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Abstract. The computation of connection coefficients is an im-
portant issue in the wavelet numerical solution of partial differen-
tial equations. We study this problem for the orthonormal interval
wavelets bases, satisfying homogeneous boundary conditions, intro-
duced by Monasse and Perrier. We first obtain explicit expressions to
compute the connection coefficients involving (derivatives of) scaling
functions at the same level. Then we describe how to compute con-
nection coefficients when we have (derivatives of) scaling functions
and/or wavelets at different levels, using local refinement relations.
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1. Introduction

The applicability of wavelets in several different areas in pure and ap-
plied mathematics depend upon their ability to represent efficiently a wide
class of functions and operators (for a treatment of the theory of wavelets
see, e. g., [17, 23]). In particular, this fact is useful in the development
of fast and adaptive algorithms for the numerical solution of partial differ-
ential equations (see, e. g., [12, 31]). These wavelets-based schemes can
require the computation of integrals involving products of (derivatives of)
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scaling functions and/or wavelets. These integrals are usually known as
connection coefficients.

The computation of connection coefficients was considered in several
papers (see, e. g., [3, 5, 8, 14, 18, 19]). In particular, for wavelets that have
no closed analytic representation and that are only determined by their
refinement coefficients the quadrature rules to compute these integrals are
in general expensive or not applicable. So, in this case one approach is to
reduce the calculus of the connection coefficients to an algebraic eigenvector-
eigenvalue problem.

Wavelets approaches for the numerical solution of partial differential
equations in non trivial geometries is a challenger problem. These cases
are studied using the unit interval [0, 1] as the starting point in domain
decomposition approaches (see, e. g., [3, 6, 7, 11, 15]). The periodization
of compactly supported wavelets on the real line is the simplest way to
consider the multiresolution analysis of a function on an interval (see, e.
g., [17, 23]). Nevertheless, if we need to consider boundary conditions,
a more efficient approach is to use compactly supported wavelets on the
real line, retaining all those scaling functions which support is contained
in the interval, and adding linear combinations of those scaling functions
which cross the endpoints of the interval (for some examples of this type of
construction see, e. g., [1, 4, 9, 10, 20]).

In this article we compute exactly (up to round-off errors) the connec-
tion coefficients for the interval orthonormal scaling functions and wavelets,
satisfying homogeneous boundary conditions, introduced by Monasse and
Perrier in [20]. These wavelets result from an adaptation of the ideas of
Auscher [2] to impose boundary conditions on the construction of ortho-
normal interval wavelets proposed by Cohen, Daubechies and Vial [10].
Monasse-Perrier wavelets have the same regularity and vanishing moments
that Daubechies wavelets [16]. They have no closed analytic representation
and they are only determined by their refinement coefficients.

The rest of the paper is organized as follows. In section 2, we review
multiresolution analysis and wavelet bases of both L2 (R) and L2 ([0, 1]).
In particular, we consider the definition and properties of Monasse-Perrier
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wavelets [20]. In section 3. we compute the connection coefficients involving
(derivatives of) Monasse-Perrier scaling functions at the same level. Then,
we describe how to compute connection coefficients with (derivatives of)
scaling functions and/or wavelets at different levels, using local refinement
relations.

2. Orthonormal wavelet bases for L2 ([0, 1])

In this section we review some aspects about multiresolution analysis
(MRA) and wavelets bases. We begin considering in subsection 2.1. MRA
and wavelet bases of L2 (R) [17]. In particular, we briefly discuss compactly
supported wavelets constructed by Daubechies in [16]. In subsections 2.2.
and 2.3., we consider the construction proposed by Monasse and Perrier in
[20] for the spaces L2 ([0,∞[) and L2 ([0, 1]), respectively.

2.1. MRA and wavelet bases of L2 (R)

A MRA of L2 (R) is a sequence of closed subspaces (Vj)j∈Z of L2 (R)
such that

(i) {0} =
⋂
j∈Z Vj ⊂ ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ... ⊂

⋃
j∈Z Vj = L2 (R).

(ii) f(x) ∈ V0 ⇔ f(2jx) ∈ Vj .

(iii) ∃g ∈ V0, such that {g(.− k); k ∈ Z} is a Riesz basis of V0.

