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Abstract

Solutions to the functional equation

f(x+ y)� f(x)� f(y) = 2f(�(x; y)); x; y > 0; (1)

are sought for the admissible pairs (f;�) constituted by a strictly monotonic
function f and a strictly increasing in both variables mean �. A related
class of means, P-means, is introduced, studied and then employed in
solving (1) under additional hypotheses on �. For instance, R. Ger has
proved that the unique P-mean which is also quasiarithmetic is the geo-
metric mean G(x; y) =

p
xy. An elementary proof to this result is given

in this paper. Moreover, as a consequence of a fundamental result on the
uniqueness of representation of P-means it is proved that the geometric
mean G is the unique homogeneous P-mean.

2010 Mathematical Subject Classi�cation: 39B22, 26E60.
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1 Introduction

The study of the functional equation

f(x+ y)� f(x)� f(y) = 2f(�(x; y)); x; y > 0; (2)

begun in [6] (see also [5]) in connection with the Pythagorean Theorem. The
main interest in that paper was the characterization of the pair constituted by
the quadratic function and the geometric mean; i.e.,

f(x) = cx2; �(x; y) =
p
xy; (3)

among all the possible pairs (f;�) solving (2), after which the Pythagorean law
was obtained in the form of the associative operation

x4 y = f�1(f(x) + f(y)); x; y > 0:
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For that purpose, the class of admissible solutions was supposed to be the pairs
(f;�) composed by a strictly monotonic and continuous function f and a re-
�exive function �. In this class, the pair (3) turns out to be the unique solution
to (2) giving rise to a (positively) homogeneous operation x4 y.
Displacing the focus of interest from Geometry to Functional Equations, the

study of the equation (2) was continued in [12] and [7]. In the �rst of these
papers, the restrictions on the class of admissible solution were strengthened
up to the point of imposing on � a rigid functional form, proving that the pair
(3) is the unique solution to (2) when � is a quasiarithmetic mean (and f is,
as before, a strictly monotonic and continuous function). A similar result was
obtained in [7] by assuming that � is a (regular) Lagrangian mean. In this
way, means have played a relevant role in the investigations on the equation (2)
accomplished up to date and the present one will not be an exception, so that
let us digress brie�y on them.
Let I be a real interval. A (two variables) mean M de�ned on I is a function

M : I � I ! I which is internal (v.g. [9], pgs. xxvi-xxvii); i.e., it satis�es the
property

minfx; yg �M(x; y) � maxfx; yg; x; y 2 I: (4)

The mean is said to be strict when the inequalities in (4) are strict whenever
x 6= y (strict internality). Since the equality

M(x; x) = x; x 2 I; (5)

holds for every mean M , means are re�exive functions. A mean M is said to
be symmetric when

M(x; y) =M(y; x); x; y 2 I: (6)

If I = R+; then, a meanM is (positively) homogeneous provided that it satis�es

M(�x; �y) = �M(x; y); x; y > 0: (7)

A continuous mean is a mean that is continuous on I � I. Clearly, a re�exive
and strictly increasing in both variables function M de�ned on I � I is a strict
mean on I. The means considered throughout this paper will generally belong
to this class; for instance, the quasiarithmetic or Lagrangian means Af and Lf ,
respectively de�ned by

Af (x; y) = f�1
�
f(x) + f(y)

2

�
; x; y 2 I; (8)

and

Lf (x; y) =

(
f�1

�
1

y�x
R y
x
f(�) d�

�
; x 6= y

x; x = y
: (9)

In (8) and (9), f : I ! R is a strictly monotonic and continuous function named
generator function of the (corresponding) mean. Setting f(x) = x in (8) or (9)
yields the arithmetic mean A(x; y) = (x+y)=2. The representations Af and Lf
are essentially unique, in the sense speci�ed by the following:

2



Theorem 1 Two strictly monotonic and continuous functions f; g : I ! R are
generator functions of the same quasiarithmetic (or Lagrangian) mean if and
only if there exist �; � 2 R; � 6= 0, such that

g(x) = �f(x) + �; x 2 I:

In Cor. 5, pg. 246, of [3] can be found a proof of the quasiarithmetic case,
while the Lagrangian one is covered by [8] or [9], Theor. 29, pg. 404.
In continuing the main exposition let us note that, unlike what occurs with

the second members of (8) and (9), the functional form

�(x; y) = f�1
�
f(x+ y)� f(x)� f(y)

2

�
; x; y > 0; (10)

does not necessarily de�ne a mean when f satis�es the sole conditions of monotonic-
ity and continuity. For example, substituting f by the power function xp; x >
0; (p 6= 0), in (10) yields

�(x; y) =

�
(x+ y)p � xp � yp

2

� 1
p

;

and � turns out to be re�exive only when p = 2. If so, (10) gives �(x; y) =p
xy = G(x; y), the geometric mean which, as many times remarked along

this paper, constitutes a very singular case among the means admitting this
functional form.
Throughout this paper, a symmetric and strictly increasing in both variables

mean � de�ned on R+ will be named a P-mean when the representation (10)
is admitted by �. It will be indistinctly said that f is the generator function
of � or that � is generated by f , which will be denoted by writing �f when
necessary. The class of P-means will be denoted by PM.
Now, consider a re�exive and strictly increasing in both variables function

