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Abstract In this work we consider the uniform capacitated single-item single-machine lot-
sizing problem with continuous start-up costs. A continuous start-up cost is generated in a
periodwhenever there is a nonzero production in the period and the production capacity in the
previous period is not saturated. This concept of start-up does not correspond to the standard
(discrete) start-up considered in previous models, thus motivating a polyhedral study of this
problem. In this workwe explore a natural integer programming formulation for this problem.
We consider the polytope obtained as convex hull of the feasible points in this problem. We
state some general properties, study whether the model constraints define facets, and present
an exponentially-sized family of valid inequalities for it. We analyze the structure of the
extreme points of this convex hull, their adjacency and bounds for the polytope diameter.
Finally, we study the particular case when the demands are high enough in order to require
production in all the periods.We provide a complete description of the convex hull of feasible
solutions in this case and show that all the inequalities in this description are separable in
polynomial time, thus proving its polynomial time solvability.
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1 Introduction

In this work we consider the capacitated single-item single-machine lot-sizing problem with
continuous start-up costs. In this problemwe have a planning horizon consisting of p periods,
T = {1, . . . , p}, having nonnegative demand on each period. We assume that the production
of the single item in each period can be any real number between 0 and 1. A continuous
start-up cost is incurred in period t > 1 if the production at period t is nonzero and the
production at period t − 1 is not saturated (i.e., strictly less than 1). The lot-sizing problem
with continuous start-up costs asks for a production plan (i.e., the quantity to be produced at
each period) satisfying the demands and minimizing the total costs.

This concept of continuous start-upwas first presented in Toledo et al. (2008) in the context
of planning the operation of water pumps in a real setting in Brazil. Water pumps usually
operate at a fixed speed (i.e., there are no controls allowing the pump to run at different
speeds) and must be turned off if the operator needs just a fraction of the production capacity
in a certain period. In this case, the operator must run the water pump at full speed for part
of the time, and then the pump must be shut off (as opposed to running the pump at partial
speed for the entire period). Since the water pumpmust be turned off and restarted in the next
period needing production, the particular concept of so-called continuous start-up considered
in this work is generated. Besides water pumps, this setting is relevant for any continuous
single-velocity machine.

An important assumption in this model is the uniformity of the production capacity. The
periods are assumed to span similar time intervals, hence at each period themaximumproduc-
tion is constant. Furthermore, we normalize this maximum production so the production in
each period is any real number in [0, 1]. This normalization helps in the reductions presented
in this work.

The capacitated lot-sizing problemwith start-up costs can be modeled using the following
variables. For t ∈ T , we introduce the production variable xt ∈ [0, 1] representing the
production in period t . For t ∈ T , we employ a binary set-up variable yt ∈ {0, 1} representing
whether there is production in period t or not (i.e., yt = 1 if xt > 0). Finally, for t ∈ T , we
introduce a binary start-up variable at ∈ {0, 1} assertingwhether the (continuous) production
starts at period t or not (i.e., at = 1 if xt > 0 and xt−1 < 1). Note that we treat the variable a1
as if there were an initial production x0 = 0. Throughout this work we assume a null initial
inventory.

For each t ∈ T , we denote by dt the nonnegative demand of the single item in the period
t . For i, j ∈ T , i ≤ j , we define di j = ∑ j

t=i dt . A feasible solution for the capacitated
lot-sizing problem with continuous start-up costs is an assignment of values to the variables
satisfying the following set of constraints:

0 ≤ xt ≤ yt t ∈ T, (1a)

a1 = y1, (1b)

at+1 ≥ yt+1 − xt t ∈ T�{p}, (1c)

d1t ≤ ∑t
k=1 xk t ∈ T, (1d)

yt ∈ {0, 1} t ∈ T, (1e)

at ∈ {0, 1} t ∈ T . (1f)

Constraints (1a) assert that the set-up variable yt must take value yt = 1 if there is produc-
tion in the period t , for t ∈ T . Constraints (1b) and (1c) define the start-up variables, and
constraints (1d) ask for the demand to be satisfied. We write (x, y, a) ∈ R

3p for x, y, a ∈ R
p
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and define P = conv(S) where S is the set of feasible solutions of the formulation (1a)–(1f).
We denote by PLR the linear relaxation of P , that is, the polyhedron obtained by allowing
the binary variables in S to be any real number between 0 and 1.

In Constantino (1996) and Hoesel et al. (1994), the authors study the discrete start-up
model where the start-up constraint (1c) is replaced by at+1 ≥ yt+1 − yt for t ∈ T � {p}.
This discrete start-up cost is incurred in a period t+1 if there is no production in period t ∈ T
(i.e., xt = 0) and there is positive production in period t + 1 (i.e., xt+1 > 0). In contrast,
a continuous start-up cost is generated at period t + 1 if xt < 1 and xt+1 > 0. In Hoesel
et al. (1994) the authors present a complete characterization of the convex hull of feasible
solutions for the uncapacitated discrete start-up model.

