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A mathematical modeling of controlled release of drug from one-layer and two-layer torus-shaped
devices with external mass transfer resistance is presented. Analytical solutions based on the pseudo-
steady state approximation are derived. The validity of the equations is established in two stages. In
the first stage, the validity of the models derived for more complex systems is determined by comparison
with profiles predicted by the simplest model, in asymptotic cases. In the second stage, the reliability and
usefulness of the models are ascertained by comparison of the simulation results with vaginal rings
experimental release data reported in the literature. In order to measures quantitatively the fit of the the-
oretical models to the experimental data, the pair-wise procedure is used. A good agreement between the
prediction of the models and the experimental data is observed. The models are applicable only to torus-
shaped systems in where the initial load of drug is higher than its solubility in the polymer.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Drug delivery is an important aspect of medical treatment. The
efficacy of many drugs is directly related to the way in which they
are administered. Some therapies require that the drug be repeat-
edly administered to the patient over a long period of time. This
presents certain drawbacks. For contraception, for example, daily
oral intake of pills increases the risk of forgetting the intake. In
addition, the hepatic first-pass reduces the bioavailability of the
drug. Therefore, new routes of administration have been explored.

The administration of drug by the vagina has been described
and the advantages of this via over oral administration have been
noted (Cicinelli, 2008; Hussain and Ahsan, 2005). The vagina ap-
pears as an interesting route of drug administration for treatment
not only local but also for systemic (Cicinelli, 2008; Hussain and
Ahsan, 2005). Controlled release devices for vaginally drug delivery
have been explored (Sitruk-Ware, 2006; Yoo and Lee, 2006).
Among others, the intravaginal rings (IVRs) appear to be the most
promising devices and have been used extensively. Several designs
of ring have been developed, including matrix, reservoir and shell-
type variants, each providing very different drug release profiles
(Malcolm et al., 2002, 2003a; Woolfson et al., 1999, 2003). Despite
a substantial body of work has been published to date on the
development, implementation and clinical trials of IVRs (Johansson
ll rights reserved.
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and Sitruk-Ware, 2004; Malcolm et al., 2003b; Roumen, 2008; Van
Laarhoven et al., 2002), no attempt has been made to derive a mod-
el for predicting drug release rates.

In the past, different strategies have been used to model the
drug release kinetic in systems with different geometric shapes
(Arifin et al., 2006; Helbling et al., 2010a; Siepmann et al., 2008;
Wu and Brazel, 2008). One of the most used has been the applica-
tion of the approach of pseudo-steady state. The pseudo-steady
state approximation (PSSA) was introduced first by Higuchi to de-
rive an analytical solution for a rectangular slab under ‘‘sink condi-
tion’’ (Higuchi, 1961, 1963). Since then, this approach was used by
many authors for the derivation of mathematical models. For
example, Roseman and Higuchi (1970) and Tojo (1985) assumed
PSSA in the modeling of a planar geometry device with the exis-
tence of a stagnant liquid layer. The same analysis but incorporat-
ing a finite external medium was carried out by Zhou and Wu, who
derived an explicit analytical solution assuming PSSA (Zhou and
Wu, 2002). Helbling et al. derived analytical solutions based on
PSSA for the release of drug from erodible and non-erodible planar
matrices, through a membrane, and taking into account the exis-
tence of a diffusion boundary layer and a finite release medium
(Helbling et al., 2010b). In other systems, like cylinder or spheres,
also PSSA was employed to develop the predicting equation to ad-
just the release data (Costa and Sousa Lobo, 2003; Roseman, 1972;
Siepmann and Siepmann, 2008; Zhou and Wu, 2003).

In our previous work (Helbling et al., 2011), a mathematical
model to predict the release of drug from torus-shaped one-layer

http://dx.doi.org/10.1016/j.ejps.2011.08.008
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Nomenclature

adis area of the interface of the dispersed-drug zone/de-
pleted drug zone (cm2)

arel release area of the device (cm2)
A initial drug loading in the device (mg/cm3)
Ca,1 dissolved-drug concentration in the external resistance

layer at the matrix-external resistance layer interface
(mg/cm3)

Ca,2 dissolved-drug concentration in the external resistance
layer at the membrane-external resistance layer inter-
face (mg/cm3)

Cbl dissolved-drug concentration in the external resistance
layer (mg/cm3)

Ceq,1 dissolved-drug concentration in matrix at the matrix-
external resistance layer interface (mg/cm3)

Ceq,2 dissolved-drug concentration in matrix at the matrix-
membrane interface (mg/cm3)

Cm dissolved-drug concentration in the membrane (mg/
cm3)

Cm,1 dissolved-drug concentration in the membrane at the
matrix-membrane interface (mg/cm3)

Cm,2 dissolved-drug concentration in the membrane at the
membrane-external resistance layer interface (mg/cm3)

Cs maximum drug solubility in the polymeric matrix (mg/
cm3)

Ct dissolved-drug concentration in the matrix (mg/cm3)
Da drug diffusion coefficient in the external resistance layer

(cm2/s)

Dm drug diffusion coefficient in the membrane (cm2/s)
Dp drug diffusion coefficient in the polymeric matrix (cm2/

s)
ha thickness of the external resistance layer (cm)
hm thickness of the membrane (cm)
K1 drug partition coefficient at the matrix-external resis-

tance layer interface (dimensionless)
K2 drug partition coefficient at the matrix-membrane

interface (dimensionless)
K3 drug partition coefficient at the membrane-external

resistance layer interface (dimensionless)
m cumulative amount of drug released (mg)
Q cumulative amount of drug released per unit area of the

device (mg/cm2)
r spatial coordinates (cm)
Re distance from the rotation axis to the external surface of

the matrix (cm)
Rg distance from the rotation axis to the center of the gen-

erating circle (cm)
R0 radius of the generating circle (cm)
S(t) position of the dissolution–diffusion moving front (cm)
t time (s)
Vs volume of the torus-shaped matrix (cm3)

Greek letters
d(t) position of the dissolution–diffusion moving front

(dimensionless)
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devices with initial drug loading higher than the maximum solubil-
ity of drug in the polymer, assuming PSSA and taking into account
the specific characteristic of the torus-shaped geometry on the re-
lease process was developed. This model showed to be efficient in
the prediction of the profiles of drug released. Based on these re-
sults, the need for a model that includes other effects such as the
presence of resistance to mass transfer is a fact.