� which, as said above, is a strict mean. The problem of deciding whether �
is a P-mean can be reformulated as that of �nding solutions to the functional
equation (2) in the class of strictly monotonic functions f de�ned on R+: f
solves equation (2) if and only if � can be written in the form (10). In this
paper, a systematic exploration of P-means is undertaken or, what amounts to
the same thing, of equation (2) in the class of pair (f;�) composed by a strictly
monotonic function f and a re�exive and strictly increasing in both variables
function �. The functions f generating a symmetric and strictly increasing in
both variables mean � through the formula (10) are characterized in Section 2,
thus obtaining a complete description of the class of P-means. The properties
of such generator functions are studied in Section 3, where basic facts on their
Cauchy di¤erences and other useful results are established. Subarithmeticity,
duplication and other simple properties of the P-means are gather together in
Section 4 and then used to o¤er an elementary proof of the main result in [12]:
G is the unique quasiarithmetic P-mean. A characterization of P-means based
on the co-cycle equation is also given there. A fundamental result, which is to
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P-means as Theorem 1 is to quasiarithmetic or Lagrangian means, is proved in
the �nal Section 5. As a consequence of it, it is shown that a P-mean satis�es
an equation of the form �(�0x; �0y) = �0�(x; y); x; y > 0, with ln�0= ln 2 =2 Q,
if and only if � = G. In particular, the pair (3) turns out to be the the unique
solving equation (2) in the class of pairs composed by a strictly monotonic
function f and a strictly increasing in both variables and homogeneous mean
�. Unlike what happen when a given functional form is imposed on � (as made
in [12] and [7]), this set of hypotheses may be visually contrastable by using
simple �gures, so that the result can be applied in the geometric context in
which equation (2) was originated.

2 P-means

Our �rst result gives necessary and su¢ cient conditions in order that the re-
placement of a strictly monotonic function f in (10) yields an increasing in both
variables mean �.

Theorem 2 A strictly monotonic function f : R+ ! R generates a symmetric
and increasing in both variables mean � through the expression (10) if and only
if f ful�lls the following two conditions:

i) f solves the Schröder equation

f(2x) = 4f(x); x > 0; (11)

ii) f is strictly convex or strictly concave provided that is increasing or decreas-
ing, respectively.

The following result of the type �monotonicity ) continuity�on solutions
to the equation (2) will be a key part of the proof of Theorem 2.

Theorem 3 Let f be a strictly monotone solution to equation (2) in which
� is assumed to be a function increasing in both variables. Then f and �
are continuous functions; moreover, f is convex or concave provided that f is
increasing or decreasing, respectively.

A result of this kind was stated by Z. Páles in [17].
Proof. First, let us assume that f is increasing. Then, its increment f(x +
y) � f(x) is, as a function of x, a strictly monotonic function; namely, x 7!
f(x + y) � f(x) = f(y) + 2f(�(x; y)) is (strictly) increasing for every y > 0.
This fact together with the monotonicity of f implies its continuity. Indeed, if
x0 was a jump of size � > 0 of the (increasing) function f ; then, taking a small
enough � > 0 and choosing a point of continuity x1 of f such that x1 > x0, it
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could be written

� < f

�
x0 +

�

2

�
� f

�
x0 �

�

2

�
= f

��
x0 �

�

2

�
+ �

�
� f

�
x0 �

�

2

�
< f(x1 + �)� f(x1);

an inequality which is, in view of the arbitrariness of �, in contradiction with
the continuity of f at x1. Since f is continuous and strictly increasing, so is
f�1 and therefore, solving equation (2) for � yields the representation (10), so
that � is also continuous.
Now, the Jensen convexity of f follows from the monotonicity of x 7! f(x+

y)� f(x). In fact, the inequality

f((x� y) + y)� f(x� y) < f(x+ y)� f(x)

holds for x > y > 0, and setting X = x + y; Y = x� y, it can be rewritten in
the form

f

�
X + Y

2

�
<
f(X) + f(Y )

2
; X; Y > 0;

whence f is Jensen convex. Since f is continuous, it turns out to be convex, as
claimed.
When f is decreasing, the previous argument applies to �f , so that �f

turns out to be convex and therefore, f is concave.
Another proof of Theorem 3 can be given along the following lines (see the

proof of Lemma 2.2 in [13]). From the strict monotonicity of x 7! f(x+y)�f(x),
it is deduced that f is either strictly Wright-convex or concave, and therefore,
by a result due to C. T. Ng ([16]), f has the form

f(x) = g(x) +A(x); x > 0;

where g is strictly convex or strictly concave and A is additive. Since f is
monotonic, A(x) turns out to be a linear function; i.e., A(x) = �x; (� 2 R),
and Theorem 3 follows.
Proof of Theorem 2. Observe in the �rst place that f is a solution to
equation (11) if and only if � is re�exive. Now, if a strict symmetric mean �
can be represented by (10) in terms of a strictly monotonic function f ; then,
f satis�es the condition ii) by Theorem 3. The converse follows by realizing
that the argument in the proof of this theorem can be reversed. Assuming, for
instance, that f is strictly increasing; then, the strict convexity of f implies that
x 7! f(x + y) � f(x) is a strictly increasing function ([14], Theor. 7.3.4) and
therefore, � turns out to be strictly increasing in the variable x.
In what follows, the class of functions ful�lling the conditions of Theorem

