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Abstract

Today, a new chapter is being written in the book of Alzheimer disease, one that is
challenging the longstanding view that adult neurons are incapable of division, remain
nonproliferative, and are terminally differentiated. Here, we review the provocative

notion that, in Alzheimer disease, whole populations of nonstem cell neurons leave their quies-
cent state and re-enter into the cell cycle. However, such neuronal re-entry into the cell cycle is
futile and ultimately leads to the neurodegeneration that typifies Alzheimer disease.

Introduction
It is perhaps ironic to discover that neurodegenerative diseases, such as Alzheimer disease

(AD), where cell loss is a key feature, may provide clues to understanding the plasticity of the
adult central nervous system. In AD, there is accumulating evidence that susceptible neuronal
populations exhibit a de-differentiated phenotype likely representative of a reactivated cell cycle.
This exit from a quiescent state is manifested in several ways, including:

1. The ectopic expression of cyclins along with their cognate cell cyclin-dependent kinases
(CDKs) and their inhibitors (CDKIs);

2. Recruitment of mitogenic signal transduction pathway components; and
3. The increased transcriptional activation of a variety of mitosis-related proteins.

While the cause of this apparent neuronal re-entry into the cell cycle is not known, the conse-
quences for these terminally differentiated cells are disastrous leading to oxidative stress,
cytoskeletal abnormalities, mitochondrial dysfunction and, ultimately, neuronal death. In other
words, the re-emergence into the cell cycle by neurons accounts for many of the cardinal fea-
tures of the disease. In this review, we explore some of these mitotic alterations including the
recruitment of mitogenic factors and oxidative stress. Further, we speculate on the nature and
the source(s) of mitogenic factors, which underlie the pathological events observed in this
dreaded disease.

Pathological Hallmarks of Alzheimer Disease
As an insidious and progressive neurodegenerative disease, AD affects up to 15% of indi-

viduals over the age of 65 and nearly half of all individuals aged 85 and above.1 The disease is
quickly becoming one of the most serious health problems in the U.S. and has a dehumanizing
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nature that involves destruction of higher-order brain function leading to dementia, disability
and, finally, death. Two pathological lesions, namely the neurofibrillary tangle (NFT) and the
senile plaque, are hallmarks of the disease and these neuritic plaques and NFT are largely
associated with dementia. NFT, which contain a highly phosphorylated form of the microtu-
bule associated protein tau, is the major intracellular pathology of AD, while senile plaques are
extracellular and are primarily composed of amyloid-β.2,3 The mechanisms involved in the
formation of these lesions or neuronal death are largely unknown although recent findings
indicate a key role for the aberrant re-entry of neurons into the cell cycle.

A Mitotic Phenotype Appears in Alzheimer Disease
A growing number of cell cycle-related proteins are found associated with the susceptible

and vulnerable neurons of AD (Table 1) that, from their temporal and pathological distribu-
tion, are indicative of an early and fundamental role in the pathogenesis of AD. This cycling
phenotype, rather than a phenotype of cells in a terminally differentiated state, has been re-
viewed elsewhere.4 Nonetheless, it is important to note that cell growth changes ultimately
occur through signal transducers that activate specific transcription factors and modulate cell
cycle control proteins.5 These proteins themselves are also regulated in a cell cycle-dependent
manner6,7 and are listed in Table 2. Perhaps of greatest import, however, as regards disease
pathogenesis, all of the major genetic and protein elements dysregulated in AD, including tau,
amyloid-β precursor protein (AβPP), presenilin1/2, and, possibly, apolipoprotein E (ApoE),
are also altered during the cell cycle.4

