Research Article

Marta Urciuolo* and Lucas Vallejos

$L^{p(\cdot)}-L^{q(\cdot)}$ boundedness of some integral operators obtained by extrapolation techniques

https://doi.org/10.1515/gmj-2018-0066
Received October 10, 2016; revised January 27, 2017; accepted August 24, 2017

Abstract: Given a matrix A such that $A^{M}=I$ and $0 \leq \alpha<n$, for an exponent p satisfying $p(A x)=p(x)$ for a.e. $x \in \mathbb{R}^{n}$, using extrapolation techniques, we obtain $L^{p(\cdot)} \rightarrow L^{q(\cdot)}$ boundedness, $\frac{1}{q(\cdot)}=\frac{1}{p(\cdot)}-\frac{\alpha}{n}$, and weak type estimates for integral operators of the form

$$
T_{\alpha} f(x)=\int \frac{f(y)}{\left|x-A_{1} y\right|^{\alpha_{1}} \cdots\left|x-A_{m} y\right|^{\alpha_{m}}} d y,
$$

where A_{1}, \ldots, A_{m} are different powers of A such that $A_{i}-A_{j}$ is invertible for $i \neq j, \alpha_{1}+\cdots+\alpha_{m}=n-\alpha$. We give some generalizations of these results.

Keywords: Variable exponents, fractional integrals
MSC 2010: 42B25, 42B35

1 Introduction

Given a measurable set $\Omega \subset \mathbb{R}^{n}$ and a measurable function $p(\cdot): \Omega \rightarrow[1, \infty)$, let $L^{p(\cdot)}(\Omega)$ denote the Banach space of measurable functions f on Ω such that for some $\lambda>0$,

$$
\int_{\Omega}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x<\infty
$$

with norm

$$
\|f\|_{p(\cdot)}=\inf \left\{\lambda>0: \int_{\Omega}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x \leq 1\right\} .
$$

These spaces are known as variable exponent spaces and are generalizations of the classical Lebesgue spaces $L^{p}(\Omega)$. In the last years many authors have extended the machinery of classical harmonic analysis to these spaces, see [1, 2, 4]. The first step was to determine sufficient conditions on $p(\cdot)$ for the boundedness on $L^{p(\cdot)}$ of the Hardy-Littlewood maximal operator

$$
\mathcal{M} f(x)=\sup _{B} \frac{1}{|B|} \int_{B \cap \Omega}|f(y)| d y,
$$

where the supremun is taken over all balls B containing x. Let $p_{-}=\operatorname{ess} \inf p(x)$ and $p_{+}=\operatorname{ess} \sup p(x)$. In [2], Cruz-Uribe, Fiorenza and Neugebauer proved the following result.

[^0]Theorem. Given an open set $\Omega \subset \mathbb{R}^{n}$, let $p(\cdot): \Omega \rightarrow[1, \infty)$ be such that $1<p_{-} \leq p_{+}<\infty$. Suppose further that $p(\cdot)$ satisfies

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{c}{-\log |x-y|}, \quad x, y \in \Omega,|x-y|<\frac{1}{2}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{c}{\log (e+|x|)}, \quad x, y \in \Omega,|y| \geq|x| . \tag{2}
\end{equation*}
$$

Then the Hardy-Littlewood maximal operator is bounded on $L^{p(\cdot)}(\Omega)$.
We recall that a weight ω is a locally integrable and non negative function. The Muckenhoupt class A_{p}, $1<p<\infty$, is defined as the class of weights ω such that

$$
\sup _{Q}\left[\left(\frac{1}{|Q|} \int_{Q} \omega\right)\left(\frac{1}{|Q|} \int_{Q} \omega^{-\frac{1}{p-1}}\right)^{p-1}\right]<\infty,
$$

where Q is a cube in \mathbb{R}^{n}. For $p=1, A_{1}$ is the class of weights ω having the property that there exists $c>0$ such that

$$
\mathcal{N} \omega(x) \leq c \omega(x) \quad \text { for a.e. } x \in \mathbb{R}^{n} .
$$