The purpose of the present study was to extend the analysis
previously done by developing a model that takes into account
the presence of external mass transfer resistance. Also, a model
that predicts the release profiles from a torus-shaped two-layer de-
vice is derived. The new models were derived based on PSSA and
can cover a wider range of situations.
2. Model development

The mathematical model is developed for a torus-shaped device
containing solid drug particles. The device is schematically illus-
trated in Fig. 1. When the torus-shaped device is placed in the re-
lease medium, the liquid takes contact with the device over its
entire surface. As the liquid contacts the device, the solid drug par-
ticles dissolve in and then diffuse out of the matrix. The discrete
crystals in the layer closer to the matrix surface are the first to
elute. When this layer becomes ‘‘exhausted’’, the solid drugs in
the next layer begin to be depleted. So, a drug depletion zone is
created. The thickness of this zone increases with time and as more
solid drugs elute out of the device, thus leading to the inward
advancement of the interface of the dispersed-drug zone/depleted
drug zone, phenomenon commonly referred to as ‘‘dissolution–dif-
fusion moving front’’. Because the liquid comes in contact with the
device over its entire surface at the same time, the formation of the
depletion zone and therefore the inward advancement of the inter-
face of the dispersed-drug zone/depleted drug zone takes place in
all radial directions at the same time (considering a radial direction
as the direction of the radius of the generating circle for a particu-
lar value of u) (Helbling et al., 2011). This means that the same
phenomenon of ‘‘dissolution–diffusion moving front’’ takes place
for all value of u (from 0 to 2p) and also for any value of x (from
0 to 2p) (Helbling et al., 2011). So, it is sufficient to find the way in
which the front moves in a single radial direction and then extrap-
olated it to the entire device, since the front moves in the same
form in all the radial directions. Therefore, for the mathematical
analysis only the half section of the area of the generating circle
in the radial direction u = 0 (Rg < r < Re) and in a particular value
of x (the value of x is irrelevant because the same phenomenon
occurs for all x) is considered. The analysis can be then extrapo-
lated to the entire device (Helbling et al., 2011). The parameters
present in Fig. 1 are defined below.

The general assumptions of the model to be mathematically for-
mulated are the following: (i) The system is a torus-shaped device.
(ii) The device is considered as an isotropic medium. (iii) The de-
vice is composed by a polymeric matrix that contains solid drug
particles dispersed in its interior. (iv) The initial distribution of
the drug in the polymeric matrix is homogeneous. (v) The initial
drug loading in the matrix is higher than the maximum drug solu-
bility in the polymer. (vi) For simplicity, all the drug particles have
the same size and a spherical form. (vii) The polymeric matrix is in-
ert, unswellable and non-erodible. (viii) For a one-layer device, the
system consists only of a polymeric matrix. In the case of a two-
layer device, the system consists of the polymeric matrix coated
with a second empty layer that resembles a membrane. (ix) The
initial drug loading in the membrane is zero. (x) The membrane
is inert, unswellable and non-erodible. (xi) The membrane can be
made up of the same polymer as the matrix or of a different one.
(xii) When the ‘‘dissolution–diffusion moving front’’ begins to
move, the dissolved drug profile is attained instantaneously



Fig. 1. Schematic illustration of a torus. (a) Construction of a torus. (b) Schematic representation of a torus in cartesian coordinate system.

Fig. 2. Schematic illustration of the dissolved-drug concentration profile in the considered section of the torus-shaped one-layer device. (a) Without external resistance layer.
(b) With external resistance layer. (I) Dispersed-drug zone; (II) dissolved-drug zone; (III) stagnant liquid layer; and (IV) infinite release medium.
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throughout the thickness of the membrane. (xiii) The dissolution of
the solid drug particles in the polymeric matrix occurs at a high
rate and does not constitute a controlling step of the general re-
lease process. (xiv) The rate controlling step of the release process
is the drug diffusion across the polymeric matrix in the one-layer
device or across the membrane in the two-layer device, which
are described according to Fick’s laws. (xv) The mass transport of
drug is assumed to be radial at all points. (xvi) The drug diffusion
coefficient in the polymeric matrix and in the membrane are con-
sidered constant. (xvii) The pseudo steady-state approximation
(PSSA) is assumed during the whole modeling process. (xviii)
External resistance to mass transfer is not negligible. (xix) The drug
diffusion coefficient in the external resistance layer is considered
constant. (xx) The initial drug concentration in the external resis-
tance layer is zero. (xxi) The volume of the release medium is con-
sidered infinite compared with the device to ensure the ‘‘sink’’
condition. (xxii) For a given time t, there exist a drug depletion
zone with a thickness Re � S(t). (xxiii) The model formulated is va-
lid till all solid drug particles dissolve in the polymer and no dis-
crete crystals remains in the device. This stage is achieved when
the ‘‘dissolution–diffusion moving front’’ reaches r = Rg. (xxiv) At
the initial time (t = 0), the elution medium has not been yet in con-
tact with the dispersed drug and therefore there is no depletion
zone. It is considered that the ‘‘dissolution–diffusion moving front’’
is at the surface of the matrix (S = Re) at the initial time. In the case
of a two-layer device, the time required for the diffusion of the elu-
tion medium through the membrane is very short and can be
neglected.
2.1. One-layer device

The dissolved-drug concentration profile in the considered sec-
tion of the torus-shaped one-layer device is illustrated in Fig. 2.
Fig. 2a corresponds to a system without external resistance and
the mathematical analysis was discussed in our previous work
(Helbling et al., 2011). Fig. 2b corresponds to a system that has
an external layer that acts as a resistance to mass transfer. The de-
vice is composed by a polymeric matrix that contains solid drug
particles dispersed in its interior. The drug release is controlled
by the diffusion of drug through the matrix. There is no additional
internal resistance to mass transfer that the diffusion of drug
through the polymeric matrix in these devices. The presence of
the external resistance layer depends on the conditions under
which the in vitro release test is performed. Chien reported about
the dependency of stagnant liquid layer with the viscosity, drug
diffusion coefficient and agitation speed of the release medium
(Chien, 1982). For example, low stirring speed of the release med-
ium leads to the formation of a stagnant liquid layer that acts as an
external resistance to mass transfer (Chien, 1982).