Tau Phosphorylation
Since increased phosphorylation and decreased microtubule stability are coincident dur-

ing progression through the cell cycle8,9 and these cell cycle-related protein alterations are found
in AD, it is not surprising that microtubular abnormalities and tau phosphorylation are associ-
ated with AD.10 While the kinases responsible for tau phosphorylation in AD are not com-
pletely characterized, increased residue-specific phosphorylation of tau occurs in mitotically
active neurons where phosphorylation is driven by CDKs.11-15 Of note, in AD, CDKs, such as
CDK2 and CDK5, as well as Cdc-kinases and MAP2 kinases, are increased in AD in a topo-
graphical manner that completely overlaps with phospho-tau16,17 and also have been shown to
hyperphosphorylate tau in in vitro assays.18-22 In addition, we recently demonstrated that CDK7,
an age-dependent CDK-activating kinase, also associates phospho-tau in AD and may be es-
sential to all other mitotic alterations since CDK7 plays such a crucial role as an activator of all
the major CDK/Cyclin substrates.23 Finally, we have shown that cell cycle re-entry leads to tau
phosphorylation in primary neurons (McShea and Smith, unpublished data).

Amyloid-βββββ
The major protein component of senile plaques, amyloid-β, is derived from a larger pre-

cursor AβPP encoded on chromosome 2124 and is upregulated secondary to mitogenic stimu-
lation.25 Further, AβPP metabolism is regulated by cell cycle-dependent changes7 and has neu-
rotrophic effects at low (nM) concentrations26 consistent with its mitogenic activity in vitro.27,28

Presumably, the effect of amyloid-β is mediated through mitogen activated protein kinase
(MAPK),29 and therefore may play a direct role in the induction or propagation of cell
cycle-mediated events in AD. Therefore, amyloid-β, along with oxidative stress30 and cell cycle
re-entry, may have common etiologies. However, it is notable that, while amyloid-β-mediated
cell death, at least in vitro, is dependent on the presence of various cell-cycle-related elements,31

in vivo analysis of the basal nucleus of Meynert and the locus ceruleus, where amyloid-β is
rarely seen, found little or no topographical relationship between amyloid-β and the ectopic
expression of cell cycle markers in diseased brains.23,32-38 Thus, amyloid-β may only become
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toxic in vivo when the neuronal cell cycle machinery is activated or when levels exceed the
body’s ability to regulate its turnover.

Presenilins
Mutations in the human presenilin genes 1 and 2 (PS-1/2) found on chromosomes 14

and 1, respectively, are linked to early onset AD.1 The association of presenilins with cen-
trosomes and centromers, and the link between PS-1/2 and Notch-based signaling through
cadherin-based cell-cell adherence junctions,39 indicates that PS-1/2 may play critical roles in
cytoskeletal anchorage, cell division, chromosome segregation,40 cell fate,41-43 early embryonic
development,44 and tumorigenesis.45 In this regard, we and others have shown that overexpression
of PS-1/2 leads to cell arrest in the G1 phase of the cell cycle, an effect that is potentiated by
expression of the PS-2 (N141I) mutation.46 Overexpression also yields a loss of calcium ho-
meostasis, increased oxidative stress, and increased susceptibility to apoptotic death,47 with
AD-linked mutations of presenilins showing greater effect.46,48 Further, PS-1 mutations desta-
bilize beta-catenin and can potentiate neuronal apoptosis,49 by reducing the capacity of neu-
rons to induce endoplasmic reticulum chaperones.50 Alternatively, induction of apoptotic sys-
tems via PS-1/2 and AβPP mutations, could also lead to the upregulation of CDKs since
expression of Cyclin/CDKs, in addition to driving cell proliferation and growth control, are
also implicated in neuronal death signaling and apoptosis (see Fig. 1).31,51,52 Indeed, the differ-
ential activity of AD-linked PS-1 in the beta-catenin-signaling pathway indicates a key role for
cadherins in the pathogenesis of AD. Therefore, one would also expect the subsequent induc-
tion of p27 (Ogawa et al, submitted) and inhibition of Cyclin E/CDK2, while increasing
expression of p2153 and consequently an inhibition of proliferation. In addition, a block from
progression at the G1/S phase boundary, by PS (and possibly AβPP) mutations, would likely
result in the accumulation of cell cycle control proteins as is seen in AD. Therefore, PS muta-
tions confer a contracted time course to the underlying pathophysiology of AD.