2 will be denoted by P(R+). After Theorem 2, P-means are continuous means
and a precise description for the class PM of P-means can be given: � 2 PM
if and only if � is given by (10) for any function f 2 P(R+); i.e.,

PM = ff�1((f(x+ y)� f(x)� f(y))=2) : f 2 P(R+)g:
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3 Properties of the functions in P(R+)
The class P(R+) naturally splits in two subclasses P(R+) = P+(R+)[P�(R+),
where P+(R+) is composed by the strictly increasing and strictly convex so-
lutions to the Schröder equation (11) and P�(R+) = �P+(R+). Clearly, the
subclasses P+(R+) and P�(R+) are disjoint; i.e., P+(R+) \ P�(R+) = ?. As
observed in the Introduction, the quadratic function f(x) = x2 belongs to the
class P+(R+); thus, the geometric mean G(x; y) =

p
xy is a P-mean.

The general solution of the Schröder equation (11) is given by

f(x) = x2P1

�
lnx

ln 2

�
; x > 0; (12)

where P1 : R! R is an arbitrary periodic function of period 1 (cf. [4]), so that
P+(R+) is composed by the strictly increasing and strictly convex functions of
the form (12). Assuming that P1 is a C2 function, from (12) it is obtained

f 0(x) = x
�
2P1

�
ln x
ln 2

�
+ 1

ln 2P
0
1

�
ln x
ln 2

��
;

f 00(x) = 2P1
�
ln x
ln 2

�
+ 3

ln 2P
0
1

�
ln x
ln 2

�
+ 1

ln2 2
P 001
�
ln x
ln 2

�
;

(13)

in this way, a C2 function f belongs to P+(R+) if and only if it can be written
in the form (12) with a 1-periodic function P1 satisfying the inequalities8>>>><>>>>:

P1(x) > 0

2P1 (x) +
1
ln 2P

0
1 (x) > 0

2P1 (x) +
3
ln 2P

0
1 (x) +

1
ln2 2

P 001 (x) > 0

; x > 0: (14)

It is easy to see that all these are satis�ed by the trigonometric polynomial

P1(x) =
nX
k=0

(Ak sin 2k�x+Bk cos 2k�x)

provided that B0 > 0 is great enough; and hence, there exist B0 > 0 such that

f(x) = Ax2 + x2
nX
k=1

�
Ak sin

�
2k�

ln 2
lnx

�
+Bk cos

�
2k�

ln 2
lnx

��
is a member of P+(R+) for every A > B0. A similar assertion is true when
P1 is represented as a Fourier series. Note in passing that the Fourier series
corresponding to the periodic function P1 in (12) is always convergent when
f 2 P+(R+). In fact, by (12),

lnP1(x) = ln f(2
x)� (2 ln 2)x; x > 0;
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is the di¤erence of the two increasing functions x 7! ln f(2x) and x 7! (2 ln 2)x;
therefore, lnP1(x) is of bounded variation on every compact interval [a; b]. Be-
ing x 7! expx a locally Lipschitz-continuous function, it turns out to be that
P1(x) = exp(lnP1(x)) is of bounded variation on every compact interval [a; b].
Thus, by a classical result on the pointwise convergence of a Fourier series (see,
for instance, [18], pg. 175), the Fourier series of the (continuous) function P1
converges to P1(x) for every x 2 [0; 1].
For a strictly monotonic function f satisfying the condition ii) of Theorem

2, the limit f(0+) is �nite. Moreover, if f satis�es condition i); then, f(0+) =
4f(0+) by continuity and therefore, f(0+) = 0. In this way, a function belonging
to P(R+) does not change of sign; more precisely, f(x) > 0; x > 0; when
f 2 P+(R+) and f(x) < 0; x > 0; when f 2 P�(R+). On the other hand, a
function f 2 P(R+) can not be bounded above when f 2 P+(R+) (or below
when f 2 P�(R+)). Thus, f(R+) = �R+; and therefore, if f 2 P(R+), then
f or �f is an homeomorphism onto R+. Finally, let us note that, being f 2
P+(R+) a continuous function, the periodic function P1 in (12) must be also
continuous and therefore, a bounded function; i.e., there exist two constants
�; � > 0 such that � � P1(x) � �; x 2 R. Thus, inequalities of the type
�x2 � f(x) � �x2; x > 0 hold for functions f 2 P+(R+). Clearly, inequalities
of the type �x2 � �f(x) � �x2; x > 0; (�; � > 0), are satis�ed by functions
f 2 P�(R+).
Synthesizing the content of the previous paragraph, the following result is

stated.

