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Alias-Free Digital Click Modulator
Leandro Stefanazzi, Alejandro R. Oliva, and Eduardo E. Paolini

Abstract—An alias-free, discrete-time click modulator is devel-
oped in this paper. Previous approaches rely on translating the con-
tinuous-time click modulator to a discrete-time setting, although a
key component in the click modulator—the analytic exponential
modulator-cannot be exactly transformed to the discrete domain.
Every discrete-time version of the click modulator reported in the
literature is prone to aliasing effects that are ameliorated, but not
eliminated, using interpolation techniques.
The precision of the switching times of the output square wave

is critical to click modulation because uncertainties in their deter-
mination adversely affect the performance and SNR of the modu-
lator. A novel method that uses frequency domain information to
compute these switching times without error is also presented.
This two techniques are used to develop an off-line discrete-time

click modulator that achieves a SNR larger than 180 dB for both
multitonal and bandpass signals.

Index Terms—Click modulation, digital modulation, power am-
plifiers, power conversion, pulse width modulation, switching con-
verters.

I. INTRODUCTION

P ULSE-WIDTH MODULATION (PWM) is one of the
most widely used modulation technique for power

conversion over the years due to the low complexity of the
analog modulator. Nowadays the industry is replacing analog
PWM modulators by their digital counterpart. Nevertheless,
the discrete-time implementation of PWM (also known as
uniform PWM or UPWM) has a major drawback: the appeare-
ance of baseband distortion composed by a combination of
derivatives of the modulating signal, together with carrier
harmonics phase-modulated by the input signal and its tem-
poral derivatives [1], that is impossible to remove using linear
filtering. Many solutions have been proposed to ameliorate
this problem [2]–[18]. Interpolation and noise shaping [8],
[12], sigma-delta modulation [6] and practical solutions for
the finite resolution of the duty cycle [10], [11], [13], [14],
[16] have been explored. In [2] the binary wave is filtered to
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control the harmonic level of the synthesized PWM signal and
in [3] dynamic (time-varying) FIR filtering is applied prior
to interpolation. In [4], nonlinearities are compensated with a
neural network trained using the model of the digital modulator
and [9] presents a method for recursively computing NPWM
using UPWM output. A completely different approach is used
in [19]–[22], where the sinusoidal signal is generated using
bit-stream representation and digital logic hardware. Alterna-
tive digital modulation methods are also found in the literature,
such as nonsinusoidal carrier-based/space vector PWM [23],
constant on/off-time modulation for DC/DC converters [24]
or feedforward delta modulation [25]. Other authors deal with
minimization of switching losses [26], [27] and dead-time com-
pensation of digital PWM modulators [28]. Digital feedback of
the power stage’s output is used in [5] and [7], which allows the
linearization of the overall system. Even if nonlinearities are
reduced, many of these solutions rely on specialized hardware,
such as [17] where a 12-bit oversampling A/D converter and a
delta-sigma modulator are integrated in a chip aimed at motor
drive applications, or [15] where an all-digital implementation,
with proprietary digital sigma-delta modulator is discussed.
However, none of the previous techniques completely removes
distortion components from the baseband.
Click modulation [29] is a phase modulation that encodes the

modulating signal into the switching times of a square wave.
Originally conceived as an analog modulation, the generated
signal has its baseband separated from the high frequency com-
ponents by a guard band; therefore, the information can be re-
covered with no distortion with a low-pass filter (LPF). The
guard band allows a lower switching frequency than that re-
quired by traditional PWM-based schemes, increasing the effi-
ciency of the switching stage. The main drawback of click mod-
ulation is its algorithmic complexity, that complicates hardware
[30] and even off-line software [31] implementations, and has
postponed its widespread use.
In spite of this, the first harwdare implementations of click