Some lot-sizing models have been shown to admit an interesting polyhedral structure,
and this motivates us to explore in this work the polytope P . We are interested in studying
how the particular start-up considered in this work affects the structure of the polytope. In
particular, we continue the search for general valid inequalities, and we present for the first
time a family of valid inequalities composed by an exponential number of elements. We are
also interested in general properties of this polytope, including the structure of its extreme
points and bounds on its diameter.

Finally, we consider the particular case where the demands force production in all the
periods, and we provide a complete characterization by linear inequalities of the polytope
in this case. We also show that the inequalities in this characterization are separable in
polynomial time, hence showing that it can be solved in polynomial time for any linear
objective function. To the best of our knowledge, this is the first case of a capacitated lot-
sizing problem with arbitrary (production and continuous start-up) costs for which this goal
is attained. Furthermore, this result provides another example of a combinatorial problem for
which a nice polyhedral characterization leads to a polynomial-time algorithm.

The paper is organized as follows. In Sect. 2 we first present general properties of the
polytope P , such as its dimension and a minimal system of equations. We identify the
model constraints that induce facets of P and we also introduce two new families of valid
inequalities. A preliminary version of some of these results appeared without proof in the
conference paper (Escalante et al. 2011). In Sect. 3 we explore the combinatorial structure
of this polytope. In particular, we study under which assumptions a feasible solution is an
extreme point and we explore conditions ensuring that two extreme points are neighbors in
P (i.e., the segment joining them is an edge of the polytope). These results allow us to find
bounds on the diameter of the polytope P . In Sect. 4 we study the particular case of high
demands forcing production in all the periods. We provide a complete description of P in
this particular setting by introducing a set of valid inequalities that includes all the facets of
P , and we show that this new family of inequalities can be separated in polynomial time. In
order to clarify the presentation, we have added an “Appendix” where we present a particular
instance of the continuous start-up lot-sizing problem with high demands.

2 The polytope P for general demands

In this section we present some general results on the structure of P . For w ∈ P and
A ⊆ {1, . . . , 3p}, we define wA = (wi )i∈A to be the vector obtained from w by projecting
out the variables outside A. Let 1 be the all-ones vector, 0 be the all-zeros vector and ei be
the i-th unit vector for i = 1, . . . , p, all of them of appropriate dimension. For simplicity,
we write xi j = ∑ j

t=i xt for i, j ∈ T, i ≤ j .
By combining constraint (1d) with xi ≤ 1 for every i ∈ T , we have the following result.
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Proposition 1 The polytope P is nonempty if and only if d1k ≤ k for every k ∈ T .

Throughout this work we assume that P is nonempty and d1 > 0. If there exists a period
k ∈ T with d1k = k, then xt = 1 for t ∈ {1, . . . , k}. We can preprocess this case; hence in
this work we assume w.l.o.g. d1k < k for every period k ∈ T . Define kprod ∈ T to be the
maximum period k such that d1k > k − 1 if such period exists, and kprod = 0 otherwise.
Note that xt > 0 for t = 1, . . . , kprod.

Aminimal equation system for a polytopeQ ∈ R
n is a set of linearly independent equations

such that any equation satisfied by every point in Q is a linear combination of them. If such
a system has q equations, then dim(Q) = n − q .

Theorem 1 A minimal equation system for P is given by

(i) yk = 1 for k ∈ {1, . . . , kprod},
(ii) a1 = 1 if kprod > 0.

Proof If kprod > 0, then any feasible solution (x, y, a) ∈ R
3p has nonzero production in the

first kprod periods, hence yk = 1 for k ∈ {1, . . . , kprod} and, furthermore, a1 = 1.
Let Λ = (μ, γ, δ) ∈ R

3p , where μ, γ, δ ∈ R
p and Λ0 ∈ R such that Λw = Λ0 for every

w = (x, y, a) ∈ P . We verify that Λw = Λ0 is a linear combination of (i)–(ii).
Clearly, 1 ∈ P . Let 0 < ε < min{1, t − d1t : t ∈ T } and define wk = (xk, 1, 1) with

xk = 1 − εek , for each k ∈ T . We have that wk ∈ P , since xk1t = t − ε > d1t for t ∈ T . The
points 1 and wk only differ in their xk-variable which implies that μk = 0.

For each k ∈ {kprod+1, . . . , p}, let w̄k = (x̄ k, 1, 1)with x̄ k = 1−ek . Since x̄ k1t = t−1 ≥
d1t for every t ≥ k > kprod, w̄k ∈ P . Moreover, ŵk = (x̂ k, ŷk, 1) with x̂ k = ŷk = 1 − ek is
also feasible since x̂ kk = 0. The points w̄k and ŵk only differ in their yk-variable, implying
that γk = 0.