Proposition 4 Let f be a function belonging to the class P(R+); then,

i) f(0+) = 0 and f(x) 6= 0; x > 0;

ii) f(x) > 0; x > 0; when f 2 P+(R+) and f(x) < 0; x > 0; when f 2 P�(R+);

iii) there exist �; � > 0 such that �x2 � f(x) � �x2; x > 0, when f 2 P+(R+);
the same inequalities with �; � < 0 are satis�ed when f 2 P�(R+) ;

iv) f is an homeomorphism and f(R+) = �R+.

Proof. See the discussion above.
The Cauchy di¤erence Cf of a function f : R+ ! R is de�ned by

Cf(x; y) = f(x+ y)� f(x)� f(y); x; y > 0:

A direct computation shows that the co-cycle equation

F (x+ y; z) + F (x; y) = F (x; y + z) + F (y; z); x; y; z > 0; (15)

is satis�ed by the Cauchy di¤erence of every function f : R+ ! R. Conversely,
if a symmetric function F : R+ � R+ ! R satis�es (15); then, F is the Cauchy
di¤erence of some function f : R+ ! R (see [11]). In the following proposition,
the main properties of the Cauchy di¤erence of a function f 2 P(R+) are stated.
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Proposition 5 Let f belong to the class P+(R+) and, for every y > 0,  y be
the function de�ned by

 y(x) = Cf(x; y); x > 0:

Then  y is a strictly increasing and continuous function satisfying  y(0
+) =

0;  y(+1) = +1. The one-parameter family f y : y > 0g is strictly increasing
and continuous in the parameter y. Moreover, the relationships

 y(x) =  x(y) and  2y(x) = 4 y(x=2); x; y > 0;

hold for the members of this family.

Thus,  y is an increasing homeomorphism from R+onto R+ when f 2
P+(R+), a property not generally enjoyed by a strictly convex function f , even
though the condition f(0+) = 0 be ful�lled by f . Mutatis mutandis, the propo-
sition holds also for functions in P�(R+).
Proof. As seen in the proof of Theorem 2, the Cauchy di¤erence Cf(x; y) of
a strictly convex function f is a strictly increasing function of x (and y!) and
therefore, given a strictly convex function satisfying f(0+) = 0 and a �xed y > 0,
the inequality

 y(x) = Cf(x; y) > lim
x#0
[f(x+ y)� f(x)� f(y)] = 0; (16)

holds for every x > 0. After Proposition 4-i), (16) holds for the functions
f 2 P+(R+). The same fact shows that y 7!  y is strictly increasing, while
its continuity, as well as the continuity of  y, follows from the continuity of f .
That the variable x and the parameter y in  y(x) can be interchanged with
each other is a simple consequence of the symmetry of Cf . In its turn, the
relationship  2y(x) = 4 y(x=2) follows easily from (11).
Now let us show that, when f 2 P+(R+), the function  y is not bounded

above for any y > 0. In fact, if the inequality

f(x+ y0)� f(x)� f(y0) � A; x > 0;

was true for a constant A > 0 and a y0 > 0; then, replacing x by x+(k�1)y0; 2 <
k 2 N, it is obtained

f(x+ ky0)� f(x+ (k � 1)y0)� f(y0) � A; x > 0; k 2 N;

and then

f(x+ 2ny0)� f(x)� 2nf(y0)

=
2nX
k=1

[f(x+ ky0)� f(x+ (k � 1)y0)� f(y0)] � 2nA; x > 0; n 2 N:

Replacing x by 2nx in this last inequality, and recalling that f satis�es (11),
yields

4n [f(x+ y0)� f(x)]� 2nf(y0)
= f(2nx+ 2ny0)� f(2nx)� 2nf(y0) � 2nA; x > 0;
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or

f(x+ y0)� f(x) �
A+ f(y0)

2n
; x > 0; n 2 N:

By taking limits when n " +1 in this last inequality, it is obtained

f(x+ y0)� f(x) � 0;

thus contradicting the strictly increasing character of f . Then,  y is not
bounded above for any y > 0 and the proof is �nished.
The proof given in Section 5 for the Theorem 11 on the uniqueness of the

representation (10) depends on particular properties of the transformation T :
(R+)3 ! R3 de�ned by T (x; y; z) = (u; v; w), with8<: u = Cf(x; y)

v = Cf(x+ y; z)
w = Cf(y; z)

: (17)

In the sequel, a one-parameter family of function f�u : u > 0g is de�ned and
then used to study the properties of the transformation T . Assuming that
f 2 P+(R+), let us pay attention to the �rst equality in (17). By Proposition 5,
for every u > 0 there exists a unique function �u : R+ ! R+ implicitly de�ned
by

u = Cf(x; �u(x)): (18)