modulation were reported in 1999 [30], [32]–[34]. Three DSPs
applying 24 bits fixed-point arithmetic with a total power of
233 MMACs per second, as well as 8-times digital oversam-
pling filter were used to implement the system for a reduced
bandwidth. Additionally, two FPGAs acted as a digital pulse
former featuring 10-bits time resolution to position the edges of
the square wave. In [35] a complete audio band implementation
is described using five DSPs and augmenting the FPGAs’ clock
frequency. Lately [36], an analog-to-digital converter was intro-
duced to sample the input signal and feed a single DSP processor
capable of running in real time the complete click modulation
algorithm. Similarly to [35] the pulse former was implemented
with an FPGA. An off-line software implementation of a dis-
crete-time click modulator was presented in [31] that is suitable
for applications such as portable audio and signal generation.
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The idea relies on generating the switching times of the square
wave using encoding software running on a PC that implements
the modulator [37]. The square wave is then regenerated using
a commercial DSP that features a high resolution PWMmodule
and recovered with a LPF.
All the previous implementations [30]–[36] derive the dis-

crete-time click modulator by following the continuous-time
scheme developed in [29] and replacing every continuous-time
signal processing stage by a discrete-time counterpart. Although
some of them can be easily translated, a key component of the
click modulator, referred to as the analytic exponential modu-
lator (AEM) cannot be deployed as a discrete-time exact equiv-
alent because of frequency-domain aliasing. Although reason-
able performance can be obtained by interpolation and using
higher switching rates, these solutions reduce the advantages of
click modulation.
In this article a novel discrete-time version of a click modu-

lator is presented. It is based entirely in discrete-time signals and
transforms properties, and it is an exact equivalent of [29] but in
a discrete-time setting. This approach significantly reduces the
amount of processing required in previous works. In addition,
an alternative method for zero-crossing computation is intro-
duced. It is demonstrated that using frequency information it is
possible to compute the exact time instants at which the under-
lying continuous-time signal crosses the time axis. The combi-
nation of these two techniques allows the exact implementation
of the discrete-time click modulator using non-oversampled dis-
crete-time inputs.
This article is organized as follows. Continuous-time click

modulation is reviewed in Section II. Section III details the pro-
posed discrete-time click modulator. An off-line implementa-
tion of the discrete-time click modulator is tested and the re-
sults are summarized in Section IV, where a comparison be-
tween click modulation and PWM is also performed. Finally,
conclusions and future work are discussed in the last section.

II. CONTINUOUS-TIME CLICK MODULATOR

Click modulation [29] is based on analytic modulation theory
[38] and angle modulation [39], [40]. It is a phase modulation
that produces binary signals with the property that the intermod-
ulation products appear above a user defined frequency. This al-
lows recovering the input information with zero distortion using
a simple LPF. Further details can be found in [29], [41]–[45].
The block diagram of a continuous-time click modulator is

shown in Fig. 1. The input is a real bandpass signal whose
spectrum is comprised within . If

is the Hilbert transform of the analytic signal is
defined as . The spectrum is not
zero only in the interval of the positive frequency axis.
The analytic signal is phase-modulated by the AEM.

The spectrum of its output extends over
the entire positive frequency axis. The frequency content above
a user-defined frequency is removed by the LPF. Its
output is shifted and reversed in frequency producing the
real signal

Fig. 1. Continuous-time click modulator.

Fig. 2. Spectrum of the click-modulated signal.

where is the frequency of a sinusoidal carrier
. The binary output signal is derived from

both the zeros of and the zeros of the carrier :
transitions from “low” to “high” (“high” to “low”) each time
the carrier (the signal ) crosses the real axis. Because
the transitions corresponding to the zeros of the carrier occur
at half its period, the switching frequency of is twice the
carrier frequency only if the zeros of lay in between
the zeros of the carrier. This imposes an upper limit for the
amplitude of the input signal [29]. The typical spectrum
of a click-modulated signal is shown in Fig. 2. Due to
the action of the LPF , the frequency range comprised
between and the (ideal) filter corner frequency has no
spectral content, and therefore acts as a guard band between the
frequency range of the signal and the harmonic content
generated by the modulation process. The signal content can be
recovered without distortion using another LPF with frequency
response as depicted in Fig. 2.
The pair AEM-LPF is the core of click modulation. The AEM

takes an analytic signal as input and generates the output
signal . The frequency behaviour of the AEM
can be analyzed by expressing the exponential function as a
power series,

with , and . Note that the module
of the spectrum of coincides with the module of
the spectrum of , i.e., . The
spectrum of is given by

