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This work presents two software components aimed to relieve the costs of accessing high-performance
parallel computing resources within a Python programming environment: MPI for Python and PETSc
for Python.

Keywords: MPI for Python is a general-purpose Python package that provides bindings for the Message Passing

Python Interface (MPI) standard using any back-end MPI implementation. Its facilities allow parallel Python

PME];IS programs to easily exploit multiple processors using the message passing paradigm. PETSc for Python
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provides access to the Portable, Extensible Toolkit for Scientific Computation (PETSc) libraries. Its facilities
allow sequential and parallel Python applications to exploit state of the art algorithms and data struc-
tures readily available in PETSc for the solution of large-scale problems in science and engineering.
MPI for Python and PETSc for Python are fully integrated to PETSc-FEM, an MPI and PETSc based par-
allel, multiphysics, finite elements code developed at CIMEC laboratory. This software infrastructure
supports research activities related to simulation of fluid flows with applications ranging from the
design of microfluidic devices for biochemical analysis to modeling of large-scale stream/aquifer

interactions.
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1. Introduction

The popularity of high-level, general purpose scientific comput-
ing environments - such as MATLAB and IDL in the commercial
side or Octave and Scilab in the open source side - has increased
considerably during the last decade. Users simply feel much more
productive in such interactive environments providing tight inte-
gration of simulation and visualization. They are alleviated of
low-level details associated to compilation and linking steps,
memory management and input/output of more traditional scien-
tific programming languages like Fortran, C, and C++. The Python
programming language is a distinguished member among these
modern computing environments. Since it was born in the early
1990s, Python has steadily grown in popularity among the scien-
tific community to arguably become de facto standard for compu-
tation-driven scientific research.

This paper reports on two open source tools that facilitate the
access to high-performance parallel computing resources within
a Python programming environment, MPI for Python [1] (known
in short as mpi4py) and PETSc for Python [2] (known in short as
petsc4py). They target hardware platforms ranging from desktop
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computers with multiple-processor and/or multiple-core architec-
tures to clusters of workstations or dedicated computing nodes
(with standard or special network interconnects), or even high-
performance shared memory machines.

The rest of this section presents a brief description about the Py-
thon programming language and some of the more important tools
available for scientific computing, as well as a some comments
about MPI and PETSc. Sections 2 and 3 provide details about the
design and capabilities of MPI for Python and PETSc for Python.
Section 4 presents some performance tests aimed to measure the
overhead introduced by the Python layer in comparison to pure C
code. Finally, Section 5 presents two different application examples.

1.1. Python

Python [3,4] is a modern, powerful programming language. It
has efficient high-level data structures, a simple but effective ap-
proach to object-oriented programming, it is easy to learn and
highly extensible. It supports modules and packages, which
encourages program modularity and code reuse.

Python’s elegant syntax, together with its dynamic nature,
makes an excellent language for scripting and rapid application
development. Sophisticated but easy to use and well integrated
solutions are available for interactive command-line work, efficient
multi-dimensional array processing, linear algebra, 2D and 3D
visualization, and other scientific computing tasks.
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Python is easily extended with new functions and data struc-
tures implemented in other languages. This feature allows skilled
users to build their own computing environment, tailored to their
specific needs and based on their favorite high-performance For-
tran, C, or C++ codes. Such capabilities prove to be an advantage
for modern scientific computing: users have a high-level and pro-
ductive environment at hand, yet they can reuse existing library
code and optimize performance critical bottlenecks.

The Python programming language, augmented with a set open
source packages that have been developed over the last decade by
scientists and engineers, provides a “computational ecosystem”
that is quite capable of supporting a wide range of applications -
from casual scripting and lightweight tools to full-fledged systems.
For a throughout discussion about the role of Python in scientific
computing and additional information about selected Python pack-
ages, see [5-9].

1.1.1. NumPy

The NumPy project [10] started in the mid-90s as a collaborative
effort of an international team of volunteers aimed to develop a
data-structure for efficient array computation in Python. Since
then, the NumPy package has found wide-spread adoption in aca-
demia and industry. Today, NumPy is one of the core packages
for numerical computation in Python.

NumPy provides a powerful multi-dimensional array object
with advanced and efficient general-purpose array operations.
Additionally, NumPy contains three sub-libraries with numerical
routines providing basic linear algebra operations, basic Fourier
transforms and sophisticated capabilities for random number gen-
eration. It also provides facilities in order to support interoperabil-
ity with C, C++, and Fortran.

Besides its obvious scientific applications, NumPy can also be
used as an efficient multi-dimensional container of generic data.
New structured data-types with fixed storage layout can be de-
fined by combining fundamental data-types like integers and
floats. This allows NumPy to seamlessly and speedily integrate with
a wide variety of database formats.

1.1.2. 2PY

Although NumPy provides similar and higher-level capabilities,
there are situations where selected, numerically intensive parts of
Python applications still require the efficiency of a compiled code
for processing huge amounts of data in deeply-nested loops. For-
tran (especially Fortran 90 and above) is a language for efficiently
implementing lengthy computations involving multi-dimensional
arrays. State of the art implementations of many commonly used
algorithms are readily available and implemented in Fortran.

F2PY [11] is a development tool that provides a connection
between the Python and Fortran programming languages. It works
by creating Python extension modules from special signature files
or directly from annotated Fortran source files. These files with
additional annotations included as comments, contain all the infor-
mation (function names, arguments and their types, etc.) that is
needed to construct convenient Python bindings to Fortran func-
tions. F2PY-generated Python extension modules enable Python
codes to call those Fortran 77/90/95 routines. In addition, F2PY pro-
vides the required support for transparently accessing Fortran 77
common blocks or Fortran 90/95 module data.

In a Python programming environment, F2PY is then the tool of
choice for taking advantage of the speed-up of compiled Fortran
code and integrating existing Fortran libraries.

1.1.3. Cython

Cython [12] is a recent development that provides access to
low-level C data types and functionalities in a Python program-
ming environment.

The Cython language is similar to Python, supporting most
Python language constructs and libraries while adding syntax for
declaring types, calling C functions, and manipulating C values.
Cython code is compiled via C and the result runs within the
Python runtime environment. When static type declarations are
used in Cython source, it typically executes many times faster than
Python and sometimes approaches the speed of C.

Using Cython, code which manipulates Python values and C val-
ues can be freely intermixed, with conversions occurring automat-
ically wherever possible. Error checking of Python operations is
also automatic, and the full power of Python exception handling
facilities is available even in the midst of manipulating C data.

1.1.4. SWIG

SWIG [13], the Simplified Wrapper and Interface Generator, is an
interface compiler that connects programs written in C and C++
with a variety of scripting languages.

Originally developed in 1995, SWIG was first used by scientists
(in the Theoretical Physics Division at Los Alamos National Labora-
tory, USA) for building user interfaces to molecular dynamic simu-
lation codes running on the Connection Machine 5 supercomputer.
In this environment, scientists needed to work with huge amounts
of simulation data, complex hardware, and a constantly changing
code base. The use of a Python scripting language interface pro-
vided a simple yet highly flexible foundation for solving these
types of problems [14,15].

SWIG works by parsing the declarations found in C/C++ header
files and using them to generate the wrapper code needed by
scripting languages, in particular Python, to access the underlying
C/C++ code. In addition, SWIG provides many customization fea-
tures that let developers tailor the wrapping process to suit specific
application needs.

Although SWIG was originally developed for scientific applica-
tions, it has since evolved into a general purpose tool that is used
in a wide variety of applications - almost everything C/C++ and
scripting programming is involved.