AβPP, through the stimulation of Ras-dependent MAPK cascade in vivo, is correlated
with highly phosphorylated tau.54 The early p21Ras expression pathway is activated during the
posttranslational modification of AβPP and tau phosphorylation, which precedes neurofibril-
lary degeneration and amyloid-β formation.55 Additionally, the presence of p21, highly phos-
phorylated tau, Ki-67, and cell cycle-associated nuclear antigen protein (PCNA), may have a
role in the production of abnormally phosphorylated tau which then leads to the formation of
cytoskeletal derangements in susceptible neurons.56 This strong link points to cell cycle reacti-
vation and the upstream ectopic expression of cell cycle markers as a critical, and common,
early event in AD pathogenesis.

G0 Exit, G1 Entry, and Mitogenic Drivers in Alzheimer Disease
Quiescence, cell division, and differentiation are states central to the regulation of growth

and development. Increased growth stimuli, as in extrinsic mitotic pressure, activate key factors
for G0 exit and G1 progression, including the complex-forming CDKs, i.e., CDKs 4, 5, 6, 7
(see Table 1), and their cognate activating cyclins, i.e., Cyclin D1, D3, E and B1 (see Table 1).
These complexes are able to phospho-regulate a wide variety of relevant substrates.57 Together,
they orchestrate DNA replication, cytoskeletal re-organization, and cellular metabolism re-
quired for proliferation, development, and cell cycle progression. While it has been argued that
a number of the cell-cycle related phenomena found in AD can also occur as sequelae to other
processes, such as apoptosis, trophic-deprivation, and DNA repair (see Table 2),52,58-62 we
propose that the re-emergence of, or sensitivity to, extrinsic signals initiates an attempt to
re-enter into the cell division cycle, with progression being limited by the degree of mitotic
competence of the adult neuron.
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The identity of the signal(s) that lead the neuron to attempt exit from a quiescent state
and re-enter the cell cycle remains yet to be determined. However, a number of growth factors
and mitogens are elevated in the AD brain and may drive cell cycle re-entry. Re-sensitization to
these exogenous or surface-derived signals can lead to the activation of the mitotic engine and
drive cell proliferation as seen in AD. Candidate growth factors, elevated in the AD brain
include, but are not limited to, neurotrophic factors, nerve growth factor (NGF), transforming
growth factor beta-1 (TGF-β),63 platelet-derived growth factor (PDGF), epidermal growth
factor (EGF), and basic fibroblast growth factor (bFGF).64-67 Additionally, insulin-like growth
factor-1, which has been shown to mediate transient site-selective increases in tau phosphory-
lation in primary cortical neurons,68 is involved in axonal growth and development and can
mediate the cytoskeletal reorganization that occurs during neurite outgrowth and, perhaps, in
aberrant neuronal sprouting.69

Apoptotic Avoidance in Alzheimer Disease
Apoptotic avoidance by itself can be viewed as both sufficient and necessary for transfor-

mative processes. Therefore, we made a systematic study of the caspase cascade proteins in AD
by evaluating the presence and/or absence of central initiator (caspases 8 and 9) and the execu-
tioner (caspases 3, 6 and 7) proteins of apoptosis.165 Our study revealed that although up-
stream initiator caspases were present in association with the pathological lesions in all cases of
AD, downstream executioner caspases, including 3 and 7, that signal the onset of the execution
phase of apoptosis, remained at control levels in vulnerable populations indicating an absence
of effective distal propagation of the caspase-mediated apoptotic signal(s). This lack of down-
stream amplification of signaling via the caspase pathway may well account for the lack of an
apoptotic phenotype but the development of a mitotic phenotype in AD. Notably, expression

Figure 1. The complex relationship between cell survival and cell death pathways.
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of cyclin/CDKs, in addition to driving cell proliferation and growth control, has dual con-
served roles as they are also implicated in apoptotic signaling.31,51,52

Redox Imbalance and Cell Cycle Re-Entry
Energy is an obligate requirement for dividing cells. Therefore, before mitosis, there is

division and redistribution of cellular organelles such that during late S, G2 and mitotic phases,
mitochondrial proliferation is most evident.166 Notably, in AD, increases in the number of
mitochondria are found in the same neurons that also exhibit cell cycle related abnormalities
and undergo subsequent oxidative damage and cell death.167 While in a normally mitotic cell,
mitochondrial replication is imperative for providing the energy needed for cell division, in
AD where neuronal cell cycle is interrupted or dysfunctional, we suspect that neurons incur a
“phase stasis” with excessive mitochondria. Such “excess” mitochondria are then potent sources
of free radicals and cause homeostatic and redox imbalances, especially in those redox reactions
involving calcium metabolism.168 Thus, cell cycle dysfunction, when mitochondrial mass is
highest, poses an elevated, and possibly chronic, oxidative assault upon the cell, far beyond the
blunting capacity of endogenous antioxidants.