Finally, for k = 2, . . . , p, let w̃k = (1, 1, ãk) with ãk = 1 − ek , which is feasible since
ãt ≥ ỹt − x̃t−1 = 0 for every period t . By the definition of w̃k we have that δk = 0.

In this way we have shown that the only nonzero coordinates in Λ are those in (i)–(ii).
Furthermore, each such equation has exactly one nonzero coefficient, hence Λw = Λ0 is a
linear combination of (i)–(ii) which, therefore, defines a minimal equation system for P . ��
2.1 Facet-inducing inequalities for P

In Pulleyblank (1989), Pulleyblank presents the following result that characterizes facet-
defining inequalities of a polyhedron, we rewrite it here for completeness using our notation.

Theorem 2 [Pulleyblank (1989)] Let F be a proper face of P = {w ∈ R
3p: Aw ≤ b}. If AI

is the row submatrix of A indexed in the set I (similarly for bI ) and AIw = bI is a minimal
equation system for P, then the following statements are equivalent:

(i) F is a facet of P .
(ii) dim(F) = dim(P) − 1.
(iii) Let α, Λ ∈ R

3p and β, Λ0 ∈ R be such that αw ≤ β and Λw ≤ Λ0 are valid
inequalities for P . If F = {w ∈ P:αw = β} and B = {w ∈ P:Λw = Λ0} satisfy
F = B, then there exist v ∈ R

I and u ∈ R
+ such thatΛ = uα+vAI andΛ0 = uβ+vbI .

Theorem 2 allows us to characterize the model constraints that induce facets of P .
In the proofs of the following theorems we shall need to distinguish between different

kinds of points. We denote by w(i, j) ∈ R
3p for i ∈ {1, 2, 3} and j ∈ T a point considered
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for studying the x-variable (i = 1), the y-variable (i = 2) and the a-variable (i = 3),
respectively, corresponding to the period j . For instance, w(1, j) corresponds to the analysis
of the variable x j .

Theorem 3 The following model constraints define facets of P:

(i)
p∑

j=1
x j ≥ d1p.

(ii) xs ≤ 1 for s ∈ {1, . . . , kprod}.
(iii) xs ≤ ys and ys ≤ 1 for s ∈ {kprod + 1, . . . , p}.
(iv) as ≤ 1 for s ∈ {2, . . . , p}.

Proof Since the arguments are similar for all constraints, we prove that the inequality (i)
induces a facet and omit the rest of the proofs.

Let Λ = (μ, γ, δ) ∈ R
3p with μ1 �= 0 and Λ0 ∈ R such that Λw ≤ Λ0 is a valid

inequality for P . If α = (−1, 0, 0) and β = −d1p , the inequality αw ≤ β corresponds to
the constraint (i) for w = (x, y, a) ∈ R

3p .
With this choice of α and β, if F = {w ∈ P:αw = β} and B = {w ∈ P:Λw = Λ0}

we show that (i) defines a facet of P by using (iii) in Theorem 2. Assuming that F = B,
we prove that there exist v ∈ R

I and u ∈ R
+ such that Λ = u(−1, 0, 0) + vAI and

Λ0 = u(−d1p)+ vbI where I is the set of indices of the minimal equation system presented
in Theorem 1.

Let r ∈ T such that 	d1p
 = r . Since d1 < 1, d1p < p. If kprod = p then r = p else
r < p. If r < p we define ŵ = (x̂, 1, 1) where

x̂i =

⎧
⎪⎨

⎪⎩

1 i ∈ {1, . . . , r − 1},
d1p − r + 1 i = r,

0 i ∈ {r + 1, . . . , p}
and, if r = p, we consider ŵ = (x̂, 1, 1) such that

x̂i =
{
1 i ∈ {1, . . . , p − 1},
d1p − p + 1 i = p.

In any case it is clear that ŵ ∈ F . Using this definition we subdivide the rest of the proof
into five cases.

Case (a) μ j = μ1 for j ∈ {1, . . . , p}.
Assume that r < p.
Let j ∈ {1, . . . , r − 1}. Let us consider

ε = min{x̂1i − d1i : i = 1, . . . , r},
or, by the definition of x̂ for r < p,

ε = min
{
d1p − d1r + 1,min{i − d1i : i = 1, . . . , r − 1}} .