1.2. MPI

MPI, the Message Passing Interface [16,17], is a standardized,
portable message-passing system designed to work on a wide vari-
ety of parallel computers. The standard defines a set of library rou-
tines (MPI is not a programming language extension) and allows
users to write portable programs in the main scientific program-
ming languages (Fortran, C, and C++).

The paradigm of message-passing is especially suited for (but
not limited to) distributed memory architectures and is used in to-
day’s most demanding scientific and engineering applications re-
lated to modeling, simulation, design, and signal processing.

MPI defines a high-level abstraction for fast and portable inter-
process communication [18,19]. Applications can run in clusters of
(possibly heterogeneous) workstations or dedicated compute
nodes, (symmetric) multiprocessors machines, or even a mixture
of both. MPI hides all the low-level details, like networking or
shared memory management, simplifying development and main-
taining portability, without sacrificing performance.

Implementations are available from vendors of high-perfor-
mance computers to well known open source projects like MPICH
[20,21] and Open MPI [22,23].

1.3. PETSc

PETSc [24,25], the Portable Extensible Toolkit for Scientific Compu-
tation, is a suite of algorithms and data structures for the solution
of problems arising on scientific and engineering applications,
especially those modeled by partial differential equations, of
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large-scale nature, and targeted for high performance parallel com-
puting environments [26].

PETSc is written in C (thus making it usable from C++); a Fortran
interface (very similar to the C one) is also available. PETSc’s com-
plete functionality is only exercised by parallel applications, but
serial applications are fully supported.

PETSc employs the MPI standard for inter-process communica-
tion, thus it is based on the message-passing model for parallel
computing. Despite that, PETSc provides high-level interfaces with
collective semantics so that typical users rarely have to make mes-
sage-passing calls themselves.

PETSc is designed with an object-oriented style. Almost all user-
visible types are abstract interfaces with implementations that
may be chosen at runtime. Those objects are managed through
handles to opaque data structures which are created, accessed
and destroyed by calling appropriate library routines.

PETSc consists of a variety of components. Each component
manipulates a particular family of objects and the operations one
would like to perform on these objects. Some of the PETSc modules
deal with:

e Index sets, including permutations, indexing into vectors,
renumbering, etc.

e Vectors.

e Matrices (generally sparse).

e Distributed arrays for parallelizing regular grid-based problems.

e Krylov subspace methods.

e Preconditioners, including multigrid and sparse direct solvers.

e Nonlinear solvers.

o Timesteppers for solving time-dependent, nonlinear partial dif-
ferential equations.

PETSc provides a rich environment for modeling scientific appli-
cations as well as for rapid algorithm design and prototyping. The
libraries enable easy customization and extension of both algo-
rithms and implementations. This approach promotes code reuse
and flexibility.

Finally, PETSc is designed to be highly modular, enabling the
interoperability with several specialized parallel libraries like
Hypre [27], Trilinos/ML [28], MUMPS [29], and others through a uni-
fied interface.

2. MPI for Python

This section is devoted to describing MPI for Python, an open
source software project that provides bindings of the MPI standard
for the Python programming language.

MPI for Python is a general-purpose and full-featured package
targeting the development of parallel applications in Python. It
provides core facilities that allow parallel Python programs to ex-
ploit multiple processors. Sequential Python applications can also
take advantages of MPI for Python by communicating through
the MPI layer with external, independent parallel modules, possi-
bly written in other languages like C, C++, or Fortran. MPI for Py-
thon employs a back-end MPI implementation, thus being usable
on any parallel environment supporting MPI.

MPI for Python is implemented with Cython. The rationale for
this choice is twofold. A high-level, object oriented interface with
Python look and feel can be easily developed and maintained in
terms of lower-level MPI types and calls handled in C. Additionally,
MPI for Python can expose its internals to other C codes in such a
way that MPI handles can be recovered from Python objects. Third-
party tools aimed to bridge C and Python (e.g., SWIG) can take
advantage of this and couple MPI for Python with other Python
wrappers to MPI-based libraries.

MPI for Python implements the entire specifications from the
MPI-2 standard revision 2.2' [30]. Naming conventions of the
MPI-2 C++ bindings® are adopted, so users familiar with the C++
bindings can use MPI for Python without learning a new interface.

2.1. Communicating Python objects and array data

The Python standard library supports different mechanisms for
data persistence. Many of them rely on disk storage, but pickling
can also work with raw memory buffers. The pickle module pro-
vides user-extensible facilities to serialize general Python objects
using ASCII or binary formats. MPI for Python can communicate
any built-in or user-defined Python object implementing the pickle
protocol. These facilities are transparently used to build binary rep-
resentations of objects to communicate (at sending processes), and
restoring them back (at receiving processes).

Although simple and general, the serialization approach (i.e.,
pickling and unpickling) imposes important overheads in memory
as well as processor usage, especially when objects with large
memory footprints are being communicated. Pickling general Py-
thon objects, ranging from primitive or container built-in types
to user-defined classes, necessarily requires some processing for
dispatching the appropriate serialization method (that depends
on the type of the object) and processor usage to perform the ac-
tual packing. Additional memory is always needed, and if its total
amount is not known a priori, many memory reallocations can oc-
cur. Indeed, in the case of large numeric arrays, this is certainly
unacceptable and precludes communication of objects occupying
half or more of the available memory resources.

MPI for Python also supports direct communication of any ob-
ject implementing the Python buffer interface. This interface is a
standard Python mechanism provided by some types (e.g., byte
strings and numeric arrays), allowing access in the C side to a con-
tiguous memory buffer (i.e., address and length) containing the rel-
evant data. This feature, in conjunction with the capability of
constructing user-defined MPI datatypes describing complicated
memory layouts, enables the implementation of many algorithms
involving multidimensional numeric arrays (e.g., image processing,
fast Fourier transforms, finite difference schemes on structured
Cartesian grids) directly in Python, with negligible space or time
overhead compared to compiled C, C++ or Fortran codes.

2.2. Using MPI for Python

Here, a general overview of MPI concepts and functionalities
readily available in MPI for Python are presented. Discussed fea-
tures range from classical MPI-1 message-passing communication
operations to more advanced MPI-2 operations like dynamic pro-
cess management, one-sided communication, and parallel input/
output.

2.2.1. Communicators

In MPI for Python, Comm is the base class of communicators.
Communicator size and calling process rank can be respectively
obtained with methods Get_size () and Get_rank( ).

The Intracomm and Intercomm classes are derived from the
Comm class. The Is_inter () method (and Is_intra( ), provided
for convenience, it is not part of the MPI specification) is defined
for communicator objects and can be used to determine the partic-
ular communicator class.

1 At the time of this writing, MPI for Python does not support MPI_Al1ltoallw (see
MPI standard document [30], Section 5.8, pp. 160). Support for this functionality is
under development.

2 The C++ bindings for MPI were deprecated in the revision 2.2 of the MPI standard;
they are scheduled for removal in the upcoming MPI-3 standard.
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The two predefined intracommunicator instances are available:
COMM_WORLD and COMM_SELF. From them, new communicators can
be created as needed. New communicator instances can be ob-
tained with the Clone() method of Comm objects, the Dup( )
and Split() methods of Intracomm and Intercomm objects,
and methods Create_intercomm( ) and Merge () of Intracomm
and Intercomm objects, respectively.

The associated process group can be retrieved from a communi-
cator by calling the Get_group () method, which returns an in-
stance of the Group class. Set operations with Group objects like
Union( ), Intersect() and Difference () are fully supported,
as well as the creation of new communicators from these groups.