We denote by $[\omega]_{A_{1}}$ the infimum of the constant c such that ω satisfies the above inequality.
In [5], Muckenhoupt and Wheeden define $A(p, q)$, with $1<p<\infty$ and $1<q<\infty$, as the class of weights ω such that

$$
\sup _{Q}\left[\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{q} d x\right)^{\frac{1}{q}}\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}\right]<\infty
$$

When $p=1, \omega \in A(1, q)$ if only if

$$
\sup _{Q}\left[\left\|\omega^{-1} \chi_{Q}\right\|_{\infty}\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{q} d x\right)^{\frac{1}{q}}\right]<\infty
$$

Let $M \in \mathbb{N}, M>1$. Let A be an invertible $n \times n$ matrix such that $A^{M}=I$, and also suppose that M is such that if $A^{N}=I$ for some $N \in \mathbb{N}$, then $M \leq N$. Let $m \in \mathbb{N}, 1<m \leq M$. Let $0 \leq \alpha<n$. Let $\alpha_{1}, \ldots, \alpha_{m}$ be real numbers such that

$$
\alpha_{1}+\cdots+\alpha_{m}=n-\alpha .
$$

Let T_{α} be the integral operator given by

$$
\begin{equation*}
T_{\alpha} f(x)=\int k(x, y) f(y) d y \tag{3}
\end{equation*}
$$

with

$$
k(x, y)=\frac{1}{\left|x-A_{1} y\right|^{\alpha_{1}}} \cdots \frac{1}{\left|x-A_{m} y\right|^{\alpha_{m}}},
$$

where, for $1 \leq i \leq m$, the matrices A_{i} are certain power of $A, A_{i}=A^{k_{i}}, k_{i} \in \mathbb{N}, 1 \leq k_{i} \leq M$.
In [6], Riveros and Urciuolo studied integral operators with kernels given by

$$
\begin{equation*}
k(x, y)=\frac{1}{\left|x-A_{1} y\right|^{\alpha_{1}} \cdots\left|x-A_{m} y\right|^{\alpha_{m}}}, \tag{4}
\end{equation*}
$$

where A_{1}, \ldots, A_{m} are invertible matrices such that $A_{i}-A_{j}$ is invertible for $i \neq j, 1 \leq i, j \leq m$. They obtained weighted (p, q) estimates, $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}$, for weights $w \in A(p, q)$ such that $w\left(A_{i} x\right) \leq c w(x)$. We want to use extrapolation techniques to obtain $p(\cdot)-q(\cdot)$ and weak type estimates. In [7], Rocha and Urciuolo proved the following theorem that involves more general matrices A_{i}, with the additional hypothesis $p\left(A_{i} x\right)=p(x)$ for a.e. $x \in R^{n}$.

Theorem (Strong type). Let $0 \leq \alpha<n$ and let T_{α} be the integral operator with kernel given by (4), with A_{i} orthogonal matrices such that $A_{i}-A_{j}$ is invertible for $i \neq j, 1 \leq i, j \leq m$. Let $h: \mathbb{R} \rightarrow[1, \infty)$ be such that $1<h_{-} \leq h_{+}<\frac{n}{\alpha}$ and satisfying (1) and (2). Let $p: \mathbb{R}^{n} \rightarrow[1, \infty)$ given by $p(x)=h(|x|)$. Then T_{α} is bounded from $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ into $L^{q(\cdot)}\left(\mathbb{R}^{n}\right)$ for $\frac{1}{p(x)}-\frac{1}{q(x)}=\frac{\alpha}{n}$.

In this paper we prove a similar result using extrapolation techniques that allow us to replace the log-Hölder conditions about the exponent $p(\cdot)$ by a more general hypothesis concerning the boundeness of the maximal function \mathcal{M}. We obtain the following result.