From g, it is possible to obtain a function φ, called the scaling function,
such that {φ(.−k); k ∈ Z} is an orthonormal basis of V0. Since φ ∈ V0 ⊂ V1,
from (ii) there exists a sequence {hk}k∈Z such that

φ(x) =
√

2
∑

k

hkφ(2x− k). (1)

Equation (1) is known as the dilation equation, the two-scale difference
equation, or the refinement equation. We shall refer to it by the later name.
The collection of functions {2j/2φ(2j .− k); k ∈ Z} is an orthonormal basis
of Vj .

Associated with Vj is the space Wj defined as the orthogonal comple-
ment of Vj in Vj+1, i. e., Wj is the space that satisfies Vj+1 = Vj ⊕Wj . We
have L2 (R) =

⊕
jWj . A wavelet is a function ψ such that {ψ(.− k); k ∈
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Z} is an orthonormal basis of W0. Therefore, the collection of functions
{2j/2ψ(2j . − k); j, k ∈ Z} is an orthonormal basis of L2 (R). The wavelet
ψ satisfies an equation similar to the refinement equation for the scaling
function φ,

ψ(x) =
√

2
∑

k

gkφ(2x− k), gk = (−1)kh−k+1.

Now we present Daubechies’s compactly supported wavelets (for more
details we refer to [16]). In Daubechies’s construction,hk = gk = 0 for
k < −N + 1 and for k > N , therefore the scaling and wavelet functions
satisfy the equations

φ(x) =
√

2
N∑

m=−N+1

hmφ(2x−m), ψ(x) =
√

2
N∑

m=−N+1

gmφ(2x−m). (2)

Both φ and ψ have support in [−N + 1, N ],
∫∞
−∞ φ(x)dx = 1, ψ has

N vanishing moments, i. e.,
∫ ∞

−∞
ψ(x)xldx = 0, l = 0, 1, ..., N − 1, (3)

and φ has Nth-order approximation, i. e.,

xl

l!
=

∞∑

k=−∞

Pl(k)φ(x − k), l = 0, 1, ..., N − 1, (4)

with

Pl(k) :=
∫ ∞

−∞

xl

l!
φ(x− k)dx =

l∑

s=0

Cl−sk
s

s!
, (5)

where Cl :=
∫∞
−∞ φ(x)x

l

l! dx are recursively given by

C0 = 1 ; Cl =
1

2l − 1

l∑

n=1

(
1√
2

∑

m∈Z

hm
mn

n!

)
Cl−n (l > 0). (6)

For sufficient large N , φ, ψ ∈ CµN with µ ' 0.2.
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2.2. Scaling and wavelet functions of L2 ([0,∞[)

The edge scaling functions φ̃l, l = 0, ..., N − 1, defined by

φ̃l(x) :=
N−1−α∑

k=−N+1

Pl(k)φ(x − k)χ[0,∞[(x), (7)

for α ∈ {0, 1}, are linearly independent and are orthogonal to the
functions φ(. − k) for k ≥ N − α.

Let

V
[0,∞[
j := span

{(
φ̃l(2j .)

)
l=0,...,N−1

, (φ(2j .− k))k≥N−α

}
.

For Λ ⊂ {0, ..., N − 1} let BC(Λ) be the space of functions f ∈ L2 ([0,∞[)
such that fλ(0) = 0, λ ∈ Λ, and

V
[0,∞[
j (Λ) := V

[0,∞[
j ∩ BC(Λ). (8)

Then
{(

φ̃l(2j .)
)
l/∈Λ

,
(
φ(2j .− k)

)
k≥N−α

}
is a basis for V [0,∞[

j (Λ).

Remark 2.1. If α = 0 then the edge scaling functions are derivable at 0
since they are polynomial near 0. If α = 1 the regularity of the edge scaling
functions depends on N . So, in this case we must suppose that N is large
enough to assure that they are derivable at 0.

Let b be the matrix with entries

b(i+ 1, j −N + α+ 1) =
√

2
N−α−1∑

m=d j−N
2 e

Pi(m)hj−2m,

for i = 0, ..., N − 1 and j = N − α, ..., 3N − 2 − 2α, where dxe (bxc) is the
nearest integer greater (less) than x, and let D be the diagonal matrix with
entries D(i, j) = δi−j21−i, for i, j = 1, ..., N . The Gram matrix Gφ̃ of the
edge scaling functions φ̃l, l = 0, ..., N − 1, is given by

2Gφ̃ = DGφ̃D + bbt.

