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In this work, we give sufficient conditions in order to have finite ramification locus
in sequences of function fields defined by different kind of Kummer extensions. These

conditions can be easily implemented in a computer to generate several examples. We
present some new examples of asymptotically good towers of Kummer type and we show
that many known examples can be obtained from our general results.
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1. Introduction

Asymptotically good towers of function fields have received much attention in theo-
retical considerations related to coding theory and Cryptography after the work of
Tsfasman, Vladut and Zink in [8]. They showed the existence of linear codes with
parameters improving the so-called Gilbert–Varshamov bound using asymptotically
good towers of modular curves (in fact, optimal) and a construction of linear codes
due to Goppa. However, they did not give a method for constructing them. This
motivated the search for asymptotically good towers of function fields over finite
fields defined in an explicit way. It turns out that it is a non-trivial problem to
provide examples of such towers. This line of research was initiated by Garcia and
Stichtenoth. They established all the fundamental results of the theory of asymp-
totically good towers (see, for example, [2]) and made one of their most important
contributions with the study of the so-called recursive towers (see Sec. 2 for details).
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The aim of this paper is to continue the investigation (initiated in [1]) of the
asymptotic behavior of towers of function fields defined by a Kummer equation of
the form

ym =
xm − αf(x) + α

f(x)
, (1.1)

where f ∈ Fq[x] is a suitable polynomial and α ∈ F∗
q . More precisely, in [1] we

obtained conditions in order to have non-empty splitting locus of towers recursively
defined by (1.1), and now we will deal with the ramification locus. The finiteness
of the ramification locus of towers recursively defined by (1.1) will suffice to prove
their good asymptotic behavior because an important and well-known result of Gar-
cia and Stichtenoth states that if a tame tower has non-empty splitting locus and
finite ramification locus, then the tower is asymptotically good [4, Theorem 2.1].
We will show new examples of asymptotically good towers recursively defined
by (1.1).

In Sec. 2, we give the basic definitions and we establish the notation to be
used throughout the paper. In Sec. 3, we prove our main results. In particular, in
Theorem 3.4, we give sufficient conditions to have asymptotically good Kummer
type towers recursively defined by (1.1). The first part of Sec. 3 is devoted to prove
some auxiliary results needed in the proof of Theorem 3.4. An interesting feature
of these results is that they can be easily implemented in a computer so that
we were able to search for many equations of the form (1.1) defining good towers.
Consequently, we show different examples of asymptotically good towers of Kummer
type and we observe that some known examples can be obtained from our general
results. In particular, in Example 3.14, we present new interesting examples of
asymptotically good Kummer type towers whose defining equations have coefficients
in F9\F3.

2. Preliminaries

Let q be a prime power. An algebraic function field F/Fq is a finite algebraic
extension of the rational function field Fq(x), where x is a transcendental element
over Fq.

Let F = (F0, F1, . . .) be a sequence of function fields over Fq. We shall say that
F is admissible if

(1) F0 � F1 � F2 � · · ·,
(2) the field extension Fi+1/Fi is finite and separable for all i ≥ 0, and
(3) the field Fq is algebraically closed in Fi for all i ≥ 0, i.e. the only elements of

Fi which are algebraic over Fq are the elements of Fq. In this case, we shall say
that Fq is the full constant field of each Fi.

If the genus g(Fi) grows to infinity as i → ∞, we say that the admissible sequence
F is a tower of function fields over Fq.
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We shall say that an admissible sequence F is recursively defined if there exist
a bivariate polynomial H ∈ Fq[S, T ] and transcendental elements xi, such that for
all i ≥ 0 the following holds:

(1) F0 = Fq(x0) is the rational function field.
(2) Fi+1 = Fi(xi+1) with H(xi, xi+1) = 0.
(3) [Fi+1 : Fi] = degT H .