(1)
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Fig. 3. Spectrum of the signals , and .

where is the Fourier transform of ,
and . The spectrum can be computed using
the modulation theorem of the Fourier transform [46], that states
that multiplication in time domain represents convolution in the
frequency domain. Therefore,

that can be computed as the frequency convolution between
and :

if
otherwise.

(2)
The integration interval is , where

and . This expression re-
veals that if the spectrum of van-
ishes outside the band , in general the spectrum
of is not identically zero within the band

. In other words, the spectrum of increasing-order
terms extends over larger frequency bands. As an example,
Fig. 3 shows the module of , , and , which
are the spectra of , and

, respectively, assuming that is an an-
alytic, bandlimited signal with spectrum

.
According to (1), the computation of involves adding

infinite terms , each of an increasing bandwidth, and
therefore is defined over the entire positive frequency
axis with infinite spectral extension. However, the analytic LPF
with frequency response

if
otherwise

(3)

bandlimits the output of the AEM, and therefore, the following
stages that involve spectral inversion and frequency shifting re-
sult in no distortion in the baseband.
The spectrum of the output of the filter can be

written as

(4)

Although the -th term extends over the frequency
interval , the corresponding term in
(4) only occupies the band . Therefore, the only
contributing terms in (4) are those for which ; i.e.,
(4) can be replaced by a finite summation

(5)

where and the ceil function, i.e., the
smallest integer not smaller than . Each term in (5) occupies
the frequency band , and can be computed using (2)
for . This equation is the contin-
uous-time version of the ideally filtered AEM output and will
be referred to as CT-AEMF.
The filter of (3) is crucial in assuring that click modulation

preserves the baseband of the analytic modulating signal .
It can be proved that if this filter is removed, the block diagram
in Fig. 1 behaves as a traditional PWM modulator [29].

III. DISCRETE-TIME CLICK MODULATOR

Given a real, bandlimited, discrete-time signal , with dis-
crete-time Fourier transform that does not vanish over
the interval , with ,
let be its Hilbert transform. Therefore,

is an analytic signal whose spectrum does not
vanish within the interval .
It may be tempting to define the discrete-time AEM as

. However, its frequency behaviour is quite different
from its continuous-time counterpart due to the -periodicity
of the spectrum of discrete-time signals. To derive the spectrum
of it is again useful to express the exponential function as
a power series

(6)
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where , and . The spectrum
of is given by:

Applying the modulation or windowing theorem of the discrete-
time Fourier transform ([47], pp. 61–62), the spectrum of the
-th term in (6) is given by the times convolution of the
spectrum of :

where “ ” denotes periodic convolution,

This equation reveals that the support of the spectrum
of is , but due to the periodic nature of the
spectrum of discrete-time signals some distortion may occur
whenever or . This situation is illus-
trated in Fig. 4 that shows the module of , and

, which are the spectra of ,
and in (6), respectively. Even

though the spectrum of is contained in , with
, some components of the spectrum of

may appear at frequencies higher than . When
computing the spectrum of , it
results that , and therefore the part of the spectrum
contained in the interval is replicated every . In
particular, an alias appears within the interval , where

. Also, due to the expansion of the spec-
trum the replicas overlap themselves, as indicated in the bottom
panel of Fig. 4. This aliased component is responsible for dis-
tortion, and has to be removed if a distortion-free operation is
desired. The case of the spectrum of higher order terms

in (6) is even worse, because it can result
in multiple overlaps, spectral inversion, etc. However, although
the -th therm may have a more complicated spectrum, its am-
plitude is scaled by and therefore its deleterious effects on
the final result of (6) are somewhat attenuated.
To overcome this problem, previous works use an interpo-

lated version of the analytic signal before applying
(6) [30]–[36]. Interpolation by a factor reduces the band-
width of to the interval , and therefore
the number of terms in (6) that can be added without overlap-
ping is increased. In other words, the exponential function is
approximated by