Importantly, imbalances in redox homeostasis are also played out via numerous signal
transduction cascades, which are also intimately linked to cell cycle control. Indeed, activation
of p38 MAPK and ERK links tau phosphorylation, oxidative stress, and cell cycle-related events

Table 1. Cell cycle-specific markers found associated with Alzheimer disease

Marker Role Association with Alzheimer Disease

Cyclin A S to G2/M 6,70
Cyclin B G2/M 21,22,35,71
Cyclin C No Known Role
Cyclin D (D3) G0/G1/ lateG1/S 35,71-73
Cyclin E G1 to G1/S 21,22,74
p34cdc2/ cdk 1 Late G2/M 6,7,16,35,70,71,75
Cdk4/Cdk6 G1/ G1/S 31,32,35,75,76
Cdk5/p25/p35 G2 D1, D3 G1 Cyclins 17,76-83
Nclk cdc2-like kinase Cyclin A kinase 17,20,76,84
Cdk7/MPM2 CDK activated kinase 23,72,73
Cdc42/rac GTPase/cell division 36
p21ras G protein/MAPK 46,54,55,70,85
MRG 15 M phase regulator 86
Ki-67 LateG1,S,G2,M 21,22,56,87
p105/pRb G2/M TF 31,56,87
pCNA Non cell-cycle specific 35
p107/pRb Cdk2/4/6, check pt 31,46 (negative association)
c-myc S to G2 checkpoint 46 (negative association)
p53/MDM2 Repressor complex 88,89
ATM Check-point 46
Raf/Raf-1 Check point kinase 90
p16INK4a p18p15p19 CyclinD/cdk4/6 inhibitors 19,32,70,72,73,91

of M phase
p27/Kip1 Cyclin D and E /cdk7 inhibitor 46 (negative association),72,73
WAF-1/ p21/Cip1 Multi-Cyclin /cdk-inihibitor 92

(G1 and S)
Polo-like kinase G2/M check point 93,94
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in AD.37,38,128,169 MEK, ERK1/2, cyclins, cyclin-dependent kinases and their inhibitors, i.e.,
p16INK4a family, and p21Ras are elevated early in AD and co-localize in pyramidal neurons
with NFT.70 Neuronal ERK is increased in AD, and phosphorylation, as well as phosphoryla-
tion of p38 and CREB, by nerve growth factor or epidermal growth factor, is differentially
modulated by oxidative and other stresses.170 In support of this notion, compromised mito-
chondrial function was found to lead to increased cytosolic calcium and to the activation of
MAPKs (ERK1/2).127 Likewise, activated forms of ERK are found decreased in cells
overexpressing heme oxygenase-1 (HO-1), indicating that tau and HO-1 both serve overlap-
ping protective roles in regulating oxidative stress.132 Importantly, there is abundant evidence
that oxidative stress and free radical damage plays an essential role in the pathogenesis of
AD.38,171,172 Therefore, it is notable that free radicals, free-radical generators, and antioxidants
also act as crucial control parameters of the cell cycle.173,174

Finally, there is abundant support for the notion that imperfect clearance of proteins,
damaged or modified by oxidation processes, contributes to cell death by interfering with
essential cell functions.175 Impairments in the ubiquitin-dependent protein degradation sys-
tem, which is aimed at clearing and preventing the progressive accumulation of misfolded or
aggregated and ubiquitinated proteins, is a cytopathological feature in many neurodegenerative