Let P(F ) denote the set of all places of a function field F/Fq. The following defini-
tions are important in the study of the asymptotic behavior of sequences of function
fields. Let F = (F0, F1, . . .) be an admissible sequence of function fields over Fq.
A place P ∈ P(Fi) splits completely in F if P splits completely in each extension
Fj/Fi. The splitting locus of F over F0 is defined as

Split(F/F0) := {P ∈ P(F0) : deg(P ) = 1 and P splits completely in F},
where deg(P ) is the degree of the place P . A place P ∈ P(Fi) is ramified in F if P

is ramified in any extension Fj/Fi. The ramification locus of F over F0 is the set

Ram(F/F0) := {P ∈ P(F0) : P ramified in some extension Fn/F0}.
A place P ∈ P(Fi) is totally ramified in F if P is totally ramified in each extension
Fj/Fi. The complete ramification locus of F over F0 is defined as

Cram(F/F0) := {P ∈ P(F0) : deg(P ) = 1 and P is totally ramified in F}.
Since every place Q ∈ P(Fi) lying above a place in Split(F/F0)∪Cram(F/F0) is a
rational place (i.e. of degree one), we have that

N(Fi) ≥ [Fi : F0]|Split(F/F0)| + |Cram(F/F0)|, (2.1)

where N(Fi) is the number of rational places of Fi.
Notice that if for an admissible sequence of function fields F = (F0, F1, . . .) we

have that Split(F/F0) �= ∅ (in other words, there is a rational place P in F0 that
splits completely in each extension Fi/F0) then, by the Hasse–Weil bound, we have
that g(Fi) → ∞ as i → ∞ so that F is actually a tower.

Given a finite extension E/F and a place P ∈ P(F ) there are finitely many
places Q ∈ P(E) lying above P . We will write Q |P when Q lies over P . The
extension E/F is said to be tame if the ramification index e(Q |P ) is relatively
prime to the characteristic of Fq, for all places P ∈ P(F ) and all Q |P . We shall
say that an admissible sequence F = (F0, F1, . . .) of function fields over Fq is tame
if all the extensions Fi/F0 are tame.

3. Kummer Type Towers

As we said in Sec. 1, it is well-known that a tame recursive tower is asymptotically
good if it has non-empty splitting locus and finite ramification locus. The next
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result, proved in [1], gives sufficient conditions in order to have non-empty split-
ting locus, in the particular class of sequences of Kummer type recursively defined
by (1.1).

We will use the following notation. For a given rational function f ∈ Fq(T ) the
set of zeros of f in an algebraic closure Fq of Fq will be denoted either by Zf , or
by Zf(T ) in case we need to specify f(T ).

Proposition 3.1. Let m > r ≥ 1 be such that gcd(m, m− r)= 1 and gcd(m, q)= 1.
Let α ∈ F∗

q and consider the rational functions

a(T ) = T m and b(T ) =
T m − αf(T ) + α

f(T )
,

where f(T ) ∈ Fq[T ] is a polynomial of degree r. If Fq is a splitting field for T m + α

and Zf ∩ ZT m+α = ∅, then for the (a, b)-recursive sequence of function fields F =
(F0, F1, . . .) we have that

|Split(F/F0)| ≥ m

and

N(Fi) ≥ mi+1 + 1.

Since we have non-empty splitting locus for the Kummer sequences recursively
defined by (1.1), we shall focus, from now on, in finding sufficient conditions in order
to ensure finite ramification. First, we give a simple result which will be useful later.
We will denote by x(P ) the residue class mod P of x ∈ F .

Lemma 3.2. Let F = (F0, F1, . . .) be an admisible recursive sequence of function
fields over Fq defined by the equation H(S, T ) = 0, where H ∈ Fq[S, T ]. Assume
that there is a set S0 ⊂ Fq such that if γ ∈ S0 and H(β, γ) = 0 then β ∈ S0. Let
{xi}i≥0 be a sequence of transcendental elements over Fq such that F0 = Fq(x0)
and Fi+1 = Fi(xi+1) where H(xi, xi+1) = 0 for all i ≥ 0. Let Q be a place in P(Fi)
such that xi(Q) ∈ S0. Then x0(Q) ∈ S0.

Proof. Let Q be a place of Fi such that xi(Q) ∈ S0. Since F is recursively defined
by H , we have that H(xi−1, xi) = 0 for all i ≥ 0. By reducing this equation
modulo Q we obtain H(xi−1(Q), xi(Q)) = 0, and by hypothesis xi−1(Q) ∈ S0.
Now, since H(xi−2, xi−1) = 0, the reduction modulo Q of this equation shows that
xi−2(Q) ∈ S0. Continuing in this way, we arrive to the desired conclusion.

Next we prove a proposition giving sufficient conditions for the finiteness of
the ramification locus of a particular class of recursive sequences of Kummer type.
Recall that if g(T ) ∈ Fq[T ], we denote by Zg the set of zeros of g(T ) in an algebraic
closure Fq of Fq.