Theorem 1. let T_{α} be the integral operator given by (3) such that $A_{i}-A_{j}$ is invertible for $i \neq j, 1 \leq i, j \leq m$. Let $p: \mathbb{R}^{n} \rightarrow[1, \infty)$ be such that $1<p_{-} \leq p_{+}<\frac{n}{\alpha}$ and $p(A x)=p(x)$ for a.e. $x \in \mathbb{R}^{n}$. Let $q(\cdot)$ be defined by $\frac{1}{p(x)}-\frac{1}{q(x)}=\frac{\alpha}{n}$. If the maximal operator \mathcal{M} is bounded on $L^{\left(\frac{n-\alpha p_{-}}{n p_{-}} q(\cdot)\right)^{\prime}}$, then T_{α} is bounded from $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ into $L^{q(\cdot)}\left(\mathbb{R}^{n}\right)$.

In [7], Rocha and Urciuolo obtained weak type estimates with the additional hypothesis $p(0)=1$.
Theorem (Weak type). Let $0 \leq \alpha<n$, and let $h: \mathbb{R} \rightarrow[1, \infty)$ be a function satisfying (1) and (2), with $h(0)=1$ and $h_{+}<\infty$. Let $p: \mathbb{R}^{n} \rightarrow[1, \infty)$ given by $p(x)=h(|x|)$. Let T_{α} be the integral operator with kernel given by (4), with A_{i} orthogonal matrices such that $A_{i}-A_{j}$ is invertible for $i \neq j, 1 \leq i, j \leq m$. If $\frac{1}{p(x)}-\frac{1}{q(x)}=\frac{\alpha}{n}$, then there exists $C>0$ such that

$$
\sup _{\lambda>0} \lambda\left\|\chi_{\left\{x: T_{\alpha} f(x)>\lambda\right\}}\right\|_{q(\cdot)} \leq C\|f\|_{p(\cdot)} .
$$

We obtain a weak type estimate for the operator given by (3), without that additional hypothesis. Our result is the following.

Theorem 2. Let T_{α} be the integral operator given by (3) such that $A_{i}-A_{j}$ is invertible for $i \neq j, 1 \leq i, j \leq m$. Let $p: \mathbb{R}^{n} \rightarrow[1, \infty)$ be such that $1 \leq p_{-} \leq p_{+}<\frac{n}{\alpha}$ and $p(A x)=p(x)$ a.e. $x \in \mathbb{R}^{n}$. Let $q(\cdot)$ be defined by $\frac{1}{p(x)}-\frac{1}{q(x)}=\frac{\alpha}{n}$. If the maximal operator \mathcal{M} is bounded on $L^{\left(\frac{n-\alpha p_{-}}{n p_{-}} q(\cdot)\right)^{\prime}}$, then there exists $c>0$ such that

$$
\left\|t \chi_{\left\{x: T_{\alpha} f(x)>t\right\}}\right\|_{q(\cdot)} \leq c\|f\|_{p(\cdot)} .
$$

We will also show that this technique applies in the case when each of the matrices A_{i} is either a power of an orthogonal matrix A or a power of A^{-1}.

2 Proofs of the results

Proof of Theorem 1. We denote $q_{0}=\frac{n p_{-}}{n-\alpha p_{-}}$. In [6], Riveros and Urciuolo obtained a weighted $\left(p_{-}, q_{0}\right)$ estimate for weights $w \in A(p, q)$ such that $w\left(A_{i} x\right) \leq c w(x)$. We let $\widetilde{q}(x)=\frac{q(\cdot)}{q_{0}}$ and define

$$
\begin{equation*}
\mathcal{R} h(x)=\sum_{k=0}^{\infty} \frac{\mathcal{N}^{k} h(A x)}{2^{k}\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}^{k}}+\cdots+\sum_{k=0}^{\infty} \frac{\mathcal{N}^{k} h\left(A^{M} x\right)}{2^{k}\|\mathcal{M}\|_{\widetilde{q}(\cdot)^{\prime}}^{k}} . \tag{5}
\end{equation*}
$$

It is easy to check that
(1) for all $x \in \mathbb{R}^{n},|h(x)| \leq \mathcal{R} h(x)$,
(2) \mathcal{R} is bounded on $L^{\tilde{q}(\cdot)^{\prime}}\left(\mathbb{R}^{n}\right)$ and $\|\mathcal{R} h\|_{\tilde{q}(\cdot)^{\prime}} \leq 2 M\|h\|_{\tilde{q}(\cdot)^{\prime}}$,
(3) $\mathcal{R} h \in A_{1}$ and $[\mathcal{R} h]_{A_{1}} \leq 2 C M\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}$
(4) $\mathcal{R} h\left(A^{i} x\right) \leq \mathcal{R} h(x), x \in \mathbb{R}^{n}$.