Note that 0 < ε < 1 since d1 > 0. We consider w
(1, j)
i = ŵi for every i except for

x (1, j)
j = x̂ j −ε and x (1, j)

r+1 = ε. Then,w(1, j) ∈ F . Using the fact that F = B, we have

Λŵ = Λw(1, j) which implies that μ j x̂ j = μ j (x̂ j − ε) + μr+1ε. Then, μ j = μr+1.
Let j ∈ {r + 1, . . . , p} and ε j = min{x̂r , d1p − d1( j−1)}. Again, ε j ≤ 1. Let

w
(1, j)
i = ŵi for every i except for x

(1, j)
r = x̂r −ε j and x

(1, j)
j = ε j . Then,w(1, j) ∈ F .
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Using the fact that F = B, we have Λŵ = Λw(1, j) which implies that μr x̂r =
μr (x̂r − ε j ) + μ jε j . Then, μ j = μr .
Now, assume that r = p.
Let j ∈ {1, . . . , p − 1}. Define

ε = min{i − d1i : i = 1, . . . , p},
clearly, 0 < ε < p−d1p < 1.We considerw(1, j)

i = ŵi for every i except for x
(1, j)
j =

x̂ j −ε = 1−ε and x (1, j)
p = x̂ p +ε. Then,w(1, j) ∈ F . Using the fact that F = B, we

have Λŵ = Λw(1, j) which implies that μ j x̂ j + μp x̂ p = μ j (x̂ j − ε) + μp(x̂ p + ε).
Then, μ j = μp .

In both cases we conclude that μ j = μ1 for j ∈ {1, . . . , p}. ♦
Case (b) If r < p, γ j = 0 for j ∈ {r + 1, . . . , p}.
Let j ∈ {r + 1, . . . , p}. Observe that kprod < r + 1. Define w

(2, j)
i = ŵi for every i

except for y(2, j)
j = 0. Clearly, w(2, j) ∈ F . Again, using the fact that F = B, we have

Λŵ = Λw(2, j) which implies γ j = 0. ♦
Case (c) If r < p, γ j = 0 for j ∈ {1, . . . , r} ∩ {kprod + 1, . . . , p}.
Let j ∈ {1, . . . , r} ∩ {kprod + 1, . . . , p}. Consider w

(2, j)
i = ŵi for every i except for

x (2, j)
j = y(2, j)

j = 0, x (2, j)
r = 1 and x (2, j)

r+1 = x̂r . Since j > kprod, it is easy to see that

w(2, j) ∈ F . Again, using the fact that F = B we have Λŵ = Λw(2, j) which implies
μr x̂r + μ j + γ j = μr + μr+1 x̂r . After Case (a), γ j = 0. ♦
Case(d) δ j = 0 for j ∈ {2, . . . , kprod}.
Let j ∈ {1, . . . , kprod}. Define w

(3, j)
i = ŵi for every i except for a(3, j)

j = 0. Clearly,

w(3, j) ∈ F and using the fact that F = B we have Λŵ = Λw(3, j) which implies that
δ j = 0. ♦
Case (e) If kprod < p, δ j = 0 for j ∈ {kprod + 1, . . . , p}.
Let j ∈ {kprod + 1, . . . , p}. Define w

(3, j)
i = w

(2, j)
i for every i except for a(3, j)

j = 0.

Clearly, w(3, j) ∈ F and using the fact that F = B we have Λw(2, j) = Λw(3, j) which
implies that δ j = 0. ♦

Now, by denoting u = |μ1| and v = (γ1, . . . , γkprod , δ1), the previous analyzed cases
imply thatΛw = u(−∑p

t=1 x j )+v(y1, . . . , ykprod , a1) andΛ0 = u(−d1p)+v1. According
to Theorem 2, the inequality (i) defines a facet for P . ��

Several families of facet-inducing valid inequalitieswere presented in the conference paper
(Escalante et al. 2011), all of them composed by at most p inequalities. The following result
presents an additional family of facet-defining inequalities of P for s ∈ {1, . . . , kprod − 1}.
These new inequalities dominate the model constraints (1c) when s−d1s < 1, implying that
the original constraints (1c) do not induce facets of P in this case.

Theorem 4 For i ∈ T let di ≤ 1 be such that kprod > 1. Then, for each s ∈ {1, . . . , kprod−1},
the inequality

xs + (s − d1s)as+1 ≥ 1 (2)

defines a facet of P.