�u is continuous by the Implicit Function Theorem and, observing that �u(x) =
 �1x (u); x > 0; (u > 0), it turns out to be that f�ug is a family of strictly
decreasing functions which is strictly increasing and continuous in the parameter
u. Thus, there exist (�nite or in�nite) the limits �u(0

+) and �u(+1). Indeed, if
�u(0

+) = A < +1; then, making x # 0 in (18) it is obtained u = Cf(0; A) = 0,
an absurdity; hence �u(0

+) = +1. That �u(+1) = 0 it is shown in a similar
way. On the other side, the symmetry of Cf implies that �u = ��1u and therefore,
�2u = id, the identity map on R+. Finally, recalling that f satis�es (11) and
multiplying by 4 the two members of the equality (18), it is obtained

4u = 4Cf(x; �u(x)) = Cf(2x; 2�u(x));

or replacing x by x=2,

4u = Cf
�
x; 2�u

�x
2

��
;

whence �4u(x) = 2�u(x=2); x > 0.
Summarizing these considerations, let us state the following:

Proposition 6 The one-parameter family f�u : u > 0g de�ned by (18) turns
out to be a one-parameter family of strictly decreasing and continuous functions
satisfying �u(0

+) = +1 and �u(+1) = 0. The family is strictly increasing
and continuous in the parameter u, and the relationships

�2u = id and �4u(x) = 2�u(x=2); x > 0;

where id(x) = x; x > 0, hold for every u > 0.
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Note that �u is a decreasing homeomorphism from R+onto R+. A similar
result holds, mutatis mutandis, for functions in P�(R+).
Proof. See the discussion above.
The remaining of this section is devoted to prove the following:

Proposition 7 Let f belong to P+(R+); then the transformation T de�ned by
(17) is a continuous transformation from (R+)3 onto

T
��
R+
�3�

=
n
(u; v; w) 2

�
R+
�3
: 9 � > 0 = �v(�w(�))� �u(�) = �

o
: (19)

The open and non empty set

U =
n
(u; v; w) 2

�
R+
�3
: 9 � > 0 = �v(�w(�))� �u(�) > �

o
;

is contained in the image set T
�
(R+)3

�
.

An analogous result holds when f belongs to P�(R+). Note that, given
f 2 P+(R+), v = Cf(x + y; z) > Cf(y; z) = w for every x; y; z > 0; and
therefore,

T
��
R+
�3� � n(u; v; w) 2 �R+�3 : v > w

o
:

Proof. Let f belong to P+(R+) and consider T de�ned by (17). As seen in
the proof of Proposition 5, given a strictly convex function f : R+ ! R with
f(0+) = 0, the inequality Cf(X;Y ) > 0 holds for every X;Y > 0, and hence
u; v; w 2 R+.
In terms of the functions �u; �v and �w, the equalities (17) can be written

in the form 8<: x = �u(y)
x+ y = �v(z)
z = �w(y)

;

thus
y + �u(y) = �v(�w(y)): (20)

In this way, T (�u(�); �; �w(�)) = (u; v; w) for every solution � > 0 of (20),
what proves equality (19). To prove the remaining assertion, observe that after
Proposition 6, the function h : R+ � (R+)3 ! R de�ned by

h(x;u; v; w) = �v(�w(x))� �u(x) (21)

is a continuous function satisfying

h(0+;u; v; w) = �1; h(+1;u; v; w) = +1; (22)

for every u; v; w > 0. As a consequence, the set

U =
S
�>0

n
(u; v; w) 2

�
R+
�3
: �v(�w(�))� �u(�) > �

o

10



is open.
Now, if (u; v; w) 2 U ; then, there exists �1 > 0 such that h(�1;u; v; w) > �1.

But the �rst equality in (22) shows that h(�0;u; v; w) < 0 for a certain �0 > 0
and therefore, there exists � > 0 such that h(�;u; v; w) = � by continuity; i.e.,

(u; v; w) 2 T
�
(R+)3

�
. This proves that U � T

�
(R+)3

�
.

It remains to show that U 6= ?. To this end, let us prove that every
(u; v; w) 2 (R+)3 is a member of U provided that v � 4w. In fact, under
this assumption, �v(x) � �4w(x) by Proposition 6, and then

�v(�w(x))� �u(x) � �4w(�w(x))� �u(x)
= 2�w(�w(x)=2))� �u(x)
� 2�w(�w(x))� �u(x)
= 2x� �u(x); x > 0:

Proposition 6 was repeatedly employed in writing this inequalities. Now, there
exists � > 0 such that

2� � �u(�) > �;

since in other case, the inequality

2x� �u(x) � x;

or
�u(x) � x (23)

would hold for every x > 0. Then, in view of �2u(x) = id, the equality �u(x) =
x; x > 0, would be derived from (23), which is clearly a contradiction. Thus,
�v(�w(�))� �u(�) > � and (u; v; w) 2 U , as a¢ rmed.