The parameters present in Fig. 2 are: r is the spatial coordinates,
Rg is the distance from the rotation axis to the center of the gener-
ating circle, S(t) is the position of the ‘‘dissolution–diffusion mov-
ing fronts’’, Re is the distance from the rotation axis to the
external surface of the matrix, ha is the thickness of the external
resistance layer, Ct is the dissolved-drug concentration in the ma-
trix, Cs is the maximum solubility of drug in the polymeric matrix,
Ceq,1 is the dissolved-drug concentration in matrix at the matrix-
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external resistance layer interface, Cbl is the dissolved-drug
concentration in the external resistance layer and Ca,1 is the dis-
solved-drug concentration in the external resistance layer at the
matrix-external resistance layer interface.

The equation of heat-conduction in a general orthogonal curvi-
linear coordinate system was reported by Özis�ik (1980). It is
known that there is an analogy between the heat-conduction pro-
cess and the diffusion process (Crank, 1975). This was recognized
by Fick, who first put diffusion on a quantitative basis by adopt-
ing the mathematical equation of heat-conduction (Fick, 1855).
So, the equation reported by Özis�ik can be employed for diffusion
problems. The first stage in the mathematical modeling of this
system is to determine the concentration profile of dissolved-drug
in the depletion zone formed inside the matrix. For torus-shaped
device with solute diffusion being radial at all points, the govern-
ing equation for diffusion in the depletion zone is (Helbling et al.,
2011):

@Ct

@t
¼ Dp

rðRg þ rÞ
@

@r
rðRg þ rÞ @Ct

@r

� �
t > 0 SðtÞ 6 r 6 Re ð1Þ

where t is the time and Dp is the drug diffusion coefficient in the
polymeric matrix. Assuming equilibrium between the surface of
the device and the external fluid at all t, the initial and boundary
conditions are:

Ct ¼ Cs t ¼ 0 Rg 6 r 6 Re ð2Þ
Ct ¼ Cs t > 0 Rg 6 r 6 SðtÞ ð3Þ
Ct ¼ Ceq;1 t > 0 r ¼ Re ð4Þ

With @Ct/ot in Eq. (1) being fixed at zero according to the PSSA and
with the boundary conditions presented in Eqs. (2)–(4), the concen-
tration distribution of dissolved-drug in the depletion zone can be
derived as:

Ct ¼ Cs 1� 1� Ceq;1

Cs

� � ln ðRgþSÞr
SðRgþrÞ

� �
ln ðRgþSÞRe

SðRgþReÞ

� �
2
4

3
5 t > 0 SðtÞ 6 r 6 Re ð5Þ

To use the Eq. (5), the expression for Ceq,1 must be determined. This
goal can be done using the concentration distribution of dissolved-
drug in the external resistance layer (see Appendix A).

At the interface of the dispersed-drug zone/depleted drug zone,
the following mass balance equation must be satisfied (Helbling
et al., 2011):

�adisðA� CsÞ
@S
@t
¼ �arelDp

@Ct

@r

����
r¼SðtÞ

ð6Þ

where adis is the area where the dissolution process occurs (area of
the interface of the dispersed-drug zone/depleted drug zone), A is
the initial drug loading in the device and arel is the release area of
the device. Substituting Eq. (5) into Eq. (6), differentiating with re-
spect to the spatial coordinates and integrating within the time
lapse corresponding to the moving front between [Re, S], it yields:

ReðRg þ ReÞ � SðRg þ SÞ
6

þ
R2

g

6
ln

Rg þ S
Rg þ Re

� �

� S3

3Rg
þ S2

2

 !
ln
ðRg þ SÞRe

SðRg þ ReÞ

� �
þ Dp

DaK1
ln
ðRg þ ReÞðRe þ haÞ
ReðRg þ Re þ haÞ

� �

� ðR3
e � S3Þ
3Rg

þ ðR
2
e � S2Þ

2

 !
¼ Dpt

A
Cs
� 1

� � ð7Þ

where Da is the drug diffusion coefficient in the external resistance
layer and K1 is the drug partition coefficient at the matrix-external
resistance layer interface.
The position of the ‘‘dissolution–diffusion moving front’’ (S) can
be obtained from Eq. (7) using an adequate computational soft-
ware that finds zeros of a function of one variable. The cumulative
amount of solute released (m) in a given time is calculated from a
mass balance equation (Helbling et al., 2011):

m ¼ 2p2Rg A R2
0 � ðS� RgÞ2

� �
� 2

Z Re

S
Ctðr � RgÞ@r

� �
ð8Þ

where R0 is the radius of the generating circle. Introducing Eq. (5)
into Eq. (8) and integrating with respect to the spatial coordinates
results in:

m¼2p2Rg

"
A R2

0�ðS�RgÞ2
� �

�Ceq;1ReðRe�2RgÞ

þ
CsSðS�2RgÞ ln ðRgþSÞRe

SðRgþReÞ

� �
�ðCs�Ceq;1Þ RgðRe�SÞþ3R2

g ln RgþS
RgþRe

� �� �
ln ðRgþSÞRe

SðRgþReÞ

� �
3
5
ð9Þ

The cumulative amount of drug release in a given time can be
calculated from Eq. (9) for the case of a system in which is present
an external layer that acts as a resistance to mass transfer.

2.2. Two-layer device

The dissolved-drug concentration profile in the considered sec-
tion of the torus-shaped two-layer device is illustrated in Fig. 3.
Fig. 3a corresponds to a system without external resistance and
Fig. 3b corresponds to a system that has an external layer that acts
as a resistance to mass transfer. The devices are composed in prin-
ciple by two layers: the interior layer formed by a polymeric ma-
trix that contains solid drug particles dispersed in its interior
(similar to the one-layer device) and a second layer which is a
polymeric membrane that has no drugs inside. The drug release
from these devices is controlled by the diffusion of drug through
the polymeric coating. Again, the presence of the external resis-
tance layer depends on the condition of the release assay (Chien,
1982).

The new parameters present in Fig. 3 are: hm is the thickness of
the membrane, Ceq,2 is the dissolved-drug concentration in matrix
at the matrix-membrane interface, Cm is the dissolved-drug con-
centration in the membrane, Cm,1 is the dissolved-drug concentra-
tion in the membrane at the matrix-membrane interface, Cm,2 is
the dissolved-drug concentration in the membrane at the
membrane-external resistance layer interface and Ca,2 is the dis-
solved-drug concentration in the external resistance layer at the
membrane-external resistance layer interface.

