O2MijkhÞcij ¼ 0; ð10Þ

where O is the dimensionless frequency parameter, Kijkh involves integrals of
products of the shape functions and their derivatives and Mijkh involves integrals of
products of the shape functions and values deriving from the kinetic energy
contribution of any point mass. Back substitution yields the coefficient vectors and,
finally, substitution of these coefficient vectors into Eq. (4) gives the mode shapes of
the plates.
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The resonant frequencies of the real object are related to the parameter O by
means of the expression

O ¼

ffiffiffiffiffiffiffi
rh

D

r
ol2;

therefore,

f ¼ O
1

2pl2

ffiffiffiffiffiffi
D

rh

s !
; ð11Þ

where f is the frequency in Hz and l is a characteristic objet length (see Fig. 1). The
values of the geometrical and mechanical properties of the test object used in this
work are given in Table 1.

Values of the frequencies measured experimentally in the preceding section and the
corresponding values calculated by the analytical method and Eq. (11), are
compared in Fig. 3. A linear relation between calculated and measured frequencies
with a high degree of correlation (r2 ¼ 0:9998) can be seen. The main errors of the
measured frequencies arise from the appreciation on the signal generator scale. These
are estimated to be 1% approximately. From the observed linear relation a bound of
errors of the same type can be assigned to the dimensionless frequency parameter
determined analytically. Nevertheless, the slope of the regression line is 0.975,
differing from the ideal unit slope by 2.5%. This difference is attributed to the
measured parameters involved in the constant factor of Eq. (11), which are estimated
to be 2% approximately.

5. Amplitude measurement

As indicated in Section 3, the interferograms represent the difference between
I0ðx; yÞ and Iavðx; yÞ; given by Eqs. (1) and (3), respectively. Omitting the ðx; yÞ co-
ordinates the result can be written as

jIav � I0j ¼ j2ðIobIreÞ
1=2 1 � J0ðkÞ½ �cos jj; ð12Þ

that is, the speckled background is modulated by the factor ½1 � J0ðkÞ�: The centres
of bright and dark fringes correspond to the maxima and minima of this factor,
respectively. Note that this factor is similar to the characteristic function that

Table 1

Geometrical and mechanical parameters of the test object

h ¼ 0:98 	 10�3 m

m ¼ 0:35

E ¼ 6:82 	 1010 N/m2

D ¼ 6:1 N m

l ¼ 0:116 m

r ¼ 2:86 	 103 kg/m3

Table 1
Geometrical and mechanical parameters of the test object
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describes real-time, time-average holographic interferometry [2]. From Eq. (2) the
vibration amplitude can be calculated as

aðx; yÞ ¼ kðx; yÞl=4p; ð13Þ

in which kðx; yÞ are the values of the argument of the Bessel function corresponding
to its extrema. Zero-order dark fringes appear when the intensity value, given by
Eq. (12), is zero. This condition corresponds to k ¼ 0 (½1 � J0ðkÞ� ¼ 0) and, from
Eq. (13), the vibration amplitude is also zero, representing nodal regions. The fringes
contrast decrease quickly starting from the zeroth order on.

Comparisons between measured and calculated deformation of the plate were
carried out. As the experiment was not designed to obtain the full field vibration
amplitude—in which case a phase step method, among others, should be more
appropriate [12]—only a few particular directions along the object were chosen to
perform vibration amplitude measurements. Let us take as an example the
interferogram corresponding to a resonant frequency of 2320 Hz, as shown in
Fig. 2. The image was processed in the Fourier domain to filter out high frequencies
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Fig. 3. Correlation between measured and calculated frequencies for 11 resonant modes.
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due to speckle noise. To minimize the errors introduced due to the sharp edges of the
plate, a technique to extrapolate the fringes beyond the boundary of the object was
employed. The resulting image is shown in Fig. 4(a), where a particular direction is
indicated. Along this direction the corresponding fringes profile, shown in Fig. 4(b),
was analysed in order to localize the co-ordinates of the centre of bright and dark
fringes. By applying Eq. (13), the corresponding amplitude of vibration was
calculated. The results are shown in Fig. 4(c), together with the curve calculated
by means of the analytical method, using Eq. (4). Note that the analytically derived
shape of the plate can be used to remove the sign ambiguity in fringe order numbers.
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Fig. 4. (a) Filtered interferogram corresponding to a resonant frequency of 2320 Hz; (b) fringe profile
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As the energy of excitation is unknown, the analytical curve has been multiplied by
a constant for comparison purposes. This constant was determined by means of an
iteration process to minimize the mean deviation between the two sets of data. A
mean deviation of 0:06l was found representing approximately 2% of the full
deflection of the plate. The localization of the nodal points, given by the analytical
and experimental method, differs by 1.5% considering the distance between them.

Similar calculations were performed for the resonant frequencies 153 and 717 Hz,
respectively. In Fig. 5, measured and calculated amplitudes for these cases are
compared.

6. Conclusions

We have presented a study of a vibrating plate, in which analytical solution and
experimental measurements are compared. Several modes of vibration have been
visualized by means of a standard ESPI technique. The experimental set-up is very
simple to implement and shows great sensitivity for tuning the resonant frequencies.
Values of the resonant frequencies, obtained by both analytical and experimental
methods are closely correlated taking into account the estimated errors in the
measurements of the involved parameters. Qualitatively, the visualized mode shapes
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as well as the nodal patterns match remarkably with the predictions of the
computational method. As noted in Section 5, the contrast of the fringes decreases
quickly from the zero order on; thus, limiting the number of fringes of useful
visibility. However, amplitude measurements have also been carried out experimen-
tally for a few particular cases, and they showed a reasonable agreement with the
analytical results.
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