2.2.2. Blocking point-to-point communications

The Send (), Recv( ) and Sendrecv( ) methods of communi-
cator objects provide support for blocking point-to-point commu-
nications within Intracomm and Intercomm instances. These
methods can communicate either general Python objects or raw
memory buffers. The buffered, ready, and synchronous (Bsend ( ),
Rsend () and Ssend ( )) modes are also supported.

2.2.3. Nonblocking point-to-point communications

On many systems, performance can be significantly increased
by overlapping communication and computation. This is particu-
larly true on systems where communication can be executed
autonomously by an intelligent, dedicated communication control-
ler. Nonblocking communication is a mechanism provided by MPI
in order to support such overlap.

The Isend() and Irecv() methods of the Comm class initiate
a send and receive operation respectively. These methods return a
Request instance, uniquely identifying the started operation. Its
completion can be managed using the Test(), Wait(), and
Cancel () methods of the Request class. The management of Re -
quest objects and associated memory buffers involved in commu-
nication requires a careful, rather low-level coordination. Users
must ensure that objects exposing their memory buffers are not ac-
cessed at the Python level while they are involved in nonblocking
message-passing operations.

Often a communication with the same argument list is repeat-
edly executed within an inner loop. In such cases, communication
can be further optimized by using persistent communication, a
particular case of nonblocking communication allowing the reduc-
tion of the overhead between processes and communication con-
trollers. Furthermore, this kind of optimization can also alleviate
the extra call overheads associated to dynamic languages like Py-
thon. The Send_init() and Recv_init () methods of the Comm
class create a persistent request for a send and receive operation
respectively. These methods return an instance of the Prequest
class, a subclass of the Request class. The actual communication
is started with the start () method.

2.2.4. Collective communications

The Bcast(), Scatter(), Gather(), Allgather() and
Alltoall() methods of Intracomm instances provide support
for collective communications. Those methods can communicate
either general Python objects or raw memory buffers. The “vector”
variants (which can communicate varying amount of data at
each process) Scatterv(), Gatherv(), Allgatherv() and
Alltoallv( ) are also supported, they can only communicate ob-
jects exposing raw memory buffers. All these collective operations
are supported on both intracommunicators and intercommunica-
tors.

Global reduction operations are accessible through the Re-
duce( ), Allreduce( ), Scan( ) and Exscan( ) methods. All the
predefined (i.e., SUM, PROD, MAX, etc.) and user-defined reduction
operations can be applied to general Python objects (however,

the actual required computations are performed sequentially at
some process). User-defined reduction operations on memory
buffers are also supported. Reductions are supported on both
intracommunicators and intercommunicators (except inclusive
and exclusive scan operations, MPI-2 defines them only for
intracommunicators).

2.2.5. Dynamic process management

In MPI for Python, new independent processes groups can be
created by calling the Spawn ( ) method within an intracommuni-
cator (i.e., an Intracomm instance). This call returns a new inter-
communicator (i.e., an Intercomm instance) at the parent
process group. The child process group can retrieve the matching
intercommunicator by calling the Get_parent ( ) method defined
in the Comm class. At each side, the new intercommunicator can be
used to perform point to point and collective communications be-
tween the parent and child groups of processes.

Alternatively, disjoint groups of processes can establish com-
munication using a client/server approach. Any server application
must first call the Open_port () function to open a “port” and
the Publish_name () function to publish a provided “service”,
and next call the Accept () method within an Intracomm in-
stance. Any client application can first find a published “service”
by calling the Lookup_name ( ) function, which returns the “port”
where a server can be contacted; and next call the Connect ()
method within an Intracomm instance. Both Accept() and
Connect () methods return an Intercomm instance. When con-
nection between client/server processes is no longer needed, all
of them must cooperatively call the Disconnect () method of
the Comm class. Additionally, server applications should release re-
sources by calling the Unpublish_name() and Close_port()
functions.

2.2.6. One-sided operations

In MPI for Python, one-sided operations are available by using
instances of the Win class. New window objects are created by call-
ing the Create () method at every process in a communicator and
specifying a memory buffer (i.e., a base address and length). When
a window instance is no longer needed, the Free() method
should be called.

The three one-sided MPI operations for remote write, read and
reduction are available through calling the methods Put(),
Get (), and Accumulate () respectively within a Win instance.
These methods need an integer rank identifying the target process
and an integer offset relative to the base address of the remote
memory block being accessed.

2.2.7. Parallel input/output operations

In MPI for Python, all MPI input/output operations are per-
formed through instances of the File class. File handles are
obtained by calling method Open( ) at every process in a commu-
nicator and providing a file name and the intended access mode.
After use, they must be closed by calling the Close () method.
Files even can be deleted by calling method Delete ().

After creation, files are typically associated with a per-process
view. The view defines the current set of data visible and accessible
from an open file as an ordered set of elementary datatypes. This
data layout can be set and queried with the Set_view( ) and Get_
view( ) methods, respectively.

Actual input/output operations are achieved by many methods
combining read and write calls with different behavior regarding
positioning, coordination, and synchronism. Summing up, MPI for
Python supports around 30 different methods defined in MPI-2
for reading from or writing to files using explicit offsets or file
pointers (individual or shared), in blocking or nonblocking and col-
lective or noncollective versions.
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2.3. Related projects

pyMPI [31] is a pioneering project bringing general-purpose MPI
support to Python. It is implemented in C with modified Python
interpreter (as opposed to employ the stock Python interpreter
readily available at the computing platform) and a companion
MPI module exposing core MPI functionalities and other facilities
that are beyond the MPI standard. It permits basic interactive par-
allel runs, which are useful for learning and debugging, and pro-
vides an interface suitable for basic parallel programing. General
Python objects supporting pickle protocol as well as NumPy arrays
can be communicated. However, there is partial support for MPI-1
features like nonblocking communication, communication do-
mains, and process topologies. Support for user-defined MPI data-
types is absent. Advanced MPI-2 features like dynamic process
management, one-sided communication, and parallel input/output
are not available.

Pypar [32] is a minimalistic and intuitive Python interface to
MPL It is a lightweight wrapper implemented with a mixture of
high-level Python code and low-level extension module written
in C, the Python interpreter does not require modification. General
Python objects can be communicated using the pickle protocol.
There is good support for communicating NumPy arrays and prac-
tically full MPI bandwidth can be achieved. However, there is no
support for basic MPI-1 features of common use like user-defined
MPI datatypes, nonblocking communication, communication do-
mains, and process topologies. Advanced MPI-2 features like dy-
namic process management, one-sided communication, and
parallel input/output are not available.

pyMPI and Pypar provide many of the features available in MPI
for Python. However, differences in design and additional capabil-
ities distinguish MPI for Python from these packages. These differ-
ences are summarized below.

e MPI for Python does not require a modified Python interpreter.
The stock Python interpreter readily available at the computing
platform is employed.

e MPI for Python is implemented with Cython (as opposed to low-
level C code), facilitating development and maintenance.

e MPI for Python features support for well-known wrappers gen-
erator tools like SWIG and F2PY, lowering the barrier to reuse
existing C, C++, and Fortran MPI-based libraries.

e MPI for Python Application Program Interface (API) follows clo-
sely the MPI standard specification.

e MPI for Python can communicate general Python object and
NumPy arrays. However, fast communication of array data is
not limited to NumPy - any Python type implementing the
Python buffer interface can participate.

e MPI for Python supports the complete MPI-1 specification. All
blocking/nonblocking point-to-point and collective operations
are available, as well as user-defined MPI datatypes, multiple
communication domains and Cartesian/graph process
topologies.

e MPI for Python supports for the complete MPI-2 specification,
providing full coverage of advanced features like dynamic pro-
cess management, one-sided communications, and parallel
input/output.