Table 2. Cell cycle-associated proteins found in Alzheimer disease

Marker Role Association with Alzheimer Disease

PP2A or PP2B Phosphatase (Cdk5, cdc2) 76,95-98
PP-1 81,95
Cdc25 Cdc25A Phosphatase G2/M 99,100
PKC/ Wnt path Translation control 101-109
PKA Kinase 110,111
PKN Kinase 112
PI3K Kinase 113-116
AKT/PKB/RAC Kinase 112,116-119
TGFBeta/ TAK Kinase 120,121
p44/p42 MAPK (ERK1/2) MAP kinase 16,38,54,70,122-135
CamK Kinase Ca /Calmodulin regulated 136
p38 MAPK Kinase 37,133,134,137-139
JNK/ (SAPK-2/3) - Kinase (stress activated) 38,133,134,140
alpha gamma
MEK MAPK Kinase 70,126
GSK-3 and beta Catenin Proline dependent protein kinase 17,49,76,77,80,81,109,113,

(PDPK) 118,119, 122,133,137,141-151
P120/E-cadherin Adhesion complex 152
c-fos TF / regulator 153
14-3-3/14-3-3zeta Adaptor protein 154,155
c-jun/p39, AP-1 TF component 101,153,156-159
Fyn Transcription factor 160-162
p53 TF / DNA damage 21,22,163
Rho G-protein 112,164
Rap Rab G-protein 90
Sos-1 Guanine nucleotide exchange 33

factor
Grb-2 Adaptor 33
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disorders, including AD.176,177 In support of this notion, accumulation of phosphorylated
neurofilaments and the increase in apoptosis-specific protein and phosphorylated c-Jun is in-
duced by proteasome inhibitors.178 This speaks to the importance of cellular context in this
process, and the fact that the ubiquitin-proteasome pathway plays an important role in the
regulation of critical cellular processes, which include the cell cycle, cytoskeletal organization,
and gene transcription, e.g., c-fos, p53, p21 and p27. Such proteolysis is known to drive the
cell cycle by regulating the oscillations in activity of CDKs and perturbations in this process
also likely contribute to the dysregulated cell cycle seen in AD.179 In this regard, any event that
would also upset the balance between the signal transduction pathways for survival, or those
for growth, as well as those for death or differentiation, would likely shift this delicate balance.
Ultimately, this shift would determine the fate of select neuronal cells and population subsets
by largely favoring one set of pathways over another. The net result of this cross table would
impact survival or death to the cell and perhaps offer an explanation for the protracted time
course, which is seen in most neurodegenerative diseases (see Fig. 1).

Other damaging factors like hyperglycemia, reducing sugars and the presence of reactive
oxygen and nitrogen species can have a direct role in mediating protein crosslinking and, thus,
the accumulation of undigested material in AD.171,180,181 In support of this notion, caloric
restriction has been shown to selectively modulate the age-associated induction of genes encod-
ing proteins involved in inflammatory and stress responses.182

Conclusions
Cycling toward dementia requires an imbalance and despite their supposedly quiescent

status, vulnerable neurons in AD display a cell cycle phenotype, albeit an aberrant one (see Fig.
2). Further, it is becoming increasingly apparent that an altered and protracted cell cycle stasis
exists in susceptible neurons in AD. In fact, these “abnormalities” may be a partial response to
the genotoxic stress and metabolic imbalance common in degenerating neurons. Therefore,
any re-emergence of sensitivity to extrinsic signals, i.e., neurotrophic factors, may initiate an
attempt to re-enter into the cell division cycle, with progression being limited by the degree of
mitotic competence. Successful dysregulation of the cell cycle, coupled with a multilevel apoptotic
avoidance system, fulfills both the sufficient and necessary criteria for the initiation of an onco-
genic transformation and therefore, early in the course of AD, neurons likely face the recruit-
ment of similar mechanisms,4 i.e., AD is analogous to cancer. Unfortunate as it may be to our
higher-order structures, this opera of cell cycle appears to be unsustainable in neurons and
eventually leads to stasis in a specific phase of the cell division cycle, cellular dysfunction and in
the end-death.

Figure 2. “Cycling towards dementia” involves cell cycle dysregulation in AD.
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