Proof We first prove that (2) is a valid inequality. Since P is a polytope it is enough to prove
the validity over S. Let us consider the following two cases for (x, y, a) ∈ S.
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Case 1 If as+1 = 0, then s < kprod implies xs > 0, hence either xs = 1 or ys+1 = 0.
We cannot have ys+1 = 0 as s + 1 ≤ kprod and then xs+1 > 0. Therefore, xs = 1 and (2) is
satisfied. ♦

Case 2 If as+1 = 1, then the demand satisfaction constraint (1d) for t = s implies

xs + (s − d1s)as+1 ≥ d1s −
s−1∑

t=1

xt + (s − d1s)

= s −
s−1∑

t=1

xt = 1 +
s−1∑

t=1

(1 − xt ) ≥ 1. ♦

We conclude that (2) is valid for P .
We now address the facetness of the constraint in (2). Let Λ = (μ, γ, δ) ∈ R

3p with
μs �= 0 andΛ0 ∈ R such that (Λ,Λ0) ∈ R

3p+1 is a valid inequality for P . If α = (es, 0, (s−
d1s)es+1) ∈ R

3p and β = 1 ∈ R the inequality αw ≥ β corresponds to the constraint (2)
for w = (x, y, a) ∈ R

3p . With this choice of α and β, if F = {w ∈ P:αw = β} and
B = {w ∈ P:Λw = Λ0}, we show that (2) defines a facet of P by using (iii) in Theorem 2.

Assuming that F = B, we prove that there exist v ∈ R
I and u ∈ R

+ such that Λ =
uα + vAI and Λ0 = uβ + vbI where I is the set of indices of the minimal equation system
presented in Theorem 1.

Define ŵ = (1, 1, â)with ât = 1 for every t ∈ T � {s+1} and âs+1 = 0. Clearly, ŵ ∈ F .
We divide the proof into four cases.

Case (a) μ j = 0 for j ∈ T � {s}.
Let j ∈ {1, . . . , kprod} � {s}. Consider w

(1, j)
i = ŵi for every i except for x (1, j)

j =
1 − ε j where ε j = min{i − d1i , i = 1, . . . , kprod}. Note that 0 < ε j < 1. Then,
w(1, j) ∈ F and using the fact that F = B we have thatΛŵ = Λw(1, j) which implies
that μ j = μ j (1 − ε j ). Then, μ j = 0.

Let j ∈ {kprod + 1, . . . , p}. Consider w
(1, j)
i = ŵi for every i except for x (1, j)

j = 0.

Since j > kprod we have that d1 j ≤ j − 1 and clearly w(1, j) ∈ F . Using the fact that
F = B we arrive to Λŵ = Λw(1, j) which implies that μ j = 0. ♦

Case (b) δs+1 = (s − d1s)μs .
Let w(3,s+1)

i = ŵi for every i except for x
(3,s+1)
s = d1s − (s − 1) and a(3,s+1)

s+1 = 1. It is
clear that w(3,s+1) ∈ F and using the fact that F = B we have Λŵ = Λw(3,s+1) which
implies thatμs = μs(d1s−(s−1))+δs+1.Bysimplifyingwearrive to δs+1 = (s−d1s)μs .
♦
Case (c) δ j = 0 for j ∈ T � {1, s + 1}.
Let j ∈ T � {1, s + 1} and w

(3, j)
i = ŵi for every i except for a

(3, j)
j = 0. Again, clearly

w(3, j) ∈ F and using the fact that F = B we have Λŵ = Λw(3, j) which implies that
δ j = 0. ♦
Case (d) γ j = 0 for j ∈ {kprod + 1, . . . , p}.
Let j ∈ {kprod + 1, . . . , p} and w

(2, j)
i = ŵi for every i except for x (2, j)

j = y(2, j)
j = 0.

Then, w(2, j) ∈ F and using the fact that F = B we have Λŵ = Λw(2, j) which implies
that μ j + γ j = 0. Since μ j = 0 after Case (a), we obtain γ j = 0. ♦
Now, by denoting u = |μs | and v = (γ1, . . . , γkprod , δ1), the previous analyzed cases

imply Λw = u(xs + (s − d1s)as+1) + v(y1, . . . , ykprod , a1) and Λ0 = u + v1. According to
Theorem 2, (2) defines a facet of P . ��
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In the remainder of this section we make the following additional assumptions

di ≤ 1 for every i ∈ T � {1} and (3)

kprod > 1. (4)

These conditions ensure that it is feasible to produce exactly the demand at each period,
since the production can take any value in [0, 1]. Since d1 < 1, the production may not be
saturated at the first period. Note, furthermore, that we may have over-production in some
periods and zero production in subsequent periods, but this is not mandatory as di ≤ 1 for
every i ∈ T . In this case we are able to present the following exponentially-sized family of
valid inequalities for P .

Definition 1 Let kprod > 1, k0 ≥ 1andM ⊆ {k0, . . . , kprod−1}. If A = {i ∈ {k0, . . . , kprod−
1}: i /∈ M} and B = {i ∈ {1, . . . , kprod − 1}: i /∈ M}, we define

∑

i∈B
xi +

∑

i∈A

(i − k0 + 1 − dk0i )ai+1 ≥
∑

i∈B�A

di + |A| (5)

to be the (k0, M)-inequality associated with the sets A and B, and with the period k0.