3. PETSc for Python

This section describes PETSc for Python, an open-source
software project that provides bindings to PETSc libraries for the
Python programming language.

PETSc for Python is a general-purpose and full-featured pack-
age. Its facilities allow sequential and parallel Python applications
to exploit state of the art algorithms and data structures readily

implemented in PETSc and targeted to large-scale numerical simu-
lations arising in many problems of science and engineering.

PETSc for Python is implemented with Cython. The rationale for
this choice is the same as the already commented in Section 2.
PETSc presents a rather large API accessible from C and Fortran.
Although PETSc is designed with an object-oriented style, its API
is limited to the procedural style of the C and Fortran - these pro-
gramming languages do not support natively some more advanced
concepts such as classes, inheritance and polymorphism, or excep-
tion-based error handling. PETSc for Python was designed from the
ground to present to users an easy-to-use, high-level, pythonic
interface. This interface is certainly easier and more pleasant to
use than the native ones available in PETSc for C and Fortran.

PETSc for Python has coverage for the most important PETSc
features. Among them, we can mention assembling distributed
vector and sparse matrices in parallel, solving systems of linear
equations with Krylov-based iterative methods and direct meth-
ods, and solving systems of nonlinear equations with Newton-
based iterative methods including matrix-free techniques. It is
not feasible to provide here an detailed listing of all the supported
features, the complete API reference is available at the project
documentation.

The rest of this section presents a general overview and some
examples of the many PETSc concepts and functionalities readily
available in PETSc for Python. The examples are simple, self-con-
tained, and implemented in a few lines of Python code. Neverthe-
less, they show general usage patterns of PETSc for Python for
implementing linear algebra algorithms, assembling sparse matri-
ces, and solving systems of linear and nonlinear equations within a
Python programming environment.

3.1. Vectors

PETSc for Python provides access to PETSc vectors, index sets
and general vector scatter/gather operations through the vec, IS,
and Scatter classes respectively. By using them, the management
of distributed field data is highly simplified in parallel applications.

Besides the use as containers for field data, PETSc vectors also
represent algebraic entities of finite-dimensional vector spaces.
For this case, the Vec class provides many methods for performing
common linear algebra operations, like computing vector updates
(axpy (), aypx( ), scale()), inner products (dot ( )) and differ-
ent kinds of norms (norm( )).

Fig. 1 shows a basic implementation of a simple Krylov-based
iterative linear solver, the (unpreconditioned) conjugate gradient
method.

3.2. Matrices

PETSc for Python provides access to PETSc matrices through the
Mat class. New Mat instances are obtained by calling the
create () method. Next, the user specifies the row and column
sizes by calling the setSizes() method. Finally, a call to the
setType () method selects a particular matrix implementation.

Matrix entries can be set (or added to existing entries) by calling
the setValues () method. PETSc simplifies the assembling of par-
allel matrices. Any process can contribute to any entry. However,
off-process entries are internally cached. Because of this, a final call
to the assemblyBegin() and assemblyEnd() methods is re-
quired in order to communicate off-process entries to the actual
owning process. Additionally, those calls prepare some internal
data structures for performing efficient parallel operations like
matrix-vector product. The latter operation is available by calling
the mult () method.

Fig. 2 shows the basic steps for creating and assembling a sparse
matrix in parallel. The assembled matrix is a discrete representation
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def cg(A, b, x, imax=50, eps=1le-6):

mwmn

A, b, x : matriz, Ths, solution
tmax : maxzimum iterations
eps : relative tolerance

mmun

# allocate work wvectors

r = b.duplicate()

= b.duplicate()

= b.duplicate()

wnttialization

=0

.mult(x, r)

.aypx(-1, b)

.copy(d)

delta_0 = r.dot(r)

delta = delta_0

# enter tteration loop

while (i < imax and

delta > delta_0 * eps**2):

A.mult(d, q)
alpha = delta / d.dot(q)
x.axpy(+alpha, d)
r.axpy(-alpha, q)
delta_old = delta
delta = r.dot(r)
beta = delta / delta_old
d.aypx(beta, r)
i=1+1

return i, deltax**0.5

H K> r 3,0 0

Fig. 1. Basic implementation of conjugate gradients method.

of the two-dimensional Laplace operator on the unit square
equipped with homogeneous boundary conditions after a 5-points
finite differences discretization. The grid supporting the discretiza-
tion scheme is structured and regularly spaced. Furthermore, the
grid nodes have a simple contiguous block-distribution by rows on
a group of processes.

3.3. Linear solvers

PETSc for Python provides access to PETSc linear solvers and
preconditioners through the KSP and PcC classes.

New KSP instances are obtained by calling the create () meth-
od. This call automatically creates a companion inner precondi-
tioner (i.e, a PC instance) that can be retrieved with the
getPC () method for further manipulations. The KSP and PC clas-
ses provide the setType ( ) methods for the selection of a specific
iterative method and preconditioning strategy. The setToler-
ances () method enables the specification of the different toler-
ances for declaring convergence; other algorithmic parameters
can also be set. Additionally, PETSc for Python supports attaching
a user-defined Python function for monitoring the iterative process
(by calling the setMonitor() method) and defining a custom
convergence criteria (by calling the setConvergenceTest()
method).

KSP objects have to be associated with a matrix (i.e., a Mat in-
stance) representing the operator of the linear problem and a (pos-
sibly different) matrix for defining the preconditioner. This is done
by calling the setOperators() method. Additional options set
from command line arguments, configuration files, and environ-
ment variables can be specified by calling the setFromOp-
tions () method. In order to actually solve a system of linear

from petscdpy import PETSc

# grid size and spacing
m, n = 32, 32
hx = 1.0/(m-1)
hy = 1.0/(n-1)

create sparse matric

= PETSc.Mat ()

.create (PETSc.COMM_WORLD)
.setSizes([m*n, m*n])
.setType(’aij’) # sparse

= R

# precompute values for setting
# diagonal and mon-diagonal entries

diagv = 2.0/hx**2 + 2.0/hy**2
offdx = -1.0/hx**2
offdy = -1.0/hy**2

# loop over owned block of rTows on this
# processor and insert entry values
Istart, Iend = A.getOwnershipRange ()
for I in range(Istart, Iend)

A[I,I] = diagv

i=1I//n # map row number to

j =1 - i*n # grid coordinates

if i> 0 J = I-n; A[I,J] = offdx
if i< m-1: J = I+n; A[I,J] = offdx
if j> 0 J = I-1; A[I,J] = offdy
if j< n-1: J = I+1; A[I,J] = offdy

# communicate off-processor wvalues

# and setup internal data structures
# for performing parallel operations
A . assemblyBegin()

A . assemblyEnd ()

Fig. 2. Assembling a sparse matrix in parallel.

equations, the solve ( ) method have to be called with appropriate
vector arguments (i.e., Vec instances) specifying the right hand
side and the location where to build the solution.

Fig. 3 presents an example showing the basic steps required for
creating and configuring a linear solver and its inner precondition-
er in PETSc for Python. This linear solver and preconditioner

# create linear solwver,
ksp = PETSc.KSP()
ksp.create(PETSc.COMM_WORLD)
# use conjugate gradients
ksp.setType(’cg’)

# and incomplete Cholesky
ksp.getPC() .setType(’icc’)
# obtain sol & rhs wvectors
x, b = A.getVecs()

x.set (0)

b.set (1)

# and next solve
ksp.setOperators(A)
ksp.setFromOptions ()
ksp.solve(b, x)

Fig. 3. Solving a linear problem.
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combination is employed for solving a linear system involving a
previously assembled parallel sparse matrix (see Fig. 2).