Proposition 3.3. Let m ≥ 2 be an integer with q ≡ 1 mod m. Consider the
sequence F = (F0, F1, . . .) of function fields over Fq defined recursively by the
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equation

ym =
b1(x)
b2(x)

, (3.1)

where b1(T ), b2(T ) ∈ Fq[T ] are coprime polynomials such that deg(b1(T )) = m and
deg(b2(T )) = m − r with gcd(m, r) = 1. Then F is a tame admissible sequence.
Assume now that there is a finite set S0 ⊂ Fq with the following properties :

(1) Zb1 ⊂ S0.

(2) Zb2 ⊂ S0.
(3) Zσγ ⊂ S0, for all γ ∈ S0, where σγ(T ) = b2(T )γm − b1(T ).

Then Ram(F/F0) is a finite set. More precisely, if P ∈ P(F0) is a ramified place
in the sequence F then either P = P∞ is the pole of x0 in F0, or P is the zero of
x0 − γ, for some γ ∈ S0.

Proof. By hypothesis each extension Fn/Fn−1 is cyclic of degree m. It is also easy
to see that the pole P∞ of x0 in F0 is totally ramified in the sequence F . Therefore,
Fq is the full constant field of each Fn, and then F is admissible and tame.

Suppose that P ∈ P(F0) is ramified in Fn/F0. Choose Q ∈ P(Fn) above P

such that e(Q |P ) > 1 and let Pi = Q ∩ Fi be the restriction of Q to Fi, for each
i = 0, 1, . . . , n. Since Q |P is ramified, then Pi+1 |Pi is ramified for some index i.

From the defining equation,

xm
i+1 =

b1(xi)
b2(xi)

,

and from the ramification theory of Kummer extensions (see, for example, [7, Propo-
sition 3.7.3]), it follows that Pi+1 is either a zero or a pole of xi+1 in Fi+1.

If Pi+1 is a zero of xi+1, we have that xi+1(Q) = 0. By reducing the equation
xm

i+1b2(xi) = b1(xi), modulo Q we obtain

0 = xi+1(Q)mb2(xi(Q)) = b1(xi(Q)),

and this implies that xi(Q) = γ for some γ ∈ Fq such that b1(γ) = 0. Thus
xi(Q) ∈ S0 by (1).

Suppose now that Pi+1 is a pole of xi+1. Then x−1
i+1 ∈ Pi+1 ⊂ Q. Hence

x−1
i+1(Q) = 0. Since b2(xi) = b1(xi)x−m

i+1 , by reducing modulo Q we have that
b2(xi(Q)) = b1(xi(Q))(x−1

i+1(Q))m = 0 and this implies that xi(Q) = γ for some
γ ∈ Fq such that b2(γ) = 0. Therefore xi(Q) ∈ S0 by (2). By (3) and Lemma 3.2
we have that x0(Q) ∈ S0.

Now we can easily see that if P ∈ P(F0) is a ramified place in F then, P = P∞
if vP1(x1) < 0 and P is the zero of x0 − γ, for some γ ∈ S0, if vP1(x1) ≥ 0.
Hence Ram(F/F0) ⊂ {Px0−γ : γ ∈ S0} ∪ {P∞} and since S0 is finite, F has finite
ramification locus.

1550028-5

J.
 A

lg
eb

ra
 A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 M
ar

ía
 d

e 
lo

s 
A

ng
el

es
 C

ha
ra

 o
n 

11
/0

5/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 15, 2014 15:27 WSPC/S0219-4988 171-JAA 1550028

M. Chara & R. Toledano

Now we can prove one of our main results.

Theorem 3.4. Let m≥ 2 be an integer and q a prime power such that q≡ 1 mod m.
Let α ∈ Fq such that T m+α splits into linear factors in Fq and let f(T ) ∈ Fq[T ] be a
separable polynomial of degree m− r with gcd(m, r) = 1 such that ZT m+α∩Zf = ∅.
Assume that there is a finite set S0 ⊂ Fq with the following properties :

(1) ZT m−αf(T )+α ⊂ S0.

(2) Zf ⊂ S0.
(3) Zσγ ⊂ S0, for all γ ∈ S0, where σγ(T ) = f(T )(γm + α) − (T m + α) ∈ Fq[T ].

Then the sequence F = (F0, F1, . . .) of function fields defined by the equation

ym =
xm − αf(x) + α

f(x)
(3.2)

is an asymptotically good tower of Kummer type over Fq and

λ(F) ≥ 2m

|S0| − 1
> 0.