Theorem 5 Under the assumptions (3) and (4) the (k0, M)-inequality (5) is valid for P.

Proof Since kprod > 1 we have xt > 0 for every t ∈ {1, . . . , kprod}. Let w = (x, y, a) be an
arbitrary feasible solution, and define {I1(w), I2(w), I3(w)} to be the following partition of
{1, . . . , kprod − 1}:

I1(w) = {i ∈ {1, . . . , kprod − 1}: ai+1 = 1, 0 < xi < 1},
I2(w) = {i ∈ {1, . . . , kprod − 1}: ai+1 = 0, xi = 1},
I3(w) = {i ∈ {1, . . . , kprod − 1}: ai+1 = 1, xi = 1}.

If I1(w) = ∅ then xi = 1 for all i ∈ {1, . . . , kprod − 1} and (5) reads as
∑

i∈B
xi +

∑

i∈A

(i − k0 + 1 − dk0i )ai+1 ≥
∑

t∈B
xt = |B|.

Since |B| = |B − A| + |A| ≥ ∑
i∈B�A di + |A|, the inequality holds.

Assume that I1(w) �= ∅, and define ŵ = (x̂, ŷ, â) to be a feasible solution with x̂ = x ,
ŷ = y, and

âk+1 =
{
ak+1 k ∈ I1(w) ∪ I2(w),

0 k ∈ I3(w).

Clearly, ŵ is a feasible solution with I1(ŵ) = I1(w) and I2(ŵ) = I2(w) ∪ I3(w) (hence
I3(ŵ) = ∅). Definem = max{i : i ∈ A∩ I1(ŵ)} if A∩ I1(ŵ) �= ∅ andm = k0 −1 otherwise.
Then

∑

i∈A∩I1(ŵ)

(
(1 − x̂i ) − (i − k0 + 1 − dk0i )

)

≤
∑

i∈A∩I1(ŵ)

(1 − x̂i ) − (m − k0 + 1 − dk0m)
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=
∑

i∈A∩I1(ŵ)

(1 − x̂i ) −
m∑

i=k0

(1 − di )

=
∑

i∈A∩I1(ŵ)

(di − x̂i )

︸ ︷︷ ︸
UD

−
m∑

i=k0
i /∈A∩I1(ŵ)

(1 − di )

︸ ︷︷ ︸
MPS

≤
∑

i∈B�A

x̂i −
∑

i∈B�A

di

︸ ︷︷ ︸
SS

. (6)

The first bounding holds due to the fact that A ⊆ {k0, . . . , kprod − 1}. The last bounding
holds since the expression UD represents the demand in A ∩ I1(ŵ) unmet with production
from the same periods, the expression MPS gives the maximum production surplus in the
remaining periods in {k0, . . . ,m}, and SS represents the surplus stock after period k0 − 1.
We must have UD ≤ SS + MPS in order to meet the demands up to the period m. We can
now show the validity of (5):

∑

i∈B
xi +

∑

i∈A

(i − k0 + 1 − dk0i )ai+1

≥
∑

i∈B�A

x̂i +
∑

i∈A

x̂i +
∑

i∈A

(i − k0 + 1 − dk0i )âi+1

=
∑

i∈B�A

x̂i +
∑

i∈A∩I2(ŵ)

x̂i +
∑

i∈A∩I1(ŵ)

(
x̂i + i − k0 + 1 − dk0i

)

=
∑

i∈B�A

x̂i + |A ∩ I2(ŵ)| + |A ∩ I1(ŵ)|

+
∑

i∈A∩I1(ŵ)

(
(x̂i − 1) + i − k0 + 1 − dk0i

)

≥
∑

i∈B�A

di + |A|.

In the last inequality we made use of the bound in (6). This allows us to conclude that (5) is
a valid inequality for P . ��

Remark 1 We have already identified a sub-family of the (k0, M)-inequalities whose mem-
bers define facets of P . Namely, if we set k0 = 1, M = {1, . . . , kprod − 1} � {s} for some
s ∈ {1, . . . , kprod − 1}, and A = B = {s}, then the (k0, M)-inequality becomes

xs + (s − d1s)as+1 ≥ 1.

Theorem 4 implies that this inequality is facet-inducing for P .

In Sect. 4 we shall consider the case where the additional assumptions (3) are satisfied
and also that the demands force the production to be nonzero in every period. We shall verify
that under these assumptions the (k0, M)-inequalities, together with the model constraints
and the relaxed bounds on the binary variables, provide a complete description of P .