3.4. Nonlinear solvers

PETSc for Python provides access to PETSc nonlinear solvers
through the SNES class.

SNES objects have to be associated with a user-defined Python
function in charge of evaluating the nonlinear residual vector and,
optionally, a function for the Jacobian matrix evaluation, at each
nonlinear iteration step. Those user routines can be set with the
methods setFunction( ) and setJacobian( ).

New SNES instances are obtained by calling the create()
method. This call automatically creates a companion inner linear
solver (i.e., a KSP instance) that can be retrieved with the get-
KsP() method for further manipulations. The setToleranc-
es () method enables the specification of the different tolerances
for declaring convergence; other algorithmic parameters can also

from petsc4py import PETSc
from numpy import exp

m, n = 32, 32 # grid sizes
alpha = 6.8 # parameter

# Nonlinear function

def Bratu2D(snes, X, F, alpha, m, n):
# NumPy array <- Vec

x = X[...] .reshape(m, n)

f = F[...].reshape(m, n)

# setup 5-points stencil

u = x[1:-1, 1:-1] # center

uN = x[1:-1, :-2] # north
uS = x[1:-1, 2: 1 # south
uW = x[ :-2, 1:-1] # west
uE = x[2:, 1:-1] # east

# compute nonlinear function
hx = 1.0/(m-1) # z grid spacing
hy = 1.0/(n-1) # y grid spacing
f[:,:] = x
fl1:-1, 1:-1] =\
(2%¥u - uE - uW) * (hy/hx) \
+ (2%¥u - uN - uS) * (hx/hy) \
- alpha * exp(u) * (hxxhy)

# create mnonlinear solver

snes = PETSc.SNES() .create()

# register the function in charge of

# computing the nonlinear residual

f = PETSc.Vec() .createSeq(m*n)

snes.setFunction(Bratu2D, f,
args=(alpha, m, n))

# configure the monlinear solver

# to use a matriz—free Jacobian

snes.setUseMF (True)

snes.getKSP() .setType(’cg’)

snes.setFromOptions()

# solve the nonlinear problem
b, x = None, f.duplicate()
x.set(0) # zero inttal guess
snes.solve(b, x)

Fig. 4. Solving a nonlinear problem.

be set. Additionally, PETSc for Python supports attaching user-de-
fined Python functions for monitoring the iterative process (by
calling the setMonitor ( ) method) and defining a custom conver-
gence criteria (by calling the setConvergenceTest () method).

In order to actually solve a system of nonlinear equations, the
solve () method has to be called with appropriate vector argu-
ments (i.e., Vec instances) specifying an optional right hand side
(usually not provided as it is the zero vector) and the location
where to build the solution (which additionally can specify an ini-
tial guess for starting the nonlinear loop).

Consider the following boundary value problem in two
dimensions:

— AU(x) = acexp[U(x)],
Ux)=0, xedQ,

xeQ

where € is the unit square (0,1)? and 02 is the boundary, A is the
two-dimensional Laplace operator, U is a scalar field defined on €,
and « is a constant. The equation is nonlinear and usually called the
Bratu problem. The nonlinear system has a bifurcation (turning
point) at omax ~ 6.80812, there is no solution for o > o(ax. The stan-
dard 5-point finite differences stencil is employed for performing a
spatial discretization on a structured, regularly spaced grid. As
result of the discretization process, a system of nonlinear equation
is obtained. Fig. 4 shows the Python implementation of the nonlin-
ear residual function for the Bratu problem and the basic steps
required for creating and configuring a nonlinear solver. The inner
Krylov linear solver is configured to use conjugate gradient method.
Additionally, the nonlinear solver is configured to use a matrix-free
method (i.e., the Jacobian is not explicitly computed).

4. Performance tests

This section presents some performance test aimed to measure
the overhead introduced by the Python layer in comparison to pure
C codes. First, wall-clock time® of some selected point-to-point and
collective MPI communication calls using MPI for Python are com-
pared to the ones obtained with an equivalent pure Cimplementation;
both Ethernet and shared memory communication channels were
exercised. Next, PETSc for Python and an equivalent pure C code are
employed for driving the solution of a model transient, nonlinear, par-
tial differential equation problem using matrix-free methods; the hea-
vy computations at grid-level loops are implemented in Fortran 90.

The hardware employed to perform these tests was

e a small research cluster consisting of a server and 6 compute
nodes with two quad-core Intel Xeon E5420 2.5 GHz processors,
1333 MHz front-side bus, 8 GB DDR2-667 memory (10.6 GB/s
per-socket theoretical peak memory bandwidth), intercon-
nected via a switched Gigabit Ethernet network;

e a high-end desktop with single quad-core Intel i7 950 3.07 GHz
processor, QuickPath interconnect, 12 GB DDR3-1066 memory
(25.6 GB/s per-socket theoretical peak memory bandwidth)

and the software stack consisted of

e Linux 2.6.32 and GCC 4.4.4;
e MPICH2 1.2.1p1 and PETSc 3.1;
e Python 2.6.2 and NumPy 1.3.0.

4.1. MPI for Python

3 Wall-clock time or wall time is the total amount of time (as determined by a
chronometer) that a task takes to complete. It includes the time required for
computations, input/output and communications. Wall-clock time should not be
confused with CPU time or processor time, which measures only the time a processor
was assigned to actively work on a certain task.
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The first test consisted in blocking send and receive operations
(MPI_SEND and MPI_RECV) between a pair of nodes. Messages
were numeric arrays of double precision (64 bits) floating-point
values. The two supported communications mechanisms, serializa-
tion (via pickle) and direct communication of memory buffers,
were compared against compiled C code. A basic implementation
of this test using MPI for Python with direct communication of
memory buffers (translation to C or C++ is straightforward) is
shown below. The actual implementation took into account mem-
ory preallocation (in order to avoid paging effects) and parallel
synchronization (in order to avoid asynchronous skew in the
start-up phase).

from mpidpy import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank( )
msglen = 2*%*16
arrayl = np.empty(msglen,dtype = ‘d’)
array? = np.empty (msglen,dtype = ‘d’)
sendbuf = [arrayl,msglen, MPI.DOUBLE]
recvbuf = [array2,msglen, MPI.DOUBLE]
wt =MPI.Wtime( )
if rank == 0:
comm.Send (sendbuf,l,tag=0)
comm.Recv(recvbuf,l,tag=0) elif rank ==1:
comm.Recv(recvbuf,0,tag=0)
comm.Send (sendbuf,0,tag =0)
wt = MPI.Wtime () —wt

For increasing message sizes, the wall clock time required for
communication is measured many times and then averaged.
Throughput is computed as the ratio of message size (in bytes)
and wall clock time (in seconds) required to accomplish the com-
munication. Python overhead is computed from wall-clock times
as (Tl’ython - TC)/TC-

Results obtained on the switched Gigabit Ethernet network are
shown in Fig. 5. As expected, the overhead introduced by object
serialization degrades overall efficiency. Comparing to communi-
cation performed in C, the overhead of pickle communication is
around 80% for small messages and around 30% for large messages.
However, fast communication of array data is quite efficient. The
overhead of buffer communication is below 10% for small messages
and below 5% for large messages.

Results obtained on shared memory are shown in Fig. 6. In this
case, the overhead introduced by the Python layer is quite more
noticeable. Comparing to communication performed in C, pickle
communication overhead is 150x for small messages and around
5x for large messages, while the overhead of buffer communication
is around 2.5x for small messages and around 0.5x for large
messages.

The second test consisted of wall-clock time measurements of
Broadcast and All-to-All collective operations on four processes.
Messages were again numeric arrays of double precision floating-
point values.