Proof. As in Proposition 3.3, we have by hypothesis that each extension Fn/Fn−1

is cyclic of degree m, and the pole P∞ of x0 in F0 is totally ramified in the
sequence F . Therefore, Fq is the full constant field of each Fn, and then F is
admissible and tame.

Using Proposition 3.1 we have that |Split(F/F0)| ≥ m and then F is a tower
over Fq.

The fact that S0 ⊂ Fq is finite, implies that for some integer s we have that
S0 ⊂ Fqs and satisfies the conditions in Proposition 3.3. Therefore, we have that
if P ∈ P(F0) is a ramified place in the tower F , then P = P∞ or P is the zero of
x0 − γ, for some γ ∈ S0. Then the ramification locus is finite and thus the tower
has a finite genus over Fqs . Since the genus of a tower does not change in constant
field extensions, we conclude that F has finite genus over Fq.

Finally, since F is a tame recursive tower with non-empty splitting locus and
finite ramification locus, [4, Theorem 2.1] implies that F is an asymptotically
good tower of Kummer type over Fq. Moreover, since |Split(F/F0)| ≥ m and
Ram(F/F0) ⊂ S0 ∪ {∞} then

λ(F) ≥ 2m

|S0| + 1 − 2
,

as desired.

Example 3.5. Let m = 2, q = 9. Let G = (G0, G1, . . .) be defined recursively by

y2 =
x2 − x + 1

x
.
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This equation is of the form (1.1) with f(x) = x and α = 1. In this case, T 2 + 1
has two simple roots in F9 and f(T ) is a separable polynomial of degree 1 with no
common roots with T 2 + 1. Then

|Split(G/G0)| ≥ 2,

by Proposition 3.1. The set S0 = F3 ⊂ F9 satisfies conditions (1)–(3) of
Theorem 3.4. Hence

Ram(G/G0) ⊆ {P∞, Px0 , Px0−1, Px0−2},
then G is an asymptotically good tower of Kummer type over F9 with

λ(G) ≥ 2.

Since

2 ≥ A(9) ≥ λ(G) ≥ 2,

we see that this tower over F9 is asymptotically optimal, i.e. λ(G) = A(9).

Remark 3.6. Note that the tower G in the previous example has, in fact, finite
ramification locus over F3. However, Theorem 3.4 only allow us to say that F has
positive splitting over F9. Notice that G can be described also by

y2 =
(x + 1)2

4x
.

By [3, Remark 5.9] we have that G is a subtower of

y2 =
x2 + 1

2x
,

which is optimal over Fp2 .

Example 3.7. Let m = 2, q = 9. Let H = (H0, H1, . . .) be defined recursively by

y2 =
x(x − 1)

x + 1
.

This equation is of the form (1.1) with f(x) = x + 1 and α = 1. Again in this
case we have that |Split(H/H0)| ≥ 2. The finite field F9 can be represented as
F9 = F3(δ) with δ2 + 2δ + 2 = 0. The set S0 = {0, 1, 2, δ, δ3, δ5, δ7} ⊂ F9 satisfies
conditions (1)–(3) of Theorem 3.4, and then H is an asymptotically good Kummer
type tower over F9 with

λ(H) ≥ 2
3
.

Remark 3.8. Notice that the tower H in the previous example can be described
also by

y2 =
x(x + 2)

x + 1
.

Using this equation in [3, Example 4.3] the authors proved that H is an asymptot-
ically good tower and the same bound for its limit was obtained.
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Theorem 3.4 is stated for towers whose defining equations have coefficients in
any finite field. Hence we can find examples of towers whose defining equations
have coefficients in non-prime fields. In fact, if we perform a computer search for
all possible equations of the type (3.2) satisfying the conditions of Theorem 3.4
for q = 9 we obtain a long list of equations, and therefore of towers, which at
first glance seem totally different from each other. In particular, we obtain some
equations whose coefficients are purely in F3 while the vast majority has coefficients
in F9. However, by a suitable change of variables, it can be shown that all of them
are either equivalent to the tower in Example 3.5 or to the tower in Example 3.7.
That is, the towers in the above examples are the only two towers with defining
equations of the type (3.2) and satisfying the conditions of Theorem 3.4 with a
finite set S0 ⊂ F9.

For example, other equations defining the asymptotically optimal Kummer
tower of Example 3.5 are given in Table 1.

Given that all the equations in Table 1 define the same tower and satisfy the
conditions of Theorem 3.4 we wonder in which cases different equations satisfying
these conditions will give us the same tower. As a response to this question we have
the following proposition.