As in the previous section, the first stage is to determine the
concentration profile of dissolved-drug in the depletion zone
formed inside the matrix. The governing differential equation for
diffusion in the depletion zone and the associated initial and
boundary conditions consist again of Eqs. (1)–(3) and the following
condition (which replaces the Eq. (4)):

Ct ¼ Ceq;2 t > 0 r ¼ Re ð10Þ

Using the same procedure as in Section 2.1, the concentration distri-
bution of dissolved-drug in the depletion zone is given by:

Ct ¼ Cs 1� 1� Ceq;2

Cs

� � ln ðRgþSÞr
SðRgþrÞ

� �
ln ðRgþSÞRe

SðRgþReÞ

� �
2
4

3
5 t > 0 SðtÞ 6 r 6 Re ð11Þ

To use the Eq. (11), the expression for Ceq,2 must be determined. This
goal can be done using the concentration distribution of dissolved-
drug in the membrane (see Appendix B).



Fig. 3. Schematic illustration of the dissolved-drug concentration profile in the considered section of the torus-shaped two-layer device. (a) Without external resistance layer.
(b) With external resistance layer. (I) Dispersed-drug zone; (II) dissolved-drug zone; (III) membrane; (IV) stagnant liquid layer; and (V) infinite release medium.
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At the interface of the dispersed-drug zone/depleted drug zone,
the mass balance given by Eq. (6) must be satisfied. Substituting
Eq. (11) into Eq. (6), using Eq. (B.12a) or (B.12b), differentiating
with respect to the spatial coordinates and integrating within the
time lapse corresponding to the moving front between [Re, S], it
yields:

ReðRg þ ReÞ � SðRg þ SÞ
6

þ
R2

g

6
ln

Rg þ S
Rg þ Re

� �

� S3

3Rg
þ S2

2

 !
ln
ðRg þ SÞRe

SðRg þ ReÞ

� �
þ Dp

DmK2
ln
ðRg þ ReÞðRe þ hmÞ
ReðRg þ Re þ hmÞ

� �

� ðR3
e � S3Þ
3Rg

þ ðR
2
e � S2Þ

2

 !
¼ Dpt

A
Cs
� 1

� � ð12:aÞ

ReðRg þ ReÞ � SðRg þ SÞ
6

þ
R2

g

6
ln

Rg þ S
Rg þ Re

� �

� S3

3Rg
þ S2

2

 !
ln
ðRg þ SÞRe

SðRg þ ReÞ

� �
þ Dp

DmK2
ln
ðRg þ ReÞðRe þ hmÞ
ReðRg þ Re þ hmÞ

� �

� ðR3
e � S3Þ
3Rg

þ ðR
2
e � S2Þ

2

 !
DmG2

DaK3
þ 1

� �
¼ Dpt

A
Cs
� 1

� � ð12:bÞ

where Dm is the drug diffusion coefficient in the membrane, K2 is
the drug partition coefficient at the matrix-membrane interface
and K3 is the drug partition coefficient at the membrane-external
resistance layer interface. The nomenclature presented in Eq. (12)
is used throughout this section: the equations with subscript ‘‘a’’
in the equations number correspond to the system without external
resistance layer illustrated in Fig. 3a while those having subscript
‘‘b’’ correspond to the system with external resistance layer illus-
trated in Fig. 3b. The position of the ‘‘dissolution–diffusion moving
front’’ (S) can be obtained from Eq. (12.a) or (12.b) using an ade-
quate computational software. The cumulative amount of solute re-
leased (m) in a given time is calculated from a mass balance
equation:

m ¼2p2Rg AðR2
0 � ðS� RgÞ2Þ � 2

Z Re

S
Ctðr � RgÞ@r

�

�2
Z Reþhm

Re

Cmðr � RgÞ@r

#
ð13Þ

Introducing Eq. (11), (B.5a) or (B.5b) into Eq. (13) and integrat-
ing with respect to the spatial coordinates results in:
m¼2p2Rg

"
AðR2

0�ðS�RgÞ2Þ

þ
CsSðS�2RgÞ ln ðRgþSÞRe

SðRgþReÞ

� �
�ðCs�Ceq;2Þ RgðRe�SÞþ3R2

g ln RgþS
RgþRe

� �� �
ln ðRgþSÞRe

SðRgþReÞ

� �

�Ceq;2ReðRe�2RgÞð1�K2Þ�
Ceq;2K2ðRghmþ3R2

g ln RgþRe

RgþReþhm

� �
Þ

ln ðRgþReÞðReþhmÞ
ReðRgþReþhmÞ

� �
3
5
ð14:aÞ
m¼2p2Rg

"
AðR2

0�ðS�RgÞ2Þ

þ
CsSðS�2RgÞ ln ðRgþSÞRe

SðRgþReÞ

� �
�ðCs�Ceq;2ÞðRgðRe�SÞþ3R2

g ln RgþS
RgþRe

� �
Þ

ln ðRgþSÞRe

SðRgþReÞ

� �

�Ceq;2ReðRe�2RgÞð1�K2Þ�
ðCeq;2K2�Cm;2ÞðRghmþ3R2

g ln RgþRe

RgþReþhm

� �
Þ

ln ðRgþReÞðReþhmÞ
ReðRgþReþhmÞ

� �

�Cm;2ðReþhmÞðReþhm�2RgÞ
#

ð14:bÞ
The cumulative amount of drug release in a given time can be
calculated from Eq. (14.a) or (14.b) for the case of a two-layer
device without or with external resistance layer, respectively.
3. Results and discussion

In order to use the developed models to predict the drug release
profiles, it is convenient to use suitable computational programs to
simplify the calculations (for example MATLAB�, FORTRAN� or
MAPLE�). These programs allow the creation of a ‘‘routine’’ in pro-
gramming language to perform the simulations. Once the routine
is created, the user only needs to load the values of the parameters
that make up the model and then run the program. In the present
work, all the simulations were performed in the computational
software MATLAB�.

To validate the models, the validation process was divided into
two stages: the first stage consisted in the analysis and comparison
of the behavior of the equations in asymptotic cases and the sec-
ond one was to verify the ability of the models to predict real
experimental drug release profiles.