Remark 2.2. Gφ̃ can be obtained by dividing term by term the matrix
bbt by the matrix 2M1 −M where M1 and M are of order N × N with
M1(i, j) = 1 and M(i, j) = 22−i−j for i, j = 1, ..., N .
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Let Gφ̃Λ and DΛ be the matrices obtained from Gφ̃ and D, respectively,
by keeping only rows and columns of index not in 1 + Λ, and let bΛ be the
matrix obtained from b by keeping only rows of index not in 1 + Λ Then
Gφ̃Λ is the Gram matrix of φ̃l, l /∈ Λ. If Gφ̃Λ = Rφ̃Λ(Rφ̃Λ)∗ is a factorization of

Gφ̃Λ, then the orthonormal family ˜̃φl, l /∈ Λ, defined by



˜̃
φ0
...

˜̃
φN−1




l/∈Λ

= (Rφ̃Λ)−1




φ̃0

...
φ̃N−1




l/∈Λ

, (9)

satisfies the refinement equation:

1√
2




˜̃
φ0(

x
2 )

...
˜̃
φN−1(

x
2 )




l/∈Λ

= H0




˜̃
φ0(x)

...
˜̃
φN−1(x)




l/∈Λ

+

+h0




φ(x−N + α)
...

φ(x− 3N + 2 + 2α)


 , (10)

where H0 = 1√
2
(Rφ̃Λ)−1DΛR

φ̃
Λ and h0 = 1√

2
(Rφ̃Λ)−1bΛ.

2.2.1. The wavelets

The edge wavelets ψ̃l, l = 0, ..., N − 1, are defined by

ψ̃l(x) =
√

2
(
I − P

V
[0,∞[

j
(Λ)

)(
φ̃l(2x) − 2lφ̃l(x)

)
χ[0,∞[(x),

or, equivalently,



ψ̃0(x)
...

ψ̃N−1(x)




= −
√

2
(
I − P

V
[0,∞[

j
(Λ)

)
D−1b




φ(2x−N + α)
...

φ(2x− 3N + 2 + 2α)


 , (11)

where I and P
V

[0,∞[
j

(Λ)
are the identity and the orthogonal projection onto

V
[0,∞[
j (Λ), respectively. Let W [0,∞[

j (Λ) be the closure of the subspace of
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L2 ([0,∞[) orthogonal to V
[0,∞[
j (Λ) in V

[0,∞[
j+1 (Λ). If Γ ⊂ {0, ..., N − 1}

with #Γ = N − α, then
{(

ψ̃l(2j .)
)
l∈Γ

,
(
ψ(2j .− k)

)
k≥N−α

}
is a basis of

W
[0,∞[
j (Λ).

The Gram matrix Gψ̃ of the edge scaling functions is given by

Gψ̃ = g1g
t
1 + g2g

t
2,

where g1 = D−1bht0H0 and g2 = D−1b(ht0h0 − I). Let Gψ̃Γ be the matrix
obtained from Gψ̃ by keeping only rows and columns of index in 1+Γ. Then
Gψ̃Γ is the Gram matrix of ψ̃l, l ∈ Γ. If Gψ̃Γ = Rψ̃Γ(Rψ̃Γ )∗ is a factorization of

Gψ̃Γ , then the orthonormal family ˜̃ψl, l ∈ Γ, defined by



˜̃
ψ0
...

˜̃
ψN−1




l∈Γ

= (Rψ̃Γ )−1




ψ̃0

...
ψ̃N−1




l∈Γ

, (12)

satisfies the refinement equation

1√
2




˜̃
ψ0(

x
2 )

...
˜̃
ψN−1(

x
2 )




l∈Γ

= G0




˜̃
φ0(x)

...
˜̃
φN−1(x)




l/∈Λ

+

+g0




φ(x−N + α)
...

φ(x− 3N + 2 + 2α)


 , (13)

where G0 = (Rψ̃Γ )−1g1 and g0 = (Rψ̃Γ )−1g2.