Proposition 3.9. Let α ∈ F∗
q and f(T ) ∈ Fq[T ] be such that the equation

ym =
xm − αf(x) + α

f(x)
(3.3)

defines a tower which satisfies the conditions of Theorem 3.4. Then, if for c ∈ F∗
q

we consider β = c−mα ∈ F∗
q and g(T ) = f(cT ) ∈ Fq[T ], we have that the equation

ym =
xm − βg(x) + β

g(x)

defines the same tower as the one defined by (3.3) and also satisfies Theorem 3.4.

Proof. By applying to (3.3) the change of variables x = cX , y = cY we get

cmY m =
cmXm − αf(cX ) − α

f(cX )
.

Table 1. Other examples of equations defining the same tower as in Example 3.5.

α f(T ) Defining equation Change of variables

δ + 1 (δ + 2)T y2 = x2−(δ+1)(δ+2)x+δ+1
(δ+2)x

X = δx; Y = δy

δ + 1 (2δ + 1)T y2 = x2−(δ+1)(2δ+1)x+δ+1
(2δ+1)x

X = δ4x; Y = δ4y

2 (δ + 1)T y2 =
x2−2(δ+1)x+2

(δ+1)x
X = δ3x; Y = δ3y

2δ + 2 2δT y2 = x2−(2δ+2)2δx+2δ+2
2δx

X = 2x; Y = 2y

1 2T y2 = x2−2x+1
2x

X = δ5x; Y = δ5y

2δ + 2 δT y2 = x2−(2δ+2)δx+2δ+2
δx

X = δ2x; Y = δ2y
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Thus

Y m =
Xm − c−mαg(X) + c−mα

g(X)
=

Xm − βg(X) + β

g(X)

defines the same tower.
Moreover, since ZT m+α ∩ Zf = ∅ then ZT m+β ∩ Zg = ∅. Otherwise, if x ∈

ZT m+β ∩ Zg then xm + β = 0 and g(x) = 0. This means that xm + c−mα = 0 and
f(cx) = 0, and since c ∈ F∗

q we get (cx )m + α = 0. But in this case cx ∈ZT m+α ∩Zf

which is a contradiction.
Let S0 be the set of Theorem 3.4 for f . We define Sg

0 = {c−1λ : λ ∈ S0} ⊂ Fq.
Then Sg

0 satisfies:

(1)

ZT m−βg(T )+β = {x : xm − βg(x) + β = 0}
= {x : xm − c−mαf(cx ) + c−mα = 0}
= {c−1(cx ) : (cx )m − αf(cx ) + α = 0}
⊂ {c−1λ : λ ∈ S0} = Sg

0 .

(2) Zg = {x : g(x) = 0} = {c−1(cx ) : f(cx) = 0} ⊂ {c−1λ : λ ∈ S0} = Sg
0 .

(3) For all γ ∈ Sg
0 we have that γ = c−1δ with δ ∈ S0 and

Zσγ = {x : g(x)(γm + β) − (xm + β) = 0}
= {x : f(cx)((c−1δ)m + α) − ((cx )m + α) = 0}
= {c−1λ : f(λ)(δm + α) − (λm + α) = 0}
= {c−1λ : σδ(λ) = 0}
⊂ {c−1λ : λ ∈ S0} = Sg

0 .

Therefore, for each element in F∗
q we have an equation which defines the same tower

as (3.3) and satisfies the conditions of Theorem 3.4.

For those cases where cm = 1, we have the following direct consequence of the
above proposition.

Corollary 3.10. For each mth root c of 1 in Fq, we have that the equation

ym =
xm − αg(x) + α

g(x)
,

with g(T ) = f(cT ) ∈ Fq[T ], defines the same tower as (3.3) and satisfies the con-
ditions of Theorem 3.4.

Proposition 3.9 has an important computational consequence. Namely when
making a computer search for all possible equations that define towers satisfying the
conditions of Theorem 3.4 over Fq, we will actually find q−1 equations representing
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the same tower. Moreover, the above corollary tells us that for every α there are as
many equations that define the same tower as mth roots of 1 in Fq.

Let us now look at some other examples of towers whose defining equations have
coefficients in non-prime fields. We consider first the case m = 2 and q = 25.

Example 3.11. Let us represent the finite field F25 as F5(δ) with δ2 + 4δ +
2 = 0. Consider the sequence K = (K0, K1, . . .) of function fields over F25 defined
recursively by the equation

y2 =
x2 − (δ + 2)x
(δ + 2)x + 1

.