In addition, also in Sect. 4, we will see that the constraints (5) are closely related to the
well-known (�, S)-inequality for the general case of the uncapacitated lot-sizing problem.
In fact, in the proof of Theorem 10 we show how this relationship can be achieved for the
special case of high demands.
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3 The combinatorial structure of P

In this section we consider a particular graph associated with a polyhedron P , namely the
graph whose vertices correspond to the extreme points (i.e., the zero-dimensional faces) of
P and where two vertices are adjacent if they belong to the same one-dimensional face of the
polyhedron. In Sect. 3.1 we characterize the feasible solutions that are extreme points of P ,
a fact that is not straightforward due to the presence of continuous variables. In Sect. 3.2 we
present some results concerning properties that ensure that two extreme points are neighbors
in the associated graph. Finally, in Sect. 3.3 we provide lower and upper bounds on the
diameter of the polytope, i.e., the longest distance between any two vertices in the associated
graph.

3.1 Basic properties

In Sect. 1we have denoted byS the set of feasible solutions for the formulation (1a)–(1f).Now
we focus on the extreme points of the polyhedron P = conv(S). Recall that w is an extreme
point of P if there do not exist w1, w2 ∈ P , w1 �= w2, such that w = αw1 + (1− α)w2 for
some α ∈ (0, 1). Clearly, if w ∈ P ∩ {0, 1}3p then w is an extreme point of P . However,
a feasible solution may contain fractional x-variables and still be an extreme point, as the
following theorem shows. If w ∈ P we define F(w) = {t ∈ T : 0 < xt < 1}. In case
F(w) �= ∅ we consider F(w) = {t1, . . . , tk} and tk+1 = p + 1, where ti < ti+1 for
i ∈ {1, . . . , k}. According to this notation we can state the following result.

Theorem 6 Let w = (x, y, a) ∈ S with F(w) �= ∅. Then, w is an extreme point of P if and
only if for every i ∈ {1, . . . , k}, there exists r ∈ {ti , . . . , ti+1 − 1} such that x1r = d1r .

Proof For the forward implication, let w = (x, y, a) be an extreme point of P . Suppose
there exists some i ∈ {1, . . . , k} such that x1r > d1r for every r ∈ {ti , . . . , ti+1 − 1}. We
show that this assumption leads us to a contradiction by dividing our analysis into two cases.

Let i < k. We define two points w1 = (x1, y, a) and w2 = (x2, y, a) such that x1 and x2

only differ from x in the periods ti and ti+1, where they are defined as follows:

x1ti = xti − ε, x2ti = xti + ε,

x1ti+1
= xti+1 + ε, x2ti+1

= xti+1 − ε.

Since x1r > d1r for r ∈ {ti , . . . , ti+1 − 1}, both points belong to P if ε is small enough.
Furthermore, w = (x1 + x2)/2 which implies that w is not an extreme point.

Now, if i = k, we define w1 = (x1, y, a) and w2 = (x2, y, a) such that x1 and x2 only
differ from x in the period ti . More precisely,

x1ti = xti − ε,

x2ti = xti + ε.

Again, if ε is small enough then both points belong to P and w = (w1 + w2)/2, implying
that w is not an extreme point.

For the converse implication, ifw is not an extremepoint of P it can bewritten as the convex
combination of some pointsw1, . . . , wn ∈ P . Letwi = (xi , yi , ai ) for i ∈ {1, . . . , n}. Since
the y- and a-variables are integral, yi = y and ai = a, for i = 1, . . . , n. The same argument
shows that xit = xt for t /∈ F(w).

Consider now the variable xt1 , corresponding to the first index of F(w). By hypothesis,
there exists some r ∈ {t1, . . . , t2 − 1} such that x1r = d1r . Let i ∈ {1, . . . , n}. Since w and
wi may only differ in their xt1 -variable up to period t2 − 1,
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xi1r = x1,t1−1 + xit1 + xt1+1,r = d1r + xit1 − xt1 .

Moreover, since d1r + xit1 − xt1 ≥ d1r we have that xit1 ≥ xt1 . Therefore, x
i
t1 ≥ xt1 for

every i ∈ {1, . . . , n}. However, since x is a convex combination of x1, . . . , xn we conclude
xit1 = xt1 for every i ∈ {1, . . . , n}. By repeating this argument we get xij = x j for every

j ∈ F(w) and every i ∈ {1, . . . , n}. This shows that wi = w for i ∈ {1, . . . , n} and then w

must be an extreme point, i.e., a contradiction. ��
Throughout this section we make use of the following well-known characterization of

extreme points of a given polyhedron.

Lemma 1 [Nemhauser and Wolsey (1988)] A feasible solution w ∈ P is an extreme point
of the polytope P if and only if there exists a linear objective function Gw such that w is the
unique optimal solution of max{Gw(x): x ∈ P}.

Let us now introduce a linear function associated with every point in S.