2.3. MRA of L2 ([0, 1])

Let T : L2 (R) → L2 (R) be given by T {(§) = {(∞ − §). Then the
function T φ has support [−N + 1, N ] and satisfies the refinement equation

T φ(x) =
√

2
N∑

k=−N+1

ȟkT φ(2x− k), (14)

with coefficient mask ȟk := h1−k. Using the procedure described previously,
with scaling function T φ, the mask ȟk, α1 ∈ {0, 1}, Λ1 ⊆ {0, ..., N − 1} and
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Γ1 ⊂ {0, ..., N − 1} with #Γ1 = N − α1 we arrive at a MRA of L2 ([0,∞[)

satisfying boundary conditions with edge scaling functions ˜̃φ
]

l , l /∈ Λ1, inte-

rior scaling functions T φ(. − k), k ≥ N − α1, edge wavelets functions ˜̃ψ
]

l ,
l ∈ Γ1 and interior wavelets functions T ψ(. − k), k ≥ N − α1. Then the
family of functions

T [˜̃φ
]

l (2
j .)] = ˜̃φ

]

l (2
j(1 − .)), T [T φ(2j .− k)] = φ(2j .− (2j − 1 − k)),

constitutes an orthonormal basis for a MRA of L2 (] −∞, 1]). Moreover,

T [˜̃ψ
]

l (2
j .)] = ˜̃

ψ
]

l (2
j(1 − .)), T [T ψ(2j .− k)] = ψ(2j .− (2j − 1 − k)),

are the associated orthonormal wavelets.

Let P ]l (k), b
], Gφ̃

]

, Gψ̃
]

, H]
1, h

]
1, G

]
1 and g]1 obtained from the mask

ȟk as Pl(k), b, Gφ̃, Gψ̃, H0, h0, G0 and g0 were obtained form the mask
hk. Let H1, h1, G1 and g1 be the matrices H]

1, h
]
1, G

]
1 and g]1, respectively,

with the rows and columns in reversed order. Then

1√
2




˜̃
φ
]

N−1(2
j(1 − x))
...

˜̃
φ
]

0(2
j(1 − x))



l/∈Λ1

= H1




˜̃
φ
]

N−1(2
j+1(1 − x))

...
˜̃
φ
]

0(2
j+1(1 − x))



l/∈Λ1

+

+h1




φ(2j+1x− 2j+1 + 3N − 1 − 2α1)
...

φ(2j+1x− 2j+1 +N + 1 − α1)


 , (15)

and

1√
2




˜̃
ψ
]

N−1(2
j(1 − x))
...

˜̃
ψ
]

0(2
j(1 − x))



l∈Γ1

= G1




˜̃
φ
]

N−1(2
j+1(1 − x))

...
˜̃
φ
]

0(2
j+1(1 − x))



l/∈Λ1

+

+g1




φ(2j+1x− 2j+1 + 3N − 1 − 2α1)
...

φ(2j+1x− 2j+1 +N + 1 − α1)


 . (16)
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If jmin = dlog2 4Newe have a MRA of L2 ([0, 1]),
(
V

[0,1]
j (Λ1,Λ2)

)
j≥jmin

,

where V [0,1]
j (Λ1,Λ2) has dimension 2j −#Λ0 −#Λ1 + α0 + α1 with ortho-

normal basis
(

2j/2 ˜̃φl(2jx)
)

l/∈Λ0

,
(
2j/2φ(2jx− k)

)2j−1−N+α1

k=N−α0

,

(
2j/2˜̃φ

]

l (2
j(1 − x))

)

l/∈Λ1

,

and W [0,1]
j (Λ1,Λ2) has dimension 2j with orthonormal basis

(
2j/2 ˜̃ψl(2jx)

)

l∈Γ0

,
(
2j/2ψ(2jx− k)

)2j−1−N+α1

k=N−α0

,

(
2j/2 ˜̃ψ

]

l (2
j(1 − x))

)

l∈Γ1

.

It is convenient to choose α0 = δ#Λ0−1, α1 = δ#Λ1−1.

Remark 2.3.1. We can consider different decompositions of the Gram
matrices Gφ̃ and Gψ̃ to obtain orthonormal scaling and wavelets functions.
Let G denote the Gram matrix associated with edge scaling or wavelets
functions. For example, we can use the following options for R such that
G = RRt:

• If G = QPQt where Q is an orthogonal matrix and P is a diagonal
matrix with positive diagonal entries, we consider R = QP 1/2. This
choice of R corresponds to the Schweinler-Wigner orthonomalization
procedure [21].