4 Duplication and subarithmeticity

Several properties of the P-means are to be established in this section. First,
assume that f 2 P(R+) and observe that, since �f is (strictly) increasing
in both variables, the limits �f (x; 0+) = limy#0 �f (x; y) and �f (x;+1) =
limy"+1�f (x; y) there exist (�nite or in�nite) for every x > 0. Since f(0+) = 0
and f(+1) = �1 by Proposition 4, and  x(y) = Cf(x; y) satis�es  x(0+) =
0;  x(+1) = �1; x > 0; by Proposition 5, taking limits for y # 0 and y " +1
in (2) yields, respectively,

0 = 2f(�(x; 0+)) and �1 = 2f(�(x;+1));

whence
�(x; 0+) = 0 and �f (x;+1) = +1; x > 0: (24)

In other words, a P-mean � can be always continuously extended to R+ =
R+ [ f0;+1g paying the price of losing the strict internality, a fact expressed
by saying that � degenerates both at 0 and +1. For example, the arithmetic
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mean A is not a P-mean, since it can be continuously extended by A(x; 0) =
A(0; x) = x=2 as a strict mean to R+0 = R+ [ f0g, and neither the harmonic
mean H(x; y) = 2xy=(x + y); x; y > 0; is a P-mean, because H(x;+1) = 2x;
i.e., H does not degenerate at +1. The logarithmic mean �(x; y) = (x �
y)=(lnx � ln y); x; y > 0; x 6= y, (and �(x; x) = x; x > 0) degenerates both
at 0 and +1; nevertheless, � is not a P-mean (this was established in [7] by
resorting to the fact that � = L1=x is a regular Lagrangian mean and it will be
shown in a di¤erent way in the following section).
Excepting the geometric mean G, the P-means are not homogeneous (see

Theorem 12 below); nevertheless, every � 2 PM enjoys the duplication prop-
erty; i.e.,

�(2x; 2y) = 2�(x; y); x; y > 0: (25)

This is an immediate consequence of the fact that the equation (11) is solved
by the generator function f of �.
Now, suppose that f 2 P+(R+); then, for every x; y > 0,

f(x+ y) = f

�
2
x+ y

2

�
= 4f

�
x+ y

2

�
� 4f(x) + f(y)

2
= 2(f(x) + f(y));

whence

f(x+ y)� f(x)� f(y) � 1

2
f(x+ y) = 2f

�
x+ y

2

�
;

and therefore
�f (x; y) �

x+ y

2
= A(x; y); x; y > 0: (26)

The subarithmeticity of �f is expressed by this inequality, which holds also
when f 2 P�(R+). Really, it is a strict inequality unless x = y. In this way,
the quadratic mean Q(x; y) =

p
(x2 + y2)=2; x; y > 0; is not a P-mean.

If Af is the quasiarithmetic mean generated by f ; then, it is easy to see that
the inequality

A(x; y) � Af (x; y); x; y > 0; (27)

holds provided that f 2 P(R+) (equality occurs in (27) if and only if x = y).
Thus, when f 2 P(R+),

�f (x; y) � A(x; y) � Af (x; y); (28)

so that �f can be considered as a subarithmetic counterpart of the quasiarith-
metic mean Af . The idea is reinforced by the identity

Af (�f (x; y); Af (x; y)) = A(x; y); x; y > 0; (29)

which is shown to be true after a simple computation.
Let us register the above facts in the following:

Theorem 8 A P-mean � is a subarithmetic mean which satisfy the duplication
property and degenerates both at 0 and +1. Furthermore, the inequalities (28)
and the identity (29) hold for �.

12



Proof. See the discussion above.
As an example of application of this theorem, let us give another proof of

the result by R. Ger mentioned in the Introduction. Using the above introduced
terminology, the result can be stated as follows:

Theorem 9 (R. Ger, [12]) A quasiarithmetic mean M de�ned on R+ is a
P-mean if and only if M = G, the geometric mean.

The proof o¤ered by R. Ger depends on a deep characterization due to A.
Járai, Gy. Maksa and Zs. Páles ([13]) of the functions whose Cauchy di¤erence
has the functional form p(q(x)+q(y)) with p and q suitable monotonic functions.
A few elements besides the simple Theorem 1 and Theorem 9.5.1 in [15] (on the
solution to simultaneous Schröder equations) are required by the proof below.
Proof. The �if� part of the theorem is straightforward. Now, assume that a
meanM has the twofold representationM = �f = Ag, where �f is the P-mean
generated by f and Ag is the quasiarithmetic mean generated by g. Without
loss of generality, it can be suppossed that f 2 P+(R+) and that g is strictly
increasing and continuous. As noted in [7], to prove that M = G it is su¢ cient
to show that

M(x; 4x) = 2x; x > 0: (30)

Indeed, the substitution y = 4x in the equation (2) yields

f(5x)� f(x)� f(4x) = 2f(M(x; 4x)) = 2f(2x)

or, in view of (11),

f(5x) = f(x) + 16f(x) + 8f(x) = 25f(x); x > 0: (31)