Indeed, (1) is evident; (2) is verified as follows. Let $l \in \mathbb{N}, l \leq M$. Then

$$
\left\|\mathcal{M}^{k} h\left(A^{l} \cdot\right)\right\|_{\tilde{q}(\cdot)^{\prime}}=\inf \left\{\lambda>0: \int_{\mathbb{R}^{n}}\left(\frac{\mathcal{N}^{k} h\left(A^{l} x\right)}{\lambda}\right)^{\tilde{q}(x)^{\prime}} d x \leq 1\right\} .
$$

But

$$
\int_{\mathbb{R}^{n}}\left(\frac{\mathcal{M}^{k} h\left(A^{l} x\right)}{\lambda}\right)^{\tilde{q}(x)^{\prime}} d x=\int_{\mathbb{R}^{n}}\left(\frac{\mathcal{M}^{k} h(y)}{\lambda}\right)^{\tilde{q}\left(A^{-l} y\right)^{\prime}} d y=\int_{\mathbb{R}^{n}}\left(\frac{\mathcal{N}^{k} h(y)}{\lambda}\right)^{\tilde{q}(y)^{\prime}} d y
$$

where the first equality follows from a change of variables, using that $|\operatorname{det} A|=1$. The second equality holds because $q\left(A^{l} x\right)=q(x)$ for a.e. $x \in \mathbb{R}^{n}$. Then we conclude that

$$
\left\|\mathcal{M}^{k} h\left(A^{l} \cdot\right)\right\|_{\tilde{q}(\cdot)^{\prime}}=\left\|\mathcal{M}^{k} h\right\|_{\tilde{q}(\cdot)^{\prime}} .
$$

Thus, we obtain (2) by subadditivity of the norm:

$$
\|\mathcal{R} h\|_{\tilde{q}(\cdot)^{\prime}} \leq \sum_{k=0}^{\infty} \frac{\left\|\mathcal{M}^{k} h(A(\cdot))\right\|_{\tilde{q}(\cdot)^{\prime}}}{2^{k}\|\mathcal{M}\|_{\widetilde{q}(\cdot)^{\prime}}^{k}}+\cdots+\sum_{k=0}^{\infty} \frac{\left\|\mathcal{M}^{k} h\left(A^{M}(\cdot)\right)\right\|_{\tilde{q}(\cdot)^{\prime}}}{2^{k}\|\mathcal{M}\|_{\widetilde{q}(\cdot)^{\prime}}^{k}} \leq\|h\|_{\widetilde{q}(\cdot)^{\prime}} M \sum_{k=0}^{\infty} 2^{-k}=2 M\|h\|_{\widetilde{q}(\cdot)^{\prime}} .
$$

Now, it is easy to check that there exists $C>0$ such that for $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right), \mathcal{M}(f \circ A)(x) \leq \operatorname{C\mathcal {M}} f(A x)$. So, (3) follows as in [3, p. 157]:

$$
\begin{aligned}
\mathcal{M}(\mathcal{R} h)(x) & \leq C\left(\sum_{k=0}^{\infty} \frac{\mathcal{M}^{k+1} h(A x)}{2^{k}\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}^{k}}+\cdots+\sum_{k=0}^{\infty} \frac{\mathcal{M}^{k+1} h\left(A^{M} x\right)}{2^{k}\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}^{k}}\right) \\
& \leq 2 C\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}\left(\sum_{k=0}^{\infty} \frac{\mathcal{M}^{k+1} h(A x)}{2^{k+1}\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}^{k+1}}+\cdots+\sum_{k=0}^{\infty} \frac{\mathcal{M}^{k+1} h\left(A^{M} x\right)}{2^{k+1}\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}}^{k+1}}\right) \\
& \leq 2\|\mathcal{M}\|_{\tilde{q}(\cdot)^{\prime}} \mathcal{R} h(x),
\end{aligned}
$$