• R = G1/2 = QP 1/2Qt. This R was considered in [20].

• If G = U tU where U is an upper triangular matrix with positive
diagonal entries (i. e., the Cholesky decomposition of G), we consider
R = U t which corresponds to the Gram-Smith orthonomalization
procedure [22].

2.3.1. Wavelet transforms

Consider the column vector Φj with entries

•
(

2j/2˜̃φ0(2j .), ..., 2j/2
˜̃
φN−1(2j .)

)

l/∈Λ0

,

•
(
2j/2φ(2j .−N + α0), ..., 2j/2φ(2j .− 2j + 1 +N − α1)

)
,
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•
(

2j/2˜̃φ
]

N−1(2
j(1 − .)), ..., 2j/2 ˜̃φ

]

0(2
j(1 − .))

)

l/∈Λ1

,

and the column vector Ψj with entries

•
(

2j/2 ˜̃ψ0(2j .), ..., 2j/2
˜̃
ψN−1(2j .)

)

l∈Γ0

,

•
(
2j/2ψ(2j .−N + α0), ..., 2j/2ψ(2j .− 2j + 1 +N − α1)

)
,

•
(

2j/2 ˜̃ψ
]

N−1(2
j(1 − .)), ..., 2j/2 ˜̃ψ

]

0(2
j(1 − .))

)

l∈Γ1

.

If Hj and Gj are the matrices of order (2j−1−2N+α0+α1)×(2j−2N+α0+
α1) with entries Hj(k, l) = h−N+1+α0+l−2k and Gj(k, l) = g−N+1+α0+l−2k,
respectively, we set

Hj =




H0 h0 0
0 H| 0
0 h1 H1


 , Gj =




G0 g0 0
0 G| 0
0 g1 G1


 ,

where h0 and g0 are completed with columns of zeros at the right, whereas
h1 and g1 are completed with columns of zeros at the left, to fit the size of
Hj and Gj .

We have

Φj−1 = HjΦj , Ψj−1 = GjΦj , (17)

and

Φj =
(
Ht
j Gtj

)( Φj−1

Ψj−1

)
. (18)

Let f ∈ L2 ([0, 1]), and consider the column vector sj with entries

•
(〈

f, 2j/2˜̃φ0(2
j .)
〉
, ...,

〈
f, 2j/2 ˜̃φN−1(2

j .)
〉)

l/∈Λ0

,

•
(〈
f, 2j/2φ(2j .−N + α0)

〉
, ...,

〈
f, 2j/2φ(2j .− 2j + 1 +N − α1)

〉)
,

•
(〈

f, 2j/2˜̃φ
]

N−1(2
j(1 − .))

〉
, ...,

〈
f, 2j/2˜̃φ

]

0(2
j(1 − .))

〉)

l/∈Λ1

,

and the column vector dj with entries
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•
(〈

f, 2j/2 ˜̃ψ0(2j .)
〉
, ...,

〈
f, 2j/2 ˜̃ψN−1(2j .)

〉)

l∈Γ0

,

•
(〈
f, 2j/2ψ(2j .−N + α0)

〉
, ...,

〈
f, 2j/2ψ(2j .− 2j + 1 +N − α1)

〉)
,

•
(〈

f, 2j/2 ˜̃ψ
]

N−1(2
j(1 − .))

〉
, ...,

〈
f, 2j/2 ˜̃ψ

]

0(2
j(1 − .))

〉)

l∈Γ1

.

From (17) and (18), we obtain the following wavelet transforms

sj−1 = Hjs
j , dj−1 = Gjs

j , (19)

and

sj =
(
Ht
j Gtj

)( sj−1

dj−1

)
. (20)

2.3.2. Moments of the edge scaling functions

For edge scaling functions at 0 the moments are given by
∫ ∞

0

xp
˜̃
φl(x)dx = p!Xp(l), l /∈ Λ0, (21)

where Xp(l) are obtained from

(
2p+1/2I −H0

)
Xp = h0




(N−α0)
p

p! . . . (N−α0)
0

0!
...

...
(3N−2−2α0)p

p! . . . (3N−2−2α0)0

0!