Fig. 4. Comparison of the equations behavior in absence of external resistance layer: (a) (—) model reported by Helbling et al. (2011), (h) Eq. (7), (���) Eq. (12.a) and (s) Eq.
(12.b). (b) (—) model reported by Helbling et al. (2011)), (h) Eq. (9), (���) Eq. (14.a) and (s) Eq. (14.b). The parameters used are: A/Cs = 50; Re = 3.15 cm; Rg = 2.85 cm;
R0 = 0.30 cm; Dp = 1 � 10�7 cm2/s; hm = 0.01 cm; Dm = 0.5 � 10�7 cm2/s; K2 = 0.2; ha = 0.
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3.1. Comparisons of asymptotic cases

For asymptotic cases means situations in which the systems are
taken to a limit. In this work the limit situation was to simplify the
model as much as possible. Consequently, for this stage of valida-
tion, two extreme situations were considered for the comparison of
the models behavior. The first analysis was to compare the position
of the ‘‘dissolution–diffusion moving front’’ and the cumulative
amount of solute released for both, one-layer and two-layer de-
vices, taking as condition the absence of an external resistance
layer. For the one-layer device, the theoretical prediction of Eq.
(7) was compared with the model previously reported by Helbling
et al. (2011). For the two-layer device, the behaviors of Eqs. (12.a)
and (12.b) were compared. According to this case, ha was set to
zero in Eq. (7) and G2 = 0 (that represent ha = 0) was fixed in Eq.
(12.b). To generalize the analysis and facilitate the comparison,
the position of the ‘‘dissolution–diffusion moving front’’ was trans-
formed into a dimensionless variable using the following relation-
ships: d = (Re � S)/R0, where d is the dimensionless position of the
‘‘dissolution–diffusion moving fronts’’. The simulation results are
presented in Fig. 4a. It can be seen that the theoretical positions
of the ‘‘dissolution–diffusion moving front’’ calculated according
Fig. 5. Comparison of the equations behavior in absence of membrane and external resis
and (s) Eq. (12.a). (b) (—) model reported by Helbling et al. (2011) and (s) Eq. (14.a).
Dp = 1 � 10�7 cm2/s; hm = 0; ha = 0.
to Eq. (7) are identical to that predicted by our model previously
reported (Helbling et al., 2011). Also, the behavior of the Eqs.
(12.a) and (12.b) are indistinguishable, showing that the more
complex models behave exactly like the corresponding equations
derived for systems without external resistance layer.

In addition, the cumulative amount of solute released was com-
pared. For the one-layer device, the theoretical prediction of Eq. (9)
was compared with the model previously reported by Helbling
et al. (2011) and for the two-layer device, the behaviors of Eqs.
(14.a) and (14.b) were compared. Ceq,1 = 0 in Eq. (9) and Cm,2 = 0
in Eq. (14.b) (that represents ha = 0) were set in accordance with
this limit situation. The simulation results are presented in
Fig. 4b. The figure shows that Eqs. (9) and (14.b) behave exactly
like the corresponding equations derived for systems without
external resistance layer.

After checking that the equations behave similarly in the ab-
sence of external resistance layer, the next step was to analyze
the behavior of the models in absence of the membrane. For this
purpose, the positions of the ‘‘dissolution–diffusion moving fronts’’
and the cumulative amount of solute released calculated according
to Eqs. (12.a) and (14.a), respectively, were compared with the the-
oretical predictions of the previously reported model (Helbling
tance layer for different A/Cs ratios: (a) (—) model reported by Helbling et al. (2011)
The parameters used are: Cs = 1 mg/cm3; Re = 3.15 cm; Rg = 2.85 cm; R0 = 0.30 cm;



Fig. 6. (a) Comparison of release profiles calculated according to Eq. (9) (—), model reported by Roseman and Higuchi (1970) (���), model reported by Higuchi (1963) (- - -) and
the experimental data reported by Chien et al. (d) (Chien et al., 1974), for ethynodiol diacetate release from a silicone device. The parameters used are: AVs = 647.57 mg;
Re = 3.15 cm; Rg = 2.85 cm; R0 = 0.30 cm; arel = 33.75 cm2; Vs = 5.06 cm3; Cs = 1.4791 mg/cm3. (b) Comparison of release profiles calculated according to Eq. (9) (—), model
reported by Roseman and Higuchi (1970) (���), model reported by Higuchi (1963) (—) and the experimental data reported by Jackanicz (symbols) (Jackanicz, 1981) for
levonorgestrel release from a silicone vaginal ring: (N) AVs = 35 mg (j) AVs = 70 mg. The parameters used are: Re = 2.85 cm; Rg = 2.43 cm; R0 = 0.42 cm; Vs = 8.46cm3;
Cs = 0.016 mg/cm3.
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et al., 2011) for different A/Cs ratios. For the comparison, hm was set
to zero in Eq. (12.a) and Ceq,2 = 0 (that represent hm = 0) was fixed in
Eq. (14.a) according to this limit situation. The simulation results
are presented in Fig. 5. It can be seen that Eqs. (12.a) and (14.a) be-
have exactly like the corresponding equations derived for the one-
layer device for all the A/Cs ratios analyzed. It can be concluded that
the equations derived for more complex systems (two-layer or
with external resistance layer) can reproduce very well the behav-
ior of the simplest model by taking the asymptotic cases of the
former.
Fig. 7. Comparison of release profiles calculated according to Eq. (14) (—) and the
experimental data reported by Matlin et al. (symbols) (Matlin et al., 1992) for
progesterone release from silicone vaginal rings: (�) R0 = 0.2500 cm; Re =
2.5250 cm; hm = 0.2250 cm; (N) R0 = 0.3000 cm; Re = 2.5750 cm; hm = 0.1750 cm;
(j) R0 = 0.3350 cm; Re = 2.6100 cm; hm = 0.1400 cm; (d) R0 = 0.3625 cm; Re =
2.6375 cm; hm = 0.1125 cm. The parameters used are: A/Cs = 475.03; Rg = 2.275 cm;
Dp = Dm = 6–8 � 10�7 cm2/s; K2 = 1.
3.2. Comparisons with experimental release profiles

The second step in the validation process was to verify the abil-
ity of the models to predict real experimental drug release profiles.
This goal was achieved by comparison of several examples of vag-
inal rings experimental release profiles reported in the literature
with the theoretical results given by the developed models. Since
the results in Section 3.1 showed the validity of the models for sys-
tems with external resistance layer and due to the difficulty of
finding experimental release profiles with all the model parame-
ters known for this situation, only experimental release data from
one-layer and two-layer devices without external resistance layer
were analyzed.