In this way, the Schröder equations (11) and (31) are simultaneously satis�ed
by f ; therefore, Theorem 9.5.1 in [15] applies to show that f has the form
f(x) = cx2; x > 0; (c 6= 0), and hence M = G.
Now, let us see that if a quasiarithmetic mean Ag satis�es the duplication

property and degenerates both at 0 and +1 (like in the present case, due to
Ag = �f ); then, for a certain � > 0, the linear functional equation

g(2x) = g(x) + �; x > 0; (32)

must be satis�ed by its generator function g. In fact, since Ag satis�es (25), it
can be written

Ag(x; y) =
1

2
Ag(2x; 2y) = Ag(2��)(x; y); x; y > 0;

where g(2�x) = g(2x); x > 0; thus, by Theorem 1, there exists �; � 2 R; � 6= 0,
such that

g(2x) = �g(x) + �; x > 0: (33)

In the sequel, the equalities

g(2nx) = �ng(x) +
�n � 1
�� 1 �; x > 0; (n 2 N); (34)
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obtained by iterating (33) when � 6= 1 and easily proved by induction will be
useful.
From the fact that g and g(2� �) are (strictly) increasing, it is deduced that

� > 0 in (33). Now, assuming that 0 < � < 1 and taking limits when n " +1
in (34), it is obtained

g(+1) = lim
n"+1

g(2nx) = lim
n"+1

�
�ng(x) +

�n � 1
�� 1 �

�
=

�

1� � < +1;

whence

Ag(x;+1) = lim
y"+1

g�1
�
g(x) + g(y)

2

�
= g�1

�
g(x) + �=(1� �)

2

�
:

This shows that Ag does not degenerate at +1, thus contradicting the above
made assumptions.
The equalities

g
� x
2n

�
= ��ng(x)� 1� �

�n

�� 1 �; x > 0; (n 2 N);

are immediate from (34); so that assuming that � > 1 and passing once again
to the limit, it is deduced

g(0+) = lim
n"+1

g
� x
2n

�
= lim

n"+1

�
��ng(x)� 1� �

�n

�� 1 �

�
=

�

1� � > �1:

Reasoning like in the case 0 < � < 1, it is shown that Ag would not degenerate
at 0, a contradiction again.
In this way, the equation (32) must be satis�ed by g and, in view of g is

strictly increasing, with a certain � > 0.
The proof �nishes by observing that the equality (30) holds for M = Ag

provided that the equation (32) is satis�ed by g. In fact, from (32) it is obtained

g(4x) = g(x) + 2�; x > 0;

and
2g�1(x) = g�1(x+ �); x > 0;

whence,

Ag(x; 4x) = g�1
�
g(x) + g(4x)

2

�
= g�1 (g(x) + �) = 2x; x > 0:

By exploiting the characterization of symmetric functions as solutions to
the co-cycle equation (15), a characterization of P-means is established in the
following result.

Theorem 10 A symmetric and strictly increasing in both variables mean � is
a P-mean if and only if

14



i) � has the duplication property (25);

ii) there exists a strictly monotonic solution f to the equation (11) such that
f � � satis�es the co-cycle equation; i.e.,

f(�(x+ y; z)) + f(�(x; y)) = f(�(x; y + z)) + f(�(y; z)); x; y; z > 0:

Proof. Let � be a symmetric and strictly increasing in both variables mean.
The necessity of conditions i) and ii) is immediate from Theorem 8 and (2). In
regards to the su¢ ciency, note that the function f(�(x; y)), being a symmetric
solution of the co-cycle equation for a certain f , must be a Cauchy di¤erence;
i.e., there exists a function g such that

f(�(x; y)) = g(x+ y)� g(x)� g(y); x; y > 0:

Setting x = y in this equality yields

f(x) = g(2x)� 2g(x); x > 0;

so that, in view of � has the duplication property and of f satis�es (11), it can
be written

4f(�(x; y)) = f(2�(x; y))

= f(�(2x; 2y))

= g(2(x+ y))� g(2x)� g(2y)
= f(x+ y) + 2g(x+ y)� (f(x) + 2g(x))� (f(y) + 2g(y))
= f(x+ y)� f(x)� f(y) + 2 (g(x+ y)� g(x)� g(y))
= f(x+ y)� f(x)� f(y) + 2f(�(x; y)); x; y > 0:

Hence,
2f(�(x; y)) = f(x+ y)� f(x)� f(y); x; y > 0;

and therefore, taking into account that f is strictly monotonic, it turns out to
be that � is a P-mean.
An argument analogous to the employed in proving this theorem shows that

the unique symmetric mean M such that M(2x; 2y) = 2M(x; y); x; y > 0, and

[M(x+ y; z)]
2
+ [M(x; y)]

2
= [M(x; y + z)]

2
+ [M(y; z)]

2
; x; y; z > 0;

is the geometric mean G.