C0

...
Cp


 ,

and for edge scaling functions at 1,
∫ ∞

0

˜̃
φ
]

l (x)dx = p!X]
p(l) = , l /∈ Λ1, (22)

where X]
p(l) are obtained from

(2p+1/2I −H]
1)X

]
p = h]1




(−1)0(1+N−α1)
p

p! . . . (−1)p(1+N−α1)
0

0!
...

...
(−1)0(3N−1−2α1)p

p! . . . (−1)p(3N−1−2α1)
0

0!


×

×




C0

...
Cp


 . (23)
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3. Connection coefficients

In this section we prove that the calculus of the connection coeffi-
cients involving products of (derivatives of) Monasse-Perrier scaling func-
tions and/or wavelets can be reduced to the calculus of the connection
coefficients, r(m,n)

k,l , l ∈ Z, of the Daubechies’s scaling functions given by

r
(m,n)
k,l =

∫ ∞

−∞

dmφ

dxm
(x− k)

dnφ

dxn
(x− l)dx, k, l ∈ Z. (24)

These integrals can be computed simultaneously, for all k, l such that
r
(m,n)
k,l 6= 0, by solving an eigenvector-eigenvalue problem (see [14]).

3.1. Scaling functions at the same level

For Monasse-Perrier scaling functions we consider the no null connec-
tion coefficients as the entries of the following matrices:

m,nR̃0(k + 1, l + 1) =
∫ ∞

0

dm

dxm
˜̃
φk(x)

dn

dxn
˜̃
φl(x)dx, (25)

with k, l = 0, ..., N − 1, k, l /∈ Λ0.

m,nS0(k + 1, l−N + α0 + 1) =
∫ ∞

0

dm

dxm
˜̃
φk(x)

dn

dxn
φ(x− l)dx, (26)

with k = 0, ..., N − 1, k /∈ Λ0, l = N − α0, ..., 2j −N − 1 + α1.

m,nRj(k −N + α0 + 1, k −N + α0 + 1)

=
∫ ∞

0

dm

dxm
φ(x− k)

dn

dxn
φ(x − l)dx, (27)

with k, l = N − α0, ..., 2j −N − 1 + α1.

m,nS1(N − k, 2j −N + α1 − l) =
∫ 1

−∞

dm

dxm
˜̃
φ
]

k(1 − x)
dn

dxn
φ(x − l)dx, (28)

with k = N − 1, ...., 0, k /∈ Λ1, l = 2j −N − 1 + α1, ..., N − α0.

m,nR̃1(N − k,N − l) =
∫ 1

−∞

dm

dxm
˜̃
φ
]

k(1 − x)
dn

dxn
˜̃
φ
]

l (1 − x)dx, (29)

with k, l = N − 1, ...., 0, k, l /∈ Λ1.

We show now that we can express all the above connection coefficients
in terms of the r

(m,n)
k,l . The particular case m = 0 with n = 1, 2, was

considered in [20]. For the general case we have:
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• By (7), m,nS0 := (Gφ̃Λ0
)−1/2

nS
φ̃
0 where

m,nS
φ̃
0 (k + 1, l −N + α0 + 1) =

N−1−α0∑

i=−N+1

Pk(i)r
(m,n)
i,l ,

k = 0, ..., N − 1, k /∈ Λ0, l = N − α0, ..., 3N − 3 − α0.

• Similarly, if m,nS
]
1 := (Gφ̃

]

Λ1
)−1/2

m,nS
φ̃]

1 where

m,nS
φ̃]

1 (k + 1, l−N + α1 + 1) =
N−1−α1∑

i=−N+1

P ]k(i)r
(m,n)
−i,−l ,

k = 0, ..., N − 1, k /∈ Λ1, l = N − α1, ..., 3N − 3 − α1, then m,nS1 is
the matrix m,nS

]
1 with the rows and columns in reversed order.

• From (10), m,nR̃0 := (Gφ̃Λ0
)−1/2

m,nR
φ̃
0 (Gφ̃Λ0

)−1/2, where m,nR
φ̃
0 can

be compute by a term by term division of the matrix

DΛ0 m,nS
φ̃
0 b
t
Λ0

+ bΛ0(n,mS
φ̃
0 )DΛ0 + bΛ0 m,nRb

t
Λ0
, (30)

with m,nR(k−N+α0+1, l−N+α0+1) = r
(n)
k,l , k, l = N−α0, ..., 3N−

2 − 2α0, by the matrix
(

1
2m+n−1M1 −M

)
Λ0

.