Results obtained on the switched Gigabit Ethernet network are
shown in Fig. 7. For small messages, the overhead of pickle commu-
nication is significant - 12x for Broadcast and 3.5x for All-to-All -
for large messages, it is less noticeable. The overhead of buffer com-
munication is small, particularly for All-to-All - less than 10% for all
message sizes. Results obtained on shared memory are shown in
Fig. 8, they follow the trends of previous results. However, the
overhead of pickle communication is quite more noticeable for all
message sizes.

Finally, it is worth to remark that the all the previous tests in-
volved communication of contiguous NumPy arrays. For these ob-
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Fig. 5. PingPong - Gigabit Ethernet.

jects, the pickle protocol is implemented quite efficiently - the
total amount of memory required for serialization is known in ad-
vance and the array items have a common data type corresponding
to a C primitive type. For more general, user-defined Python ob-
jects containing deeply nested data structures, pickle communica-
tion is expected to achieve lower performance than the reported
here.

4.2. PETSc for Python

Consider the following diffusive, unsteady, non-linear, scalar
problem in the unit cube @ = (x;,%2,x3) =(0,1)?
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with homogeneous Neumann conditions at the boundary I' = 0Q
and given initial conditions,

0(15
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where n is the outer normal to the boundary.
The diffusion coefficient k¥ depends on ¢ in the following way:

1 if¢>0,
K(¢) = {1 if ¢, < O, (3)
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and the source term G is the line source
1 11
Glxu=zX=75<x<1)=-300 ()

After time discretization using backward-Euler scheme with
time step At and space discretization with centered finite differ-
ences on a structured grid of N; x N, x N3 points, the following
system of equations is obtained

1/ 0
AL (szflg ¢z} k) Lijk(x, o ) Giju =0,
i7j7k:1a"~>Nl7N27N3a (5)

where ¢;; ), and d)?jkl are ¢ at point ((i — 1)Ax1,(j — 1)Axz,(k — 1)Ax3)

and time levels t" and t"! = t" + At, respectively, and

K[i—iz} d)[i—l}—K[i_ﬂ + K[i+1]

Lusti 9) == el
tloti+ 11+ gy -
S CR e
et -
e g, ©)

where, in short hand notation, [0] = (i,j,k), [i+1] = (i+1.j k) and
so on, and ¢ at staggered points is obtained with the averaging

scheme ¢[i+1] =1(¢[i+ 1]+ ¢[0]) and so on.
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The differences scheme detailed above is implemented in a
Fortran 90 subroutine. This subroutine loops over i, j, k grid nodes
computing nonlinear residuals according to Eq. (5) and taking into
account boundary conditions (Eq. (2)).

The Fortran 90 subroutine in charge of computing residuals is
employed in both Python and C driver codes employing PETSc data
structures and algorithms. F2PY makes possible the access of the
Fortran code from Python, while accessing the Fortran code from
C is just a matter of accounting for the name mangling conventions
of the Fortran compiler.

A TS timestepper is configured to run 10 time steps with t° =0,
At=0.01 and initial conditions ¢;, = 0. At each time step, the

Overhead [%]

O 1 1 1 1 1 1 1 1 1 1 1
13% 21° 29° 37° 45% 53° 61° 69° 77° 85° 93° 101°
Grid Size [nodes]

Fig. 9. Overhead of Python versus C codes for the solution of Egs. (1) and (2).

SNES nonlinear solver iterates until the nonlinear residual norm
is reduced to 107 of the initial one. At each nonlinear iteration,
the inner XSP linear solver performs conjugate gradients iterations
with no preconditioning until the linear residual norm is reduced
by 107° respect to the initial one.

Matrix entries of the Jacobian of Eq. (5) are not computed or
stored, instead the action of the Jacobian is approximated by finite
differencing the nonlinear residual.

The overhead of dispatch through Python, (Tpython — Tc)/Tc using
wall-clock times, is shown in Fig. 9. The horizontal axis indicates
the number of grid points, vertical axis indicates the Python over-
head, determined as the quotient between Python and C wall-clock
timings. For the smallest problem, the overhead in using Python is
around 13%, then it decreases as the problem size grows. For med-
ium sized to large problems the overhead is around 3%.

5. Application examples

PETSc-FEM [33,34] has been developed since 1999 at CIMEC lab-
oratory and it is publicly available under the GPL license. PETSc-
FEM is a parallel multiphysics code implemented in C++ and pri-
marily targeted to 2D and 3D finite elements computations on gen-
eral unstructured grids.

PETSc-FEM provides a core library to manage parallel data distri-
bution and assembly of residual vectors and Jacobian matrices, as
well as facilities for general tensor algebra computations at the le-
vel of problem-specific finite element routines. Driver programs use
the core library and other utility data structures and routines to
implement different applications tailored to the problem at hand.
Input data in provided through text files with a specific structure
describing physical and algorithmic simulation parameters, finite
element meshes and boundary conditions. These input files are
usually generated in a preprocessing step using external tools, typ-
ically by scripts written in Octave and Perl. Those tools are also em-
ployed for postprocessing, data analysis, and visualization of output
data. Complex simulations involving the coupling of different mod-
els require the execution of separate processes cooperating through
interprocess communication mechanisms (IPC) like POSIX pipes
and sockets using ad hoc protocols. IPC is usually performed at each
time step and in some cases at the inner nonlinear iterations. Set-
ting up new applications requires hard-wiring customizations in
the source code or employing techniques like dynamic loading to
“hook” application-specific code implemented by end users. A ser-
ies of shell scripts an makefiles control other aspects of this frame-
work: compiling and linking, program execution, and data flow
through the preprocessing/simulation/postprocessing chain.

Simulation frameworks like the previously described are com-
mon in home-grown scientific codes. However, the expertise re-
quired to handle these complexities is beyond the regular
training of scientists and engineers. End-users - and particularly
beginners - have to invest excessive time learning new skills to
manage the plethora of different components.

A computing environment based on the Python programing lan-
guage, as well as a companion “stack” of publicly available, flexible,
well-though Python-based tools, is a viable alternative to more tra-
ditional frameworks. The following list summarizes the benefits
we experienced after switching to a Python-centered computing
environment.

e A single language takes the place of several shell scripts, make-
files, desktop computing and visualization environments, and
scripting programming languages.

e Prototyping and testing of new model components as well as
reuse and coupling of existing models become remarkably
simpler.
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e Performance critical components developed in traditional sci-
entific programming languages are incorporated to the frame-
work with the help of readily available tools.

e Preprocessing, postprocessing, data analysis and visualization
are tightly integrated to simulation.

e The edit/compile/run cycle is considerably reduced and overall
end-user productivity increases. Beginners are able to get
started in a substantially shorter time frame.

Functionalities from the core PETSc-FEM library are made avail-
able to Python by using SWIG. These Python wrappers to PETSc-
FEM interoperate with MPI for Python and PETSc for Python. MPI
for Python is employed for communication and coordination of
parallel runs. PETSc for Python provides the data structures and
algorithms readily available in PETSc. PETSc-FEM primarily contrib-
utes the evaluation of residual vectors and Jacobian matrices.
Python code drives the entire application, gluing the pieces
together. In order to illustrate the capabilities of the tool chain
consisting of MPI for Python, PETSc for Python and PETSc-FEM,
two application examples are presented.

5.1. Hydrology: coupled subsurface/surface flow

This section summarizes some results obtained when modeling
a large scale basin in Santa Fe, Argentina. A fully coupled model
was developed to achieve a better understanding of the dynamics
and interactions of stream/aquifer water flow and the impact of
changing land and hydrology at regional levels. This model com-
prises the groundwater flow equation, coupled to the Saint-Venant
equation for flow in open channels. The water exchange at the
aquifer/river interface depends on the head differences between
them and a resistivity coefficient that characterizes such interface.