(7)

Fig. 4. Spectrum of the signals , and .

where is chosen so that , i.e.,
, with the floor function which is the largest

integer not greater than .
There is a trade-off between the interpolator order and

the approximation error; the higher the order of the inter-
polator, the higher the number of terms that can be used in
(7) to approximate (6) with no aliasing, and it is expected that a
lower approximation error may result. However, even (6) does
not replicates the behaviour of the continuous AEM-LPF com-
bination that is the key of the click modulator. Since is
bandlimited, it would be possible to avoid the aliasing problem
if AEM and filtering are performed in a single processing block,
as follows.

A. Simultaneous AEM and Filtering

To avoid the inconveniences described in the previous sec-
tion, and to resemble the behaviour of the continuous-time click
modulator, the filtered version of (6) is defined as:

(8)

where is the impulse response of the analytic, periodic
bandpass filter defined in one period as

if
otherwise



1078 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 2, MAY 2013

and

...

The spectrum of each of the terms in (8) is given by

...

Using these auxiliary sequences, the spectrum of the
bandlimited signal can be written as:

The terms are different from zero for within the in-
terval . The terms for which do not con-
tribute to the result. The above equation can be written as a finite
sum

(9)

where . The frequency components of each
term in (9) are in the band , i.e., the sequences
computed recursively are already filtered and alias free. The
value defines the so called baseband, and states that every
frequency component below this value will be represented
without distortion by the discrete-time click modulator. It is
worth mentioning that (9) is the discrete-time equivalent of the
CT-AEMF because no approximation has been performed. For
this reason, it will be referred to as DT-AEMF.
The real signal is derived from as in the contin-

uous-time case, i.e.,

where . The square wave is built using the
zero-crossings of and the carrier . The
carrier frequency must be selected so that .

B. Finite-Length Sequences

The method for computing the DT-AEMF has to be modi-
fied to deal with finite-length input sequences. Let to be a
-point input sequence. If is an analytic signal derived

from (see Appendix) the second half of its DFT is
zero, i.e.,

if
if

where the index associated with the lowest and highest
frequency components is and

, respectively. The frequency behaviour of
the AEM is analyzed using the power series of the exponential
function given by (6). The spectrum of is given by

The DFT of the -th term can be written as (see the
Appendix)

where denotes -point circular convolution,

Each time a new product (convolution) is computed, the result
must be scaled down by the factor . This additional com-
putation can be avoided if the first term is normalized by .
As for the case for periodic convolution, this equation

states that the DFT of is different from zero for
. However, distortion will appear whenever

due to the periodic nature of circular convolution.
To avoid this effect, the DT-AEMF given by (8) is used. The
DFT of the analytic filter is defined by:

if
otherwise

with . The DFT of the terms in (8)
is given by:

...

(10)
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The circular convolution results in no aliasing because the
length of the sequences is lower than . The DFT of the
filtered signal is

The terms are different from zero for . The
terms for which do not contribute to the result. The
above equation can be rewritten as:

(11)

where . This expression reveals that an exact
equivalent of the CT-AEMF behaviour can be obtained by a
finite number of filtering and power operations in discrete-time.
In certain applications, (although finite) can be large

enough. This may be the case, for example, when is a
large sequence ( is large), and is
set to its maximum allowed value, , which results in

, a very large number. Therefore, sometimes it is
desirable to obtain an approximation to using fewer terms
in (11). This is possible because the contribution of the suc-
cessive terms in (11) decreases with . If the approximated
signal is noted , its DFT is given by

(12)

Experimentally, it has been found that the relationship between
and the resulting maximum Signal-to-Noise Ratio (SNR) in

the baseband is given by:

(13)

C. Sampling Rate of the Input Signal

The sampling frequency defines the Nyquist limit, i.e., the
maximum frequency value that can be represented and recov-
ered without aliasing. For the digital click modulator, it would
be desirable to define the guard band beyond , i.e.,

. A solution would be to sample the input signal at a higher
rate to increase the system’s bandwidth; thus requiring a change
in the sampling frequency. However, the only effect in the spec-
trum is the addition of zeros for the higher frequencies. An al-
ternative is to add zeros to the spectrum of the analytic
signal from up to the desired index associated
with the frequency point . The subscript stands for dis-
tortion free and means that the frequencies in the band
will be modulated with no distortion by the digital click modu-
lator. It is worth noting that the effect of the zero-padding over
the signal moves the Nyquist point from to ,
being the quotient given by:

To avoid aliasing in the computation of , the length of the
circular convolution in (10) must be set to .
The advantage of using this technique is that the guard band and
hence the switching frequency associated with click modulation
is kept independent of the sampling frequency of the modulating
signal.

D. Zero-Crossing Detection

Given a continuous-time signal that is represented from its
samples by the sequence , its zero-crossings can be found
when the sign of changes between two consecutive time
indexes.
In previous work, the zero-crossings were computed using a

3rd order polynomial built with 4 samples around a sign change
[31]. Clearly, the detection improves as the sampling frequency
increases. However, the main advantage of the proposedmethod
for computing the DT-AEMF, is that the sampling frequency
does not need to be increased. An alternative method for zero-
crossing computation is introduced here.
The signal can be thought as the sampled version of a

continuous-time signal :

where is the DFT of and is the index
associated with the carrier frequency. The zeros of occur at

with . That is, is a polynomial function of the
variable . The polynomial can be written in terms of , the
DFT of :

(14)

The zeros of are complex and are all located in the unit
circle. To map those zeros to the real axis, the inverse trans-
formation must be applied over the variable . Notice that the
phase of is , where is the zero and the period of
the signal . In terms of and , and the value
is given by

(15)

The zeros computed using are exact unlike those obtained
using the interpolation of the samples.
The binary signal is obtained using (15) and the zeros

of the carrier. Because the carrier is a sinusoidal waveform of
known frequency, its zero-crossings do not need to be computed
as they occur at:

This method for calculating the zero-crossings has proven to be
useful when computing the off-line click modulator. The main
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Fig. 5. Spectrum of the signal .

problem is that the order of the polynomial used to com-
pute the zeros tends to be high. This is due to the fact that the
carrier frequency, which fixes , depends on the selected guard
band. If the distortion-free band is augmented, would increase
accordingly. A more efficient way of computing these zeros is
currently under research.

IV. EXPERIMENTAL RESULTS

An off-line version of the discrete-time click modulator was
implemented. Two different scenarios were explored: (a) a multi
tone signal comprised of three sine waves and (b) a bandpass-
like signal. The objectives are to compare the performances of
digital click modulation and Natural PWM, and to emphasize
the real potential of digital click modulation.
The sampling frequency is and the carrier fre-

quency is , which results on switching at 60
kHz. The number of terms for implementing the DT-AEMF is

, which using (13) results in . The base-
band is defined between 0 and 30 kHz.
The signal is a square wave with infinite harmonic

components. Direct computation of its spectrum using the
FFT would result in an important amount of aliasing. To
overcome this problem the spectrum is obtained using the
Fourier-by-Jumps method [48], [49], which allows the com-
putation of the coefficients of the Fourier series of periodic,
discontinuous signals.

A. Multi Tone Signal

The input is the multi tone signal

The discrete-time sequence is , where
. The length represents

only one period of the input signal. The spectrum of the analytic
signal derived from is shown in Fig. 5.
The DFT of the DT-AEMF output is computed

using (12) and the zero-crossings of derived from the poly-

Fig. 6. Spectrum of the click-modulated signal .