• m,nR̃1 is the matrix m,nR̃
]
1 with the rows and columns in reversed or-

der with m,nR̃
]
1 := (−1)n(Gφ̃

]

Λ1
)−1/2

m,nR
φ̃]

1 (Gφ̃
]

Λ1
)−1/2, where m,nR

φ̃]

1

can be compute by a term by term division of the matrix

DΛ1 m,nS
φ̃]

1 (b]Λ1
)t + b]Λ1

(n,mS
φ̃]

1 )DΛ1 + b]Λ1 m,n
R(b]Λ1

)t, (31)

with m,nR(k−N+α1+1, l−N+α1+1) = r
(n)
k,l , k, l = N−α1, ..., 3N−

2 − 2α1, by the matrix
(

1
2m+n−1M1 −M

)
Λ1

.

• m,nRj(k−N+α0 +1, k−N+α0 +1) = r
(m,n)
k,l , k, l = N −α0, ..., 2j−

N − 1 + α1,

Remark 3.1. If α0 = 0, we add a column of 0 at the right to m,nS
φ̃
0 to

obtain m,nR
φ̃
0 from the matrix (30). A similar consideration is valid for

computing m,nR
φ̃]

1 from the matrix (31).
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Remark 3.2. The entries m,nR
φ̃
0 (k, l) with k − 1, l − 1 ∈ Λ0 and k + l =

m+n+ 1, can not be computed using the term by term division described
above. If k ≥ m+ 1, by (24) and (27) for these entries we have,

m,nR
φ̃
0 (k, l) =

∫ ∞

0

dmφ̃k−1

dxm
(x)

dnφ̃l−1

dxn
(x)dx

=
∫ ∞

0

xk−m−1

(k −m)!
dnφ̃l−1

dxn
(x)

−
3N−3−α0∑

m=N−α0

Pk−1(m)n,mS
φ̃
0 (l,m−N + α0 + 1). (32)

Integrating by parts k−m−1 times and using dnφ̃l

dxn (0) = δn−l, 0 ≤ l ≤ N−1,
we obtain

m,nR
φ̃
0 (k, l) = (−1)k−m −

3N−3−α0∑

m=N−α0

Pk−1(m)n,mS
φ̃
0 (l,m−N + α0 + 1).

Similarly, if k < m+ 1 then

m,nR
φ̃
0 (k, l) = −

3N−3−α0∑

m=N−α0

Pk−1(m)n,mS
φ̃
0 (l,m−N + α0 + 1).

Analogously, if k − 1, l − 1 ∈ Λ1 and k + l = m+ n+ 1, then

m,nR
φ̃
1 (k, l) = (−1)k−m −

3N−3−α1∑

m=N−α1

P ]k−1(m)n,mS
φ̃]

1 (l,m−N + α1 + 1),

for k ≥ m+ 1, and

m,nR
φ̃
1 (k, l) = −

3N−3−α1∑

m=N−α1

P ]k−1(m)n,mS
φ̃]

1 (l,m−N + α1 + 1),

for k < m+ 1.

Remark 3.3. For the case m = 0 we note that

0,nS
φ̃
i (l,m−N + α0 + 1) = (−1)nn,0S

φ̃
i (l,m−N + α0 + 1), i = 0, 1,

and r
(n)
l := r

(0,n)
l,0 , l ∈ Z, can be computed solving the following system of

linear algebraic equations (see [5] for more details):

r
(n)
l = 2n

[
r
(n)
2l +

1
2

N∑

k=1

a2k−1

(
r
(n)
2l−2k+1 + r

(n)
2l+2k−1

)]
, (33)
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where ak := 2
∑N−k
m=−N+1 hmhm+k, k = 1, ..., 2N−1, are the autocorrelation

coefficients of {hm}Nm=−N+1, and

∑

l

lnr
(n)
l = (−1)nn!. (34)

We also have, r(0,n)
i,l = r

(n)
i−l and r(n)

l = (−1)nr(n)
−l .