Fig. 6 presents examples of controlled release of drug from
torus-shaped one-layer devices. Fig. 6a shows experimental data
reported by Chien et al. for ethynodiol diacetate release from a sil-
icone device (Chien et al., 1974) and the theoretical profiles calcu-
lated according to Eq. (9). To obtain the cumulative drug released
in the units of mg/cm2, the result of Eq. (9) was divided by arel.
The parameters employed were taken from Chien et al. (1974) ex-
cept for the drug diffusion coefficient in the matrix which was
found to be Dp = 5.01 � 10�7 cm2/s from the model adjustment.
This value of Dp is in accordance with the value of 10�7 cm2/s re-
ported by Chien et al. (1974). The prediction of the model is in good
agreement with the experimental data. Fig. 6b shows experimental
data reported by Jackanicz (1981) and the release profiles calcu-
lated according to Eq. (9) for levonorgestrel release from silicone
vaginal rings with two different initial drug loading. The parame-
ters employed were taken from Jackanicz (1981). The levonorge-
strel solubility in the silicone was reported previously by Chien
(1982). The diffusion coefficient Dp = 3.21 � 10�7 cm2/s was
obtained from the fitting. It can be seen that the theoretical predic-
tion of the model adjusts the experimental drug release very well.
From the Fig. 6 it can be concluded that the model developed for
the one-layer device can predict the experimental data very well.
Also Fig. 6 presents a comparison of the theoretical predictions of
Eq. (9) with the theoretical predictions of reported models devel-
oped assuming PSSA for other geometries like cylinder (Roseman
and Higuchi, 1970) and sphere (Higuchi, 1963). For the compari-
son, the cylinders and the spheres have the same dimensions as
the torus (for example, the same release area). It can be seen that
in all cases the model developed in this work predicts better the
drug release profiles from torus-shaped devices than the models
developed for other geometries.

Fig. 7 illustrates examples of controlled release of drug from
torus-shaped two-layer devices. The figure shows experimental



Table 1
The difference and similarity factors for experimental and theoretical drug release
profiles comparison.

Reference Initial amount of drug (mg) f1 f2

a 647.57 2.35 99.28
b 35 3.22 98.95
b 70 2.90 98.75

R0 (cm) f1 f2

c 0.2500 1.07 80.69
c 0.3000 1.00 78.30
c 0.3350 1.23 80.87
c 0.3625 2.04 70.50

a Chien et al. (1974).
b Jackanicz (1981).
c Matlin et al. (1992).
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data reported by Matlin et al. for progesterone release from sili-
cone vaginal rings (Matlin et al., 1992) and the theoretical release
profiles calculated according to Eq. (14.a). The experimental de-
vices are composed by two structures: a core of silastic 382 with
progesterone dispersed in its interior and a membrane of silastic
382 (not loaded with the hormone) that coats the matrix. The
parameters employed were taken from Matlin et al. (1992). The
progesterone solubility in the silicone was reported previously by
Chien (1982). The diffusion coefficients Dp = Dm = 6–8 � 10�7 cm2/
s were obtained from the fitting and are very close to the value
of 10�7 cm2/s reported by Mazan et al. (1993). A close match be-
tween the model predictions and the experimental data was
observed.

Some methods to compare drug release profiles were proposed
in the literature (Costa and Sousa Lobo, 2001; Pillay and Fassihi,
1998). One of the most commonly used is the pair-wise procedure.
This procedure includes the difference factor and the similarity fac-
tor proposed originally by Moore and Flanner (1996). The differ-
ence factor (f1) measures the percent error between two curves
over all time points while the similarity factor (f2) is a logarithmic
transformation of the sum-squared error of differences between
both curves over all time points. The way to calculate these factors
has been reported (Costa and Sousa Lobo, 2001; Moore and
Flanner, 1996; Pillay and Fassihi, 1998). The Center for Drug
Evaluation and Research (FDA) and the Human Medicines Evalua-
tion Unit of the European Agency for the Evaluation of Medicinal
Products (EMEA) have been adopted the similarity factor as a crite-
rion for the assessment of the similarity between two in vitro
dissolution profiles (Center for Drug Evaluation and Research,
1995; Committee for Proprietary Medicinal Products, 1999). In or-
der to measures quantitatively the fit of the theoretical model to
the experimental data, the f1 and f2 factors were used. The results
given for the release profiles shown in Figs. 6 and 7 are presented
in Table 1. The experimental data reported in the literature was se-
lected as the reference product while the model prediction was
chosen as the test product. The difference factor is zero when the
test and reference profiles are identical and increase proportionally
with the dissimilarity between the two profiles (Costa and Sousa
Lobo, 2001; Pillay and Fassihi, 1998). The similarity factor is 100
when the test and reference profiles are identical and tends to 0
as the dissimilarity increases. In general, f1 values lower than 15
(0–15) and f2 values higher than 50 (50–100) show the similarity
of the profiles (Costa and Sousa Lobo, 2001; Pillay and Fassihi,
Fig. 8. (a) Comparison of the fraction of drug released calculated according to Eq. (9
R0 = 0.42 cm; AVs = 35 mg; Cs = 0.016 mg/cm3; Dp = Da = 3.36 � 10�7 cm2/s; K1 = 0.5. (b)
different values of a. The parameters used are: Re = 2.5250 cm; Rg = 2.275 cm; R0 = 0.25
K3 = 0.5; hm = 0.225 cm.
1998). It can be seen from Table 1 that in all cases the two profiles
can be considered similar. Then, it can be concluded that the mod-
els predict very well the experimental drug release data reported
in the literature for both one-layer and two-layer devices.

3.3. Effect of the thickness of the external resistance layer

In the previous sections the validity of the models has been cor-
roborated. The models are reliable and showed good prediction of
experimental release profiles. Once established the validity and
reliability of the developed equations, it is important to note the
potential that they have. The utility of reliable mathematical mod-
els is that previous simulations can be done to optimize a con-
trolled release device. This optimization process involves the
study of how different parameters of the models affect the drug re-
lease kinetics. In order to illustrate this point, various simulations
are presented below.