We have that F25 is a splitting field for T 2 + 4 and it is easy to check that S0 =
{0, 2δ + 4, 4δ + 3, δ + 2, 3δ + 1} satisfies the conditions of Theorem 3.4. Then K is
a tame Kummer type tower over F25 with

|Split(K/K0)| ≥ 2

and

|Ram(K/K0)| ≤ 5.

Therefore, by Theorem 3.4 we have that

λ(K) ≥ 2 · 2
5 − 1

= 1.

Remark 3.12. By using a suitable change of variables it can be shown that the
tower K can also be defined by the equation

y2 =
x(x + 2)

x + 1
,

which was studied by Garcia, Stichtenoth and Rück in [3], where it is also shown
that its limit is at least 1.

Remark 3.13. Again in this case, making a computer search for all possible equa-
tions over F25 defining towers satisfying Theorem 3.4, we find 24 different equations,
but all of them represent the tower K of Example 3.11. There is no other tower of
this type with a finite set S0 ⊂ F25.

Now we show new examples of asymptotically good Kummer type towers
over F9.

Example 3.14. Let us represent the finite field F81 as F3(δ) with δ4 +2δ3 +2 = 0.
When looking for all possible equations

y2 =
x2 − αf(x) + α

f(x)
,

defining towers of function fields over F81 with, for example, α = 2δ3 + 2δ2 + 1,
we arrive to eight different possible candidates for f(T ). But since F81 has two 2th
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New examples of asymptotically good Kummer type towers

roots of unity, Corollary 3.10 tells us that only four of these equations represent
different towers. Two of them are the towers of Examples 3.5 and 3.7, and we find
two more new towers:

I = (I0, I1, . . .) with f(T ) = (2δ3 + 2δ2 + 2)T + (δ3 + δ2 + 2)

and

J = (J0, J1, . . .) with f(T ) = (δ3 + δ2)T + (2δ3 + 2δ2).

In both cases we find a finite set S0 with nine elements and by Theorem 3.4 we
have that

λ(I) ≥ 2 · 2
9 − 1

=
1
2

and λ(J ) ≥ 2 · 2
9 − 1

=
1
2
.

Remark 3.15. Again as before, if we look (computationally) for all possible equa-
tions of the type (3.2) satisfying the conditions of Theorem 3.4 for q = 81 we obtain
a long list of candidates. Interestingly in this case, there are no other equations rep-
resenting the towers I or J with coefficients in F3. Moreover, it is easy to check that
the coefficients in both equations are actually in F9. However, the corresponding
sets S0 are in F81 and not in F9. Since the genus of a tower does not change in con-
stant field extensions and recalling that the towers I and J both have non-empty
splitting locus in F9, we see that in fact, they are asymptotically good towers over
F9, each one with limit at least 1/2. From this and the list of asymptotically good
tame towers over F9 given in [6], we can say that I and J are new examples.

As we mentioned in Sec. 1, in this paper we have worked with towers defined
recursively by equation of the form (1.1) because they have non-empty splitting
locus under the conditions of Proposition 3.1 which are easy to check. Another
equation in which is already known that the splitting locus is non-empty is

ym = xm−rf(x), (3.4)

where f ∈Fq[x] is a suitable polynomial of degree r with f(0) �=0 and gcd(m, r)= 1.
In [4], Garcia, Stichtenoth and Thomas studied towers defined recursively by (3.4),
giving conditions in order to have finite ramification locus. Interestingly, and some-
how surprisingly, when performing a computational search for this type of equations,
the only examples that appeared are the so-called Fermat type towers (see [3]). So
we are tempted to conjecture that these are the only ones of the form (3.4) which
are asymptotically good. Recall that Lenstra [5] proved that over a prime fields,
for equations of the form (3.4) there is not a finite set S0 ⊂ Fp containing the
ramification locus of the tower.

We end with the following observation. Making the change of variables X = 1/x

and Y = 1/y in (3.4), we obtain the equation

ym =
xm

h(x)
,
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with h ∈ Fq[x]. In particular, for q = 9 and h(x) = x− 1 we have a tower recursively
defined by

y2 =
x2

x − 1
,

which is asymptotically optimal (see [3, Example 14.9]). However, this example is
not new as claimed in [3]. It is, in fact, a Fermat type tower of the form (3.4)
given by

y2 = x(x − 1),

over F9.
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