5.1.1. Subsurface flow
The equation for the flow in a confined (phreatic) aquifer inte-
grated in the vertical direction is [35]

S% =V . (KV¢)+ Gy,
ot
The corresponding unknown for each node is the piezometric
height or the level of the phreatic surface at that point ¢ and Q2,4
is the aquifer domain, S the storativity, K the hydraulic conductiv-
ity and G,q is the source term accounting for rain, losses from
streams or other aquifers.

on Qyq x (0,t]. (7)

5.1.2. Surface flow

When velocity variations on the channel cross section are ne-
glected, the flow can be treated as one dimensional. The equations
of mass and momentum conservation on a variable cross sectional
stream (in conservation form) are [36,37]

oA 0QA)_

ot T as v

10Q 10 (Q 9 B
KE'FK&(T +g(50—5f)+g&(h+hb)*0= on Qg x (0,t],

(8)

where A = A(h) is the section of the channel occupied by water for a
given water depth h and h;, is the channel bottom elevation. For in-
stance, in rectangular channels A(h)=wh, where w is channel
width. Q is the discharge, G represents the gain or loss of the
stream (i.e., the lateral inflow per unit length), s is the arc-length
along the channel, v=QJA the average velocity in s-direction, v,
the velocity component in s-direction of lateral flow from tributar-
ies. Sq is the bottom slope, Sy is the slope friction and g is the accel-

eration due to gravity. The bottom shear stresses are approximated
by using the Chézy or Manning equations,

2 P(h) s
g—% Al Chezy model,

SI=9 s e . 9)
(§)"v* g Manning model,

where P is the wetted perimeter of the channel, n is Manning rough-
ness coefficient, and a is a conversion factor (a =1 for SI units).

5.1.3. River/aquifer coupling

The stream/aquifer interaction process occurs between a stream
and its adjacent flood-plain aquifer. A typical discretization is
shown in Fig. 10 where an element which represents the stream
loss is connected to two nodes on the stream and two on the aqui-
fer. If the stream level is over the phreatic aquifer level (h, + h > ¢)
then the stream losses water to the aquifer and vice versa. The
stream gain (loss) at a point is

Gs = P/Ri(¢p — hy — h), (10)

where Ryis the resistivity factor per unit arc length of the perimeter.
The corresponding loss (gain) to the aquifer is

G = —Gior,, (11)

where I'; represents the planar curve of the stream and ér, is a Dir-
ac’s delta distribution with a unit intensity per unit length, such
that,

[s000r,d2= [ rxisyas. (12)
rS

So that, in the context of a weighted formulation the coupling term

can be computed as

/ W(X)G,(X)dQ = — / W(X)G(X)dr, dQ

- / W(X(5))Go(X(5))ds. (13)

where W are weighting functions.

Upon using the SUPG Galerkin finite element discretization pro-
cedure with linear triangles and/or bilinear rectangular elements
and the trapezoidal rule for time integration, we obtain the system
to be solved at each time step [38]

Uk+1 _ Uk
At

where U**? = gU**! + (1 — 0)UX, U is the state for the coupled prob-
lem (i.e., phreatic level and Saint-Venant state variables), 0 is the
time-weighting factor satisfying 0 < 0 < 1, At is the time increment
and k denotes the number of time steps. K and B are the non-sym-
metric stiffness matrix and the symmetric mass matrix, respectively
(K and B depend on U), G is the source vector and R is the residual
vector.

R= K(Uk“’)Uk”’ + B(U’HH) _ GI<+0 =0, (-14)

stream node.

aquifer node

Fig. 10. Stream/aquifer coupling.
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5.1.4. Numerical simulations

An example of surface and subsurface interaction flow is pre-
sented. The study area represents a third of the total area of Santa
Fe province (Argentina), amounting to roughly 33,000 km? (see
Fig. 11). A period of 12 months is simulated where the total precip-
itation is the annual average observed in recent years (1000 mm/
year), but divided in two wet seasons with a rainfall rate of
2000 mm/year (March-April and September-October) and dry sea-
sons of 500 mmy/year (the rest of the year).

At time t =0 s (January/1) the piezometric head in the phreatic
aquifer is 30 m above the aquifer bottom, while the water depth in
stream is 10 m above the stream bed. The hydraulic conductivity
and storativity of phreatic aquifer are K=2-10>3m/s and
S= 2.5.10"2m/s, respectively. The Manning friction law is
adopted for this case. The stream channel roughness is
n=3-10"2 and the river width is w=10 m. The average value of
resistivity river walls is Ry=10°s. The computational mesh has
1.7 million triangles (see a detail in Fig. 12) and the drainage
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network has more than 150 branches discretized with 70 thousand
elements, creating an average space of 100 m between river nodes.
The time step adopted in simulations is At =1 day.

Fig. 13 shows the phreatic elevation in four different days of the
simulated period. The phreatic levels increases after the two first
dry months (January-February) when dry period starts (March-
April). At the same time, when consider the river vicinities region
where the subsurface/surface flow interaction process takes place,
we see an increment of the river water level due to the recharge
from the elevated aquifer phreatic levels in wet seasons. The oppo-
site process is observed in dry periods.

5.2. Microfluidics: lab-on-a-chip simulations

A Lab-on-a-chip (LOC) performs the functions of classical analyt-
ical devices in small units of a few square centimeters in size [39].
They are used in a variety of chemical, biological and medical
applications. The benefits of LOC are the reduction of consumption

Fig. 11. Terrain elevation of the computational domain and its parallel partition.

Fig. 12. Mesh over topography detail.
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Fig. 13. Aquifer phreatic elevation during a periodic rainfall.

of samples and reagents, shorter analysis time, greater sensitivity,
portability and disposability. There has been a huge interest in
these devices in the past decade that led to a wide commercial
range of products.

Historically, the most important techniques developed in LOC
devices are electrophoretic separations [40,41]. They are based
on the mobility of ions under the action of an external electric field.
These techniques are widely used in chemical and biochemical
analysis. As microchips for electrophoresis becomes increasingly
complex, simulation tools are required to prototype numerically
these devices, as well as to control and optimize handling [42].

Numerical simulation of a two dimensional electrophoresis
(2DE) device is presented. Simulations were carried out by using
a 3D time-dependent finite element model for electrophoretic
processes in microfluidic chips. Two-dimensional electrophoretic
separations consist of two independent mechanisms that are
employed sequentially. The separation efficiency is estimated as
the product of the independent efficiency of each method, pro-
vided the methods are uncoupled. Two such mechanisms, satisfy-
ing uncoupling, are free flow isoelectric focusing (FFIEF) and
capillary zone electrophoresis (CZE). FFIEF is a technique in which
an electric field and a pH gradient are established perpendicularly
to a flowing sample solution, allowing components to focus at its
stable isoelectric point (pI) [43-45]. CZE is based on the application
of an electric potential difference along a capillary channel, then
electric forces generate electrosmotically-driven fluid flow and in-
duce species migration along the channel axis, yielding the separa-
tion according to their electrophoretic mobilities [46,47].