and (4) follows by definition. So, $\mathcal{R} h$ is a weight in A_{1} such that $\mathcal{R} h\left(A_{i} x\right) \leq \mathcal{R} h(x), x \in \mathbb{R}^{n}$.
We now take a bounded f with compact support. We will check later that $\left\|T_{\alpha} f\right\|_{q(\cdot)}<\infty$, so, as in [3, Theorem 5.24],

$$
\begin{aligned}
\left\|T_{\alpha} f\right\|_{q(\cdot)}^{q_{0}}=\left\|\left(T_{\alpha} f\right)^{q_{0}}\right\|_{\widetilde{q}(\cdot)} & =c \sup _{\|h\|_{\tilde{q}(\cdot)^{\prime}}=1} \int_{\mathbb{R}^{n}}\left(T_{\alpha} f\right)^{q_{0}}(x) h(x) d x \\
& \leq c \sup _{\|h\|_{\tilde{q}(\cdot)^{\prime}}=1} \int_{\mathbb{R}^{n}}\left(T_{\alpha} f\right)^{q_{0}}(x) \mathcal{R} h(x) d x \\
& \leq c \sup _{\|h\|_{\tilde{q}(\cdot)^{\prime}}=1}\left(\int_{\mathbb{R}^{n}}|f(x)|^{p_{-}} \operatorname{Rh}(x)^{\frac{p_{-}}{q_{0}}} d x\right)^{\frac{q_{0}}{p_{-}}},
\end{aligned}
$$

since $R h^{\frac{1}{q_{0}}} \in A\left(p_{-}, q_{0}\right)$. Hölder's inequality gives

$$
\left\|\left(T_{\alpha} f\right)^{q_{0}}\right\|_{\tilde{q}(\cdot)} \leq c\left\|f^{p_{-}-}\right\|_{\tilde{p}(\cdot)}^{\frac{q_{0}}{p_{-}}} \sup _{\|h\|_{(\cdot)^{\prime}=1}}\left\|\mathcal{R} h^{\frac{p_{-}-}{q_{0}}}\right\|_{\tilde{p}(\cdot)^{\prime}}^{\frac{q_{0}}{p_{-}}} \leq c\|f\|_{p(\cdot)}^{q_{0}}\|\mathcal{R} h\|_{\tilde{q}(\cdot)^{\prime}} \leq 2 M c\|f\|_{p(\cdot)}^{q_{0}}\|h\|_{\tilde{q}(\cdot)^{\prime}},
$$

where the last inequality follows as in [3, p. 211].
Now we show that $\left\|T_{\alpha} f\right\|_{q(\cdot)}<\infty$. By [3, Proposition 2.12, p. 19], it is enough to check that $\int_{\mathbb{R}^{n}} T_{\alpha} f<\infty$. We have

$$
|T f(x)|^{q(x)} \leq|T f(x)|^{q_{+}} \chi_{\left\{x: T_{\alpha} f(x)>1\right\}}+|T f(x)|^{q_{-}} \chi_{\left\{x: T_{\alpha} f(x) \leq 1\right\}},
$$

and now f is bounded and with compact support, so $T_{\alpha} f \in L^{s}\left(\mathbb{R}^{n}\right)$ for $\frac{n}{n-\alpha}<s<\infty$, thus $\int_{\mathbb{R}^{n}}|T f(x)|^{q(x)} d x<\infty$.
The theorem follows since bounded functions with compact support are dense in $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$.
Proof of Theorem 2. We consider first the case $p_{-}=1$. We denote $q_{0}=\frac{n}{n-\alpha}$ and $\widetilde{q}(\cdot)=\frac{q(\cdot)}{q_{0}}$. Theorem 3.2 of [6] implies that if $\omega \in A\left(1, q_{0}\right)$ is such that $\omega(A x) \leq c \omega(x)$, then

$$
\sup _{\lambda} \lambda^{q_{0}} \omega^{q_{0}}\left(\chi_{\left\{x:\left|T_{a} f(x)\right|>\lambda\right\}}\right) \leq C\left(\int_{\mathbb{R}^{n}}|f(x)| \omega(x) d x\right)^{q_{0}}
$$