Fig. 7. Spectrum of the NPWM-modulated signal.

nomial using (15). The square wave is then built using
these values and the zero-crossings of the carrier.
The spectrum of the resulting discrete-time click-modulated

signal is shown in Fig. 6, where it can be seen that the
baseband information is separated from the high frequency har-
monics. It is also verified that the maximum
coincides with the predicted value for .
To prove the potential of the discrete-time click modulator,

a comparison with NPWM was performed. The NPWM signal
was obtained using symbolic mathematical manipulation to
minimize numerical errors. Fig. 7 shows the spectrum that
results from applying NPWM to the input signal . It can
be seen that the continuous-time version of PWM performs
well but it is impossible to get a distortion-free baseband. It is
worth noting that uniform PWM would perform even worse.
On the other hand, the proposed discrete-time click-modulator
keeps the baseband free of distortion, even when sampling the
input signal at the Nyquist limit.

B. Bandpass Signal

To test the discrete-time click modulator on a more realistic
scenario, a bandpass signal is used. The signal is speci-
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Fig. 8. Spectrum of the analytic signal .

Fig. 9. Spectrum of the click-modulated signal .

fied by means of the frequency-sampling realization method, in
which the parameters that characterize the signal are the values
of the desired frequency response instead of the impulse re-
sponse [50]. The length of the resulting signal is
points, the sampling frequency and its spectrum
is contained within the range 0 kHz and 30 kHz. The switching
rate of the square wave is 60 kHz. The spectrum of its an-
alytic version is shown in Fig. 8. As in the example for
the multi tone signal, the DFT of is obtained from

using (12) and the zero-crossings of are derived
from the polynomial , mapping its zeros to the real axis
with (15). The spectrum of the resulting digitally click-mod-
ulated signal is shown in Fig. 9. It is verified that the
baseband information is separated from the high frequency har-
monics, starting at .

V. CONCLUSIONS

The first alias-free discrete-time click modulator was devel-
oped in this paper. The modulation algorithm is based on im-
plementing the discrete-time AEM-LPF pair in one processing
block, eliminating aliasing and the necessity of interpolating the
input signal. DT-AEMF is carried out using circular convolu-
tion, which allows for direct/inverse FFT approach reducing the
required computational power.

A detailed mathematical description was presented as well as
practical simulation results. It was demonstrated that only a fi-
nite number of terms are needed to compute the DT-AEMF for
bandpass signals. The number of terms can be limited in prac-
tice, without redesigning the filter. Additionally, an empirical
formula was given for choosing the number of terms to cope
with a desired maximum SNR.
Zero-crossing detection is implemented using spectral infor-

mation. This allows to obtain the exact switching times of the
modulated signal.
In the experiments, the discrete-time click modulator behaves

as expected, because baseband distortion was suppressed even
using low switching-rates.
To prove the usefulness of the discrete-time clickmodulator, a

comparison with NPWMwas performed. It was shown that even
the ideal continuous-time version of PWM introduces baseband
distortion, while the proposed implementation of the discrete-
time click modulator keeps the baseband information separated
from the high frequency harmonics.
Although only simulation results are provided, a table con-

taining the values of the zero-crossings could be used to synthe-
size a signal using a standard PWM module. This would allow
the generation of high fidelity, low switching rates, and low dis-
tortion signals using an inexpensive hardware implementation.

APPENDIX

Analytic Finite-Length Sequences

To obtain the analytic signal from the real signal
the following method is used [51]:
• compute the -point DFT of the signal .
• define the spectrum for
and for and .

• make zero the negative part of the spectrum , that is
for .

• compute the inverse DFT of to get the signal .
Applying the previous steps the analytic signal is de-

rived. The real part of is . The imaginary part of
is the Hilbert Transform of .

Modulation or Windowing Theorem for Finite-Length
Sequences

Given the -point sequence , the DFT of the
product is given by ([47], pp. 659):

where denotes -point circular convolution. The spectrum
of the -th power of is obtained convolving

times , i.e.,
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