Fig. 8 illustrates the effect of the thickness of the external resis-
tance layer on the release kinetics from both one-layer and two-
layer devices. Fig. 8a corresponds to an one-layer device while
Fig. 8b corresponds to a two-layer device. To obtain the fraction
of drug released, the result of Eq. (9) or (14) was divided by AVs,
where Vs is the volume of the torus-shaped matrix. The parameter
a represents the relative size of ha with respect to R0 and is calcu-
lated using the following expression:

a ¼ 100
ha

R0
ð15Þ
) for different values of a. The parameters used are: Re = 2.85 cm; Rg = 2.43 cm;
Comparison of the fraction of drug released calculated according to Eq. (14) for
cm; A = 282.5 mg/cm3; Cs = 0.5947 mg/cm3; Dp = Dm = Da = 6.5 � 10�7 cm2/s; K2 = 1;



Fig. 9. Comparison of the fraction of drug released calculated according to Eq. (14)
for different values of b. The parameters used are: Re = 2.5250 cm; Rg = 2.275 cm;
R0 = 0.25 cm; A = 282.5 mg/cm3; Cs = 0.5947 mg/cm3; Dp = Dm = 6.5 � 10�7 cm2/s;
K2 = 1; ha = 0 cm.
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Fig. 8a shows that with increasing the thickness of the external
resistance layer, the drug release decreases. This result is in accor-
dance with those reported by Chien (1982). In addition, it can be
observed that increasing the thickness of the external resistance
layer, the typical matrix-type profile changes to a straight line.
For a two-layer device, also increasing the value of ha, decreases
the release as can be seen in Fig. 8b.
3.4. Effect of the thickness of the second layer

Fig. 9 presents the effect of the thickness of the layer that
resembles a membrane (the second layer) on the release kinetics.
The parameter b represents the relative size of hm with respect to
R0 and is calculated as:

b ¼ 100
hm

R0
ð16Þ

It can be seen from the figure that increasing the value of hm, de-
creases the fraction of drug released. Also, it can be noted that
increasing the thickness of the second layer, the typical matrix-type
profile changes to a straight line. This indicates that the release rate
is controlled by the membrane and increasing the thickness of the
membrane zero-order release kinetics can be reached.
Fig. 10. (a) Comparison of the fraction of drug released calculated according to Eq. (9)
Cs = 1.4791 mg/cm3; Dp = 3.36 � 10�7 cm2/s; hm = 0 cm; ha = 0 cm. (b) Comparison of the f
parameters used are: Re = 2.5250 cm; A = 282.5 mg/cm3; Cs = 0.5947 mg/cm3; Dp = Dm = 6
3.5. Effect of the radii of the torus

Fig. 10 presents the effect of the radii of the torus on the release
kinetics. Fig. 10a corresponds to a one-layer device while Fig. 10b
corresponds to a two-layer device. The parameter c represents
the relative size of R0 with respect to Re and is calculated as:

c ¼ 100
R0

Re
ð17Þ

From Fig. 10a it can be observed that increasing the value of R0, the
release rate diminishes. Alternatively, a decrease in the value of Re

also decreases the release rate. Similar results can be observed in
Fig. 10b for a two-layer device.

4. Conclusions

Analytical solutions based on the pseudo-steady state approxi-
mation has been successfully derived for both the position of the
‘‘dissolution–diffusion moving front’’ and the cumulative amount
of drug released for systems with one-layer and two-layer and hav-
ing an external mass transfer resistance. The validity of the models
was corroborated in two stages. In the first stage, the behavior of
the equations derived for more complex systems was compared
with the simplest model behavior, taking into account the asymp-
totic cases of the former. In the second stage, the theoretical pre-
dictions of the models were compared with several examples of
vaginal rings experimental release data reported in the literature.
The simulation results showed that the models derived for more
complex systems (two-layer or with external resistance layer)
can reproduce very well the behavior of the simplest model by tak-
ing the asymptotic cases of the former. In addition, the results
showed that the theoretical profiles predicted by the equations
are in agreement with the experimental data reported in the liter-
ature. The equations can be used easily with the help of an ade-
quate computational software such as MATLAB�. It should be
noted however, that the model can be employed only in torus-
shaped devices in where the initial drug loading exceeds its solu-
bility in the polymer. In systems where all the solute is dissolved,
the model loses its applicability. Also, a simulation study of the ef-
fect of the models parameters on release rate was performed. The
effects of the thickness of the external resistance layer, the thick-
ness of the second layer and the size of the radii of the torus were
analyzed. The obtained results are an illustration of how the drug
release kinetics can be adjusted by changing the values of the mod-
els parameters. The effect of other parameters like the initial drug
loading, diffusion coefficients and partition phenomena can be
for different values of c. The parameters used are: Re = 2.85 cm; A = 128 mg/cm3;
raction of drug released calculated according to Eq. (14) for different values of c. The
.5 � 10�7 cm2/s; K2 = 1; hm = 0.10 cm; ha = 0 cm.



I.M. Helbling et al. / European Journal of Pharmaceutical Sciences 44 (2011) 288–298 297
easily study with the use of the equations derived in this work. The
models are an essential tool not only for manufacturing but also for
the optimization of torus-shaped controlled release devices.
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Appendix A

The governing equation for diffusion in the external resistance
layer is:

@Cbl

@t
¼ Da

rðRg þ rÞ
@

@r
rðRg þ rÞ @Cbl

@r

� �
t > 0 Re 6 r 6 Re þ ha

ðA:1Þ

The initial and boundary conditions are:

Cbl ¼ 0 t ¼ 0 Re 6 r 6 Re þ ha ðA:2Þ
Cbl ¼ Ca;1 t > 0 r ¼ Re ðA:3Þ
Cbl ¼ 0 t > 0 r ¼ Re þ ha ðA:4Þ

With @Cbl/ot in Eq. (A.1) being fixed at zero according to the PSSA
and with the boundary conditions in Eqs. (A.2)–(A.4), the concentra-
tion distribution of dissolved-drug in the external resistance layer
can be derived as:

Cbl ¼ K1Ceq;1 1�
ln ðRgþReÞr

ReðRgþrÞ

� �
ln ðRgþReÞðReþhaÞ

ReðRgþReþhaÞ

� �
2
4

3
5 t > 0 Re 6 r 6 Re þ ha

ðA:5Þ

where K1 is the drug partition coefficient at the matrix-external
resistance layer interface, which is defined by:

K1 ¼
Ca;1

Ceq;1
ðA:6Þ

According to Fick’s laws and with the PSSA simplification, at the
matrix-external resistance layer interface the following mass bal-
ance must be satisfied:

@Q
@t
¼ �Dp

@Ct

@r
¼ �Da

@Cbl

@r
ðA:7Þ

where Q is the cumulative amount of drug released per unit area of
the device. Substituting Eq. (5) and Eq. (A.5) into Eq. (A.7), differen-
tiating with respect to the spatial coordinates and solving for Ceq,1,
the following expression can be achieved:

Ceq;1 ¼
CsG1

G1 þ DaK1
Dp

� � ðA:8Þ

where

G1 ¼
ln ðRgþReÞðReþhaÞ

ReðRgþReþhaÞ

� �
ln ðRgþSÞRe

SðRgþReÞ

� � ðA:9Þ

Thus, with the expressions of Eqs. (A.8) and (A.9), Eq. (5) can be
used.

Appendix B

The governing equation for diffusion in the membrane and the
associated initial and boundary conditions are:
@Cm

@t
¼ Dm

rðRg þ rÞ
@

@r
rðRg þ rÞ @Cm

@r

� �
t > 0 Re 6 r 6 Re þ hm ðB:1Þ

Cm ¼ 0 t ¼ 0 Re 6 r 6 Re þ hm ðB:2Þ
Cm ¼ Cm;1 t > 0 r ¼ Re ðB:3Þ

Cm ¼ 0 t > 0 r ¼ Re þ hm ðB:4aÞ
Cm ¼ Cm;2 t > 0 r ¼ Re þ hm ðB:4bÞ

The boundary condition in the external surface of the two-layer
device is represented by Eq. (B.4) and varies depending on which
system is considered. The Eq. (B.4a) corresponds to the system
without external resistance illustrated in Fig. 3a and the Eq.
(B.4b) corresponds to the system that has an external resistance
layer shown in Fig. 3b. This nomenclature is used throughout this
section: the equations with subscript ‘‘a’’ in the equations number
correspond to the system without external resistance layer illus-
trated in Fig. 3a while those having subscript ‘‘b’’ correspond to
the system with external resistance layer illustrated in Fig. 3b.
With @Cm/ot in Eq. (B.1) being fixed at zero according to the PSSA
and with the conditions in Eqs. (B.2)–(B.4), the concentration dis-
tribution of dissolved-drug in the membrane can be derived as:

Cm ¼ K2Ceq;2 1�
ln ðRgþReÞr

ReðRgþrÞ

� �
ln ðRgþReÞðReþhmÞ

ReðRgþReþhmÞ

� �
2
4

3
5 t > 0 Re 6 r 6 Re þ hm

ðB:5aÞ

Cm ¼K2Ceq;2 1�
ln ðRgþReÞr

ReðRgþrÞ

� �
ln ðRgþReÞðReþhmÞ

ReðRgþReþhmÞ

� �
2
4

3
5þ Cm;2

ln ðRgþReÞr
ReðRgþrÞ

� �
ln ðRgþReÞðReþhmÞ

ReðRgþReþhmÞ

� �
t > 0 Re 6 r 6 Re þ hm ðB:5bÞ

where K2 is the drug partition coefficient at the matrix-membrane
interface, which is defined by:

K2 ¼
Cm;1

Ceq;2
ðB:6Þ

The Eq. (B.5a) can be employed to establish the expression of Ceq,2

but for the use of Eq. (B.5b) for this purpose, the expression of
Cm,2 must be determined first. This goal can be done as in Appendix
A. The concentration distribution of dissolved-drug in the external
resistance layer can be derived using Eqs. (A.1)–(A.4), except that
in this case the domain is Re + hm 6 r 6 Re + hm + ha and the condi-
tion in Eq. (A.3) is replaced by Cbl = Ca,2 for t > 0 and r = Re + hm.
According to Fick’s laws and with the PSSA simplification, at the
membrane-external resistance layer interface the following mass
balance must be satisfied:

@Q
@t
¼ �Dm

@Cm

@r
¼ �Da

@Cbl

@r
ðB:7Þ

Substituting Eq. (B.5b) and the expression of Cbl (not shown) into Eq.
(B.7), differentiating with respect to the spatial coordinates and
solving for Cm,2, the following expression can be achieved:

Cm;2 ¼
DmK2G2Ceq;2

ðDmG2 þ DaK3Þ
ðB:8Þ

where

G2 ¼
ln ðRgþReþhmÞðReþhmþhaÞ

ðReþhmÞðRgþReþhmþhaÞ

� �
ln ðRgþReÞðReþhmÞ

ReðRgþReþhmÞ

� � ðB:9Þ

and K3 is the drug partition coefficient at the membrane-external
resistance layer interface, which is defined by:

K3 ¼
Ca;2

Cm;2
ðB:10Þ
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Thus, with the expressions of Eqs. (B.8) and (B.9), Eq. (B.5b) can be
used. At the matrix-membrane interface, the following mass bal-
ance equation must be satisfied:

@Q
@t
¼ �Dp

@Ct

@r
¼ �Dm

@Cm

@r
ðB:11Þ

Substituting Eq. (11) and Eq. (B.5a) or (B.5b) into Eq. (B.11), differ-
entiating with respect to the spatial coordinates and solving for
Ceq,2, the following expressions can be achieved:

Ceq;2 ¼
CsG3

G3 þ DmK2
Dp

� � ðB:12aÞ

Ceq;2 ¼
CsG3

G3 þ DmK2
Dp
� D2

mK2G2
DpðDmG2þDaK3Þ

� � ðB:12bÞ

where

G3 ¼
ln ðRgþReÞðReþhmÞ

ReðRgþReþhmÞ

� �
ln ðRgþSÞRe

SðRgþReÞ

� � ðB:13Þ

Therefore, with the expressions of Ceq,2 given by Eqs. (B.12a) and
(B.12b), the Eq. (11) can be employed.
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