Now, let $F_{\lambda}=\lambda^{q_{0}} \chi_{\left\{x:\left|T_{\alpha} f(x)\right|>\lambda\right\}}$. Then

$$
\left\|\lambda \chi_{\left\{x:\left|T_{\alpha} f(x)\right|>\lambda\right\}}\right\|_{q(\cdot)}^{q_{0}} \leq\left\|\lambda^{q_{0}} \chi_{\left\{x:\left|T_{\alpha} f(x)\right|>\lambda\right\}}\right\|_{\tilde{q}(\cdot)}=\left\|F_{\lambda}\right\|_{\tilde{q}(\cdot)}=C \sup _{\|h\|_{\tilde{q}(\cdot)^{\prime}}=1} \int_{\mathbb{R}^{n}} F_{\lambda}(x) h(x) d x .
$$

As in the previous theorem, we define $\mathcal{R} h$ by (5). Since $\mathcal{R} h \in A_{1}, \mathcal{R} h^{\frac{1}{q_{0}}} \in A\left(1, q_{0}\right)$. So,

$$
\begin{aligned}
\left\|\lambda \chi_{\left\{x:\left|T_{\alpha} f(x)\right|>\lambda\right\}}\right\|_{q(\cdot)}^{q_{0}} & \leq C \sup _{\|h\|_{(\cdot)^{\prime}=1}=1} \int_{\mathbb{R}^{n}} F_{\lambda}(x) \mathcal{R} h(x) d x \\
& \leq C \sup _{\|h\|_{(\cdot)^{\prime}=1}=1} \int_{\mathbb{R}^{n}} F_{\lambda}(x)\left(\mathcal{R} h(x)^{\frac{1}{q_{0}}}\right)^{q_{0}} d x \\
& \leq C \sup _{\|h\|_{\tilde{q}_{(\cdot)^{\prime}}=1}}\left(\int_{\mathbb{R}^{n}}|f(x)| \mathcal{R} h(x)^{\frac{1}{q_{0}}} d x\right)^{q_{0}},
\end{aligned}
$$

and, as in the previous theorem, we get

$$
\begin{aligned}
\left\|\lambda \chi_{\left\{x:\left|T_{\alpha} f(x)\right|>\lambda\right\}}\right\|_{q(\cdot)}^{q_{0}} & \leq C\|f\|_{p(\cdot)}^{q_{0}} \sup _{\|h\|_{(\cdot)^{\prime}=1}}\left\|\mathcal{R} h(x)^{\frac{1}{q_{0}}}\right\|_{p(\cdot)^{\prime}}^{q_{0}} \\
& \leq C\|f\|_{p(\cdot)}^{q_{0}} \sup _{\|h\|_{(\cdot)^{\prime}}=1}\|\mathcal{R} h\|_{\tilde{q}(\cdot)^{\prime}} \\
& \leq 2 M\|f\|_{p(\cdot)}^{q_{0}} \sup _{\|h\|_{\tilde{q} \cdot)^{\prime}}=1}\|h\|_{\tilde{q}(\cdot)^{\prime}}=2 M\|f\|_{p(\cdot)}^{q_{0}} .
\end{aligned}
$$

If $p_{-}>1$, then we use that T_{α} is of weak type $\left(p_{-}, q_{0}\right)$ and we proceed as before to get the statement of the theorem.