5 Uniqueness of the representation and some
consequences

The following theorem answers the question of uniqueness of the representation
(10); i.e., given two P-means �f and �g, the result furnishes necessary and
su¢ cient condition on the generator functions f and g in order that �f = �g.
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Theorem 11 Let �f and �g two P-means; then, �f = �g if and only if there
exists a constant � 6= 0 such that

g(x) = �f(x); x > 0: (35)

When the means �f and �g are continuously di¤erentiable functions, this
result is a consequence of Theorem 2 in [10].
Proof. Let f; g belong to P+(R+). The general case in which f; g 2 P(R+), is
reduced to this by a suitable replacement of f by �f or g by �g. The equality
�f = �g can be written as follows

f(x+ y)� f(x)� f(y) = H (g(x+ y)� g(x)� g(y)) ; x; y > 0; (36)

where
H(x) = 2f

�
g�1

�x
2

��
; x > 0: (37)

Being the second member of (36) a Cauchy di¤erence, it turns out to be that it
must satisfy the co-cycle equation so that, for every x; y; z > 0,

H (g(x+ y + z)� g(x+ y)� g(z)) +H (g(x+ y)� g(x)� g(y))
= H (g(x+ y + z)� g(x)� g(y + z)) +H (g(y + z)� g(y)� g(z)) :(38)

In terms of the transformation T de�ned by (17), the equation (38) takes the
form

H(u) +H(v) = H(u+ v � w) +H(w); u; v; w 2 T
��
R+
�3�

: (39)

Now consider a component U0 of the open set U de�ned in Proposition 7. As a
consequence of (39) and Proposition 7, the restricted Pexider equation

H(u) +H(v) = G(u+ v); (40)

holds for every (u; v) 2 R, being G de�ned by

G(u) = H(u� w) +H(w);

and R by

R = f(u; v) : there exists w such that (u; v; w) 2 U0g:

Taking into account thatR = �(u;v)(U0) for the (open) projection �(u;v)(u; v; w) =
(u; v) and that U0 is an open and connected set, R turns out to be open and
connected, so that Theorem 4 (pg. 80) in [2] applies to the equation (40) to
show that

H(u) = A(u) + b (41)

where A is an additive function and b 2 R. Since H is strictly increasing and
H(0+) = 0, it turns out to be A(u) = �u with � > 0 and b = 0 in (41); so that
from (37) it is obtained

2f(x) = H(2g(x)) = 2�g(x); x > 0:
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In the general case, � can be also a negative real number. This proves the
necessity of (35). The su¢ ciency follows by observing that ��f really coincides
with �f when � 6= 0.
As an application of Theorem 11, let us prove that the geometric mean G is

the unique homogeneous P-mean. In fact, if �f is homogeneous; then, for every
� > 0,

�f (�x; �y) = ��f (x; y); x; y > 0; (42)

whence the equality �f = �g is satis�ed provided that g 2 P(R+) is given by
g(x) = f(�x); x > 0. After Theorem 11, for every � > 0 there exists �(�) 6= 0
such that

f(�x) = �(�)f(x); x; � > 0:

The general continuous solution f to this Pexider equation is given ([1], Theor.
4, pg. 144) by

f(x) = cxp; x > 0; (43)

where p; c 2 R and, taking into account that f 2 P(R+), p 6= 0 6= c. Further-
more, the equation (11) must be satis�ed by f ; whence p = 2 and � = G, as
claimed.
Since �, the logarithmic mean, is homogeneous and di¤ers from the geomet-

ric mean G (�(x; y) > G(x; y) provided that x 6= y), it turns out to be that �
is not a P-mean.
The assumption of homogeneity can be weakened in the above assertion

without changing the conclusion. Indeed, it can be proved the following:

Theorem 12 Let �0 be a positive number such that �0 6= 2r for every r 2 Q.
If a P-mean �f satis�es the equality (42) for � = �0; then, f(x) = cx2; x >
0; (c 6= 0), and �f = G.

Another statement of this theorem is as follows: the pair (3) is the unique
solution of the equation (2) in the class of pairs (f;�) composed by a strictly
monotonic function f and a increasing in both variables mean � satisfying
�f (�0x; �0y) = �0�f (x; y); x; y > 0, for a certain �0 > 0 such that ln�0= ln 2 =2
Q.
Proof. Reasoning like in the previous discussion it is seen that, besides of the
equation (11), f must satisfy, for a certain � 6= 0, the Schröder equation

f(�0x) = �f(x); x > 0:

Since ln�0= ln 2 =2 Q, Theorem 9.5.1 in [15] applies to show that f has the form
(43), with c 6= 0. Hence, p = 2 and the proof is �nished.
To end this paper, let us remark the general interest of extending Theorem

11 to other classes of means. Besides of properly completing the de�nition of
the means in the class, results like Theorem 12 hold for every one of these
extensions. As an example, denote by S(R+) the class of strictly monotonic
functions f 2 C1(R+) such that f 0 does not reduce to a constant on any non
void open subinterval of R+, and consider the class SM constituted by the
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means de�ned on R+ admitting the representation (10) with f 2 S(R+). As a
consequence of Theorem 2 in [10], Theorem 11 also holds when �f and �g are
members of SM.
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