3.2. Scaling functions and wavelets at different levels

We analyze now how to express the connection coefficients involving
products (of derivatives) of scaling functions and/or wavelets at different
scales j, j′, in terms of connection coefficients with products (of derivatives)
of scaling functions at the same scale, using local refinement relations (see,
e. g., [3]). In all cases the amount of work is proportional to |j − j′|. We
only consider connection coefficients with the edge scaling functions and
wavelets at 0. At 1 we can proceed in a similar manner.

We define ind1(l) as the number in {1, ...,M − #Λ0} giving the po-
sition of l in the set {0, ...,M − 1} \ Λ0 considered with its elements in an
increasing order. For l ∈ Γ0, the number ind2(l) ∈ {1, ...,#Γ0} is defined
in a similar manner. In order to obtain the results of this subsection we
rewrite (10) and (13) as

˜̃
φl(2

jx) =
√

2
M−1∑

i=0
i/∈Λ0

H0(ind1(l), ind1(i))
˜̃
φi(2

j+1x) +

+
√

2
3N−2−2α0∑

i=N−α0

h0(ind1(l), i−N + α0 + 1)φi(2j+1x), (35)

˜̃
φl(2

jx) =
√

2
M−1∑

i=0
i/∈Λ0

G0(ind2(l), ind1(i))
˜̃
φi(2

j+1x) +

+
√

2
3N−2−2α0∑

i=N−α0

g0(ind2(l), i−N + α0 + 1)φi(2j+1x). (36)

Case 1. If j > j′, k, l = N −α0, ..., 2j −N − 1 +α1, since supp(φ(m)(2jx−
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k)) = [k−N+1
2j , k+N2j ], by (2)

∫ ∞

−∞
φ(m)(2jx− k)φ(n)(2j

′
x− l)dx

= 2n+ 1
2

∑

i∈∆j,j′,1
k,l

∫ ∞

−∞
φ(m)(2jx− k)φ(n)(2j

′+1x− i)dx.

where ∇j,j′,r
k,l is the set of integers 2l + p with p ∈ {−N + 1, ..., N} and

k−N+1
2j−j′−r < p − N < k+N

2j−j′−r − 1. We have #∇j,j′,r
k,l ≤ C. Repeating

this procedure j − j′ times, we finally express the connection coefficient
∫∞
−∞ φ(m)(2jx− k)φ(n)(2j

′
x− l)dx in terms of a sum of

j−j′∑

r=1

#∆j,j′,r
k,l ≤

(j − j′)Ck terms that involve the connection coefficients r(m,n)
k,l .

Case 2. If j > j′, k = 0, ..., N − 1, k /∈ Λ0, l = N −α0, ..., 2j −N − 1 +α1,

by (2) and taking into account that supp(˜̃φ
(m)

k (2jx)) = [0, 2N−1−α0
2j ],

∫ ∞

0

˜̃
φ

(m)

k (2jx)φ(n)(2j
′
x− l)dx

= 2n+ 1
2

∑

i∈∆j,j′ ,1
l

hi

∫ ∞

0

˜̃
φ

(m)

k (2jx)φ(n)(2j
′+1x− i)dx,

where ∆j,j′,r
l is the set of integers 2l + p with p ∈ {−N + 1, ..., N}, p <

2N−1−α0
2j−j′−r + N − 1. Clearly, #∆j,j′,r

l ≤ C. Repeating this procedure

j − j′ times, we finally express
∫∞
0

˜̃
φ

(m)

k (2jx)φ(n)(2j
′
x− l)dx in terms of

a sum of
j−j′∑

r=1

#∆j,j′,r
l ≤ (j − j′)C terms involving connection coefficients

∫∞
0

˜̃
φ

(m)

k (x)φ(n)(x − l)dx.

Case 3. Similarly, using (35), if j < j′, k = 0, ..., N − 1, k /∈ Λ0, l =

N − α0, ..., 2j − N − 1 + α1, then
∫∞
0

˜̃
φ

(m)

k (2jx)φ(n)(2j
′
x − l)dx can be

expressed in terms of the connection coefficients
∫∞
0

˜̃
φ

(m)

i (x)φ(n)(x − l)dx,∫∞
0 φ(m)(2j+kx− i)φ(n)(2j

′
x− l)dx, k = 1, ..., j′ − j. Finally these last

connection coefficients are treated as in the Case 1.
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Similarly, using (35) and (36), the rest of the connection coefficients
can be expressed in terms of that considered in the above cases and/or in
the previous subsection.
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