Remark 3. Theorems 1 and 2 still hold if $m=1$ and $\alpha>0$. In this case, if $\frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$ and $\omega \in A(p, q)$ is such that $\omega(A x) \leq \omega(x)$ for a.e. $x \in \mathbb{R}^{n}$, then

$$
T_{\alpha} f(x)=\int_{\mathbb{R}^{n}} \frac{f(y)}{\left|x-A^{k_{1}} y\right|^{n-\alpha}} d y=I_{\alpha}\left(f \circ A^{-k_{1}}\right)(x)
$$

where I_{α} is the classical fractional integral operator. Thus,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(T_{\alpha} f(x)\right)^{q} \omega^{q}(x) d x & =\int_{\mathbb{R}^{n}}\left(I_{\alpha}\left(f \circ A^{-k_{1}}\right)(x)\right)^{q} \omega^{q}(x) d x \\
& \leq C\left(\int_{\mathbb{R}^{n}}\left(f \circ A^{-k_{1}}(x)\right)^{p} \omega^{p}(x) d x\right)^{\frac{q}{p}} \\
& =C\left(\int_{\mathbb{R}^{n}}(f(x))^{p} \omega^{p}\left(A^{k_{1}} x\right) d x\right)^{\frac{q}{p}} \\
& \leq C\left(\int_{\mathbb{R}^{n}}(f(x))^{p} \omega^{p}(x) d x\right)^{\frac{q}{p}} .
\end{aligned}
$$

So,

$$
\left\|T_{\alpha} f\right\|_{q, \omega^{q}} \leq C\|f\|_{p, \omega^{p}}
$$

In a similar way we obtain the corresponding weak type estimate and we proceed as in the previous theorems.
Remark 4. Let A be a orthogonal matrix and let T_{α} be as in (3), where the matrix A_{i} is either a power of A or a power of A^{-1}. If $A_{i}-A_{j}$ is invertible and $p(\cdot)$ is as in Theorem 2, we also obtain strong and weak type estimates. We simply define \mathcal{R} as follows:

$$
\mathcal{R} h(x)=\sum_{j=0}^{\infty} \frac{1}{2^{j}}\left(\sum_{k=0}^{\infty} \frac{M^{k} h\left(A^{j} x\right)}{2^{k}\|M\|_{\tilde{q}(\cdot)^{\prime}}^{k}}+\sum_{k=0}^{\infty} \frac{M^{k} h\left(\left(A^{-1}\right)^{j} x\right)}{2^{k}\|M\|_{\tilde{q}(\cdot)^{\prime}}^{k}}\right)
$$

and the proof follows as in the proofs of Theorems 1 and 2.
Example 5. We take r satisfying (1) and (2), with $1<r_{-} \leq r_{+}<\frac{n}{\alpha}$ and

$$
A=\left|\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right|
$$

So, $A^{4}=I$ and $A^{i}-A^{j}$ is invertible for $1 \leq i, j \leq 4, i \neq j$. We let $p(x)=\frac{1}{4}\left(r(A x)+r\left(A^{2} x\right)+r\left(A^{3} x\right)+r\left(A^{4} x\right)\right)$.
Example 6. We take an even function p satisfying (1) and (2), with $1<p_{-} \leq p_{+}<\frac{n}{\alpha}$ and $A=-I$.
Funding: Partially supported by CONICET and SECYTUNC.

References

[1] C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator and fractional integrals on variable L^{p} spaces, Rev. Mat. Iberoam. 23 (2007), no. 3, 743-770.
[2] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223-238.
[3] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013.
[4] L. Diening, P. Harjulehto, P. Hästö and M. Růžičča, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011.
[5] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274.
[6] M. S. Riveros and M. Urciuolo, Weighted inequalities for fractional type operators with some homogeneous kernels, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 3, 449-460.
[7] P. Rocha and M. Urciuolo, About integral operators of fractional type on variable L ${ }^{p}$ spaces, Georgian Math. J. 20 (2013), no. 4, 805-816.

[^0]: *Corresponding author: Marta Urciuolo, FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina,
 e-mail: urciuolo@famaf.unc.edu.ar
 Lucas Vallejos, FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina, e-mail: lucas.vallejos@hotmail.com