5.2.1. Modeling
Mathematical modeling of electrophoretic separations carried
out on LOC involves fluid, electric and concentration fields, and

the strong coupling between them. In this particular case, due to
the high reaction rate, the fluid and the electric fields can be trea-
ted in a quasi-stationary form, reducing the complexity of the solv-
ing process [48]. The set of differential equations that were solved
on the LOC geometry ), can be summarized as:

V-u=0, on Q. (15)
p(a-Vu) =V (—pl+u(Vu+Vu')), on Q. (16)
N N N
V- (-Fz > 2V —F) zDVe+ Fszcju) =0, on Q,
= = i
(17)

%‘f‘ V. (—Z,-Q,-V(],‘)Cj +uc — DJ‘VC}') —Ij= 0, on Q% (0,t]. (18)

Egs. (15) and (16) are the Navier-Stokes equations for solving
the fluid field, where u is the velocity, p is the pressure, and u is
the dynamic viscosity. In this simulation, in order to model the
electroosmotic flow, a slip velocity is set as boundary condition.
The magnitude for this velocity (ueo) is based on the Helmholtz-
Smoluchowski approximation [46]:

_ ECW(_V(JB)
M

where € is the electric permittivity, {,, is the electrokinetic potential
of the solid walls I'e,, and ¢ is the electric potential.

Eq. (17) expresses the electric charge conservation for the do-
main as a combination of migrative, diffusive and advective com-
ponents for the motion of all charges present in the solution. In
this case, for the j-species, z; represents the valence, ©; is the
mobility, ¢; the concentration in mol m~3, and D; the diffusion
coefficient.

Ueo = ;o on e, (19)
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Finally, Eq. (18) is the mass transport equation for a generic j-
species, were 1; is the reaction term. Different electrolytes (acids,
bases and ampholytes), analytes, and particularly the hydrogen
ion have to be considered in order to determine the reaction terms.
In electrolyte chemistry the processes of association and dissocia-
tion are much faster than the transport electrokinetic processes,
hence, it is a good approximation to adopt chemical equilibrium
constants to model the reactions of weak electrolytes [49], while
strong electrolytes are considered as completely dissociated.

In solving 2DE amphoteric species are mainly involved. The
reactions associated to a generic ampholyte AH can be summarized
as [49]:

kal
AH S A +H (20)
kuZ
k
AH; 2 AH+H" (21)
2 Ky

where kg1, kp1 are the dissociation rates, and kg, k> the association

ke [AT]HT]
ﬁ* AH =K, (22)
ke, [AH|H']
R~ AHI =K, (23)

where K, and K}, are the dissociation constants for the equilibrium
state, and the square brackets represent concentration of the given
species. The corresponding expressions of rj are obtained as follows:

I = —ka[A][H'] + ke [AH] (24)
Tan = kot [A7][HY] — ke [AH] — ky; [AH][H'] + koo [AHS] (25)
Farty = kot [AH)[H'] — kyo [AH] (26)
Ty = —ka1[A7][H"] + ka2 [AH] — kpy [AH][H"] + kp> [AH; ] (27)

In Eq. (27) the water dissociation term is not included due to the
fact that this reaction is several orders of magnitude faster than
reactions (20) and (21) [49], then [OH] can be calculated directly
as

rates for the ampholyte AH. Then the equilibrium state is character- - K.,
ized by, [OH™] = ] (28)
Electric potential (V)
o -760.0 -406.7 -53.33 300.0
2 s -
(a) Electric potential.
_v 4,80 6.22 7.65 907 105
z i [ [ -

(b) pH in stationary conditions.

Fig. 14. Initial distributions of electric potential and pH.
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Fig. 15. Total sample distribution at 20 and 65 s.
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where K, =107 mol> m~® is the dissociation constant for pure
water at 25 °C.

5.2.2. Simulation results

A 2DE separation involving FFIEF and CZE is simulated on a LOC
prototype. FFIEF is carried out on the left part (10 x 3500 x
7000 pm?), then samples flow through five CZE channels
(10 x 1000 x 16,000 um?) on the right part. Mesh consist of 175
thousand linear triangles, with a total amount of 6 millions of
degrees of freedom.

Boundary conditions for the fluid field are those stated by the
Eq. (19), and the pressure is set to 0 Pa at the outlets. In the case
of the electric field, Dirichlet boundary conditions are set where
the electric potential is applied, and natural Neumann conditions
on the other walls are set. Finally, for the concentration field,
advective flux is set at the inlets and outlets, and natural Neumann
conditions are set on the walls.

The applied electric potential differences (Fig. 14(a)) are fixed
during the operation to provide the system with a transverse elec-
tric field in the FFIEF region and an axial electric field in the CZE
channels. The pH gradient for FFIEF is established by focusing 20
ampholytes between two sheath flows of basic and acidic solu-
tions. A concentrated basic buffer solution is continuously injected
from the inlet at the right. When stationary conditions are reached,
a near-linear pH gradient is developed (Fig. 14(b)).

The proposed numerical prototype is employed to separate a
sample of 10 proteins. Proteins are injected from the central chan-
nel. After a few seconds, the different bands of isoelectric points
are developed. In this particular case there are eight bands, conse-
quently, there are three or four proteins that cannot be effectively
separated by FFIEF, thus CZE is employed as an additional separa-
tion method. After leaving the FFIEF chamber, proteins separate
electrophoretically completing the successful separation of the
10 sample compounds. Total sample distributions at two different
instants of time during the separation process are shown in Fig. 15.

One of the aims of this tool is to provide information about the
separative performance of LOC. In analytical and bioanalytical
chemistry, separative performance of two-dimensional electropho-
resis assays can be evaluated by using a customary representation
in a two-dimensional map. This map contains information of the
isoelectric points and the electrophoretic mobilities of the analytes
present in sample. Results in this format are shown in Fig. 16.

60
10
o 6
o 2 B L
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357\ |
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Fig. 16. Two dimensional map for the separation.

6. Conclusions

Python is an attractive language for rapid development of small
scripts and code prototypes as well as large applications and highly
portable and reusable modules and libraries. Running Python on
parallel computers is a feasible alternative for decreasing the costs
of software development targeted to HPC systems.

In this work, two software components facilitating the access to
parallel distributed computing resources within a Python pro-
gramming environment were presented: MPI for Python and PETSc
for Python. These packages are able to support serious medium and
large scale parallel applications.

Efficiency tests have shown that performance degradation is not
prohibitive. In comparison to pure C codes, MPI for Python can
communicate Python array data at nearly full speed over Gigabit
Ethernet and around half speed over shared memory channels.
PETSc for Python overhead is consistently less than 10%.

This software suite is supporting research activities in a variety
of fields. Applications examples related to finite elements simula-
tions of hydrology and microfluidic problems were presented.
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Appendix A. Project development and support

MPI for Python and PETSc for Python are active software pro-
jects. New features and enhancements are being added on regular
basis in order to keep Python interfaces in accordance to the up-
dates of the MPI standard and PETSc. The testing process is sup-
ported by automated unit testing based on the unittest
package from the Python standard library. These tests are run reg-
ularly on a variety of platforms and computer architectures.

MPI for Python is hosted on Google Code project hosting service
(http://mpi4py.googlecode.com). This service provides version
control repository (http://mpidpy.googlecode.com/svn/), issue
tracker (http://code.google.com/p/mpidpy/issues/list), and release
downloads (http://code.google.com/p/mpi4py/downloads/). Goo-
gle Groups service hosts an on-line discussion and support forum
(http://groups.google.com/group/mpi4py) and a mailing list
(mpi4py@googlegroups.com). PETSc for Python is hosted on Goo-
gle Code project hosting service (http://petsc4py.googlecode.com).
This service provides version control repository (http://
petsc4py.googlecode.com/hg/), issue tracker (http://code.google.
com/p/petsc4py/issues/list), and release downloads (http://code.
google.com/p/petsc4py/downloads/). PETSc for Python uses the
same support channels of PETSc (petsc-users@mcs.anl.gov, petsc-
maint@mcs.anl.gov, and petsc-dev@mcs.anl.gov mailing lists).
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