Definition 2 If w̄ = (x̄, ȳ, ā) ∈ S, we define the linear function Gw̄ on P as follows:

Gw̄(w) =
∑

j :ȳ j=1

y j +
∑

j :ȳ j=0

(1 − y j )

︸ ︷︷ ︸
G1

w̄(y)

+
∑

j :ā j=1

a j +
∑

j :ā j=0

(1 − a j )

︸ ︷︷ ︸
G2

w̄(a)

+
∑

j :x̄ j=1

x j +
∑

j :x̄ j=0

(1 − x j )

︸ ︷︷ ︸
G3

w̄(x)

+ 1

p2
∑

j∈F(w̄)

(p − j + 1) (1 − x j )

︸ ︷︷ ︸
G4

w̄(x)

for w ∈ P .

Remark 2 Thedefinition ofGw̄ implies thatG1
w̄(ȳ) = G2

w̄(ā) = p andG3
w̄(x̄) = p−|F(w̄)|.

It is clear that G1
w̄(y) ≤ p, G2

w̄(a) ≤ p, and G3
w̄(x) ≤ p − |F(w̄)| for w ∈ P . If F(w̄) = ∅,

then Gw̄(w̄) = 3p and Gw̄(w) ≤ 3p for w ∈ P . If F(w̄) �= ∅, it holds that Gw̄(w̄) >

3p − |F(w̄)|. Let us now show that G4
w̄(x) ≤ 1 for w = (x, y, a) ∈ P . Actually,

G4
w̄(x) = 1

p2
∑

j∈F(w̄)

(p − j + 1) (1 − x j )

≤ 1

p2
∑

j∈F(w̄)

(p − j + 1)

≤ 1

p2
∑

j∈T
(p − j + 1) = 1

p2
(p + 1)p

2
≤ 1.

Therefore we have that Gw̄(w) ≤ 3p − |F(w̄)| + 1 for any w ∈ P .

Using this linear function we show the following necessary condition for w̄ to be an
extreme point.

Proposition 2 If w̄ = (x̄, ȳ, ā) ∈ S is an extreme point of P then w̄ is the only optimal
solution of max{Gw̄(w): w ∈ P}.
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Proof For any w = (x, y, a) ∈ S such that y �= ȳ we have that G1
w̄(y) < p and then

Gw̄(w) ≤ 3p−|F(w̄)| by Remark 2. This shows that this point cannot be optimal for Gw̄. A
similar situation holds for the a-variable. Therefore, any optimal solution of max{Gw̄(w) :
w ∈ P} can only differ from w̄ in the x-variables.

Let w′ = (x ′, ȳ, ā) ∈ S such that x ′ �= x̄ . If F(w̄) = ∅ and Gw̄(w′) = 3p clearly implies
that w′ = w̄. Now, if F(w̄) �= ∅ we show that if A = Gw̄(w′) − Gw̄(w̄) then A < 0. Let
F(w̄) ∪ {p + 1} = {t1, . . . , tk} ∪ {tk+1}. After Theorem 6, for every i ∈ {1, . . . , k} there
exists ri ∈ {ti , . . . , ti+1 − 1} such that x̄1ri = d1ri . Let

r0 = 0, rk+1 = p, x ′
tk+1

= x̄tk+1 = 0,

and, for i ∈ {1, . . . , k + 1}, define T 0(w̄, ri ) = { j ∈ {ri−1 + 1, . . . , ri } : x̄ j = 0} and
T 1(w̄, ri ) = { j ∈ {ri−1 + 1, . . . , ri } : x̄ j = 1}. In addition, consider

ε
(i)
1 =

∑

j∈T 1(w̄,ri )

(
x ′
j − x̄ j

)
,

ε
(i)
2 =

∑

j∈T 0(w̄,ri )

(
x ′
j − x̄ j

)
,

ε
(i)
3 = x ′

ti − x̄ti ,

εri = x ′
1ri − x1ri = x ′

1ri − d1ri ,

εri − εri−1 = ε
(i)
1 + ε

(i)
2 + ε

(i)
3 .

By definition we have that if

A =
∑

j : x̄ j=1

(
x ′
j − x̄ j

)
+

∑

j : x̄ j=0

(
x̄ j − x ′

j

)
+ 1

p2
∑

j∈F(w̄)

(p − j + 1)
(
x̄ j − x ′

j

)
,

then

A =
k+1∑

i=1

ε
(i)
1 −

k+1∑

i=1

ε
(i)
2 − 1

p2

k∑

i=1

(p − ti + 1) ε
(i)
3

=
k+1∑

i=1

ε
(i)
1 −

k+1∑

i=1

ε
(i)
2 − 1

p2
(p − t1 + 1)

(
εr1 − ε

(1)
1 − ε

(1)
2

)

− 1

p2

k∑

i=2

(p − ti + 1)
(
εri − εri−1 − ε

(i)
1 − ε

(i)
2

)
.

Or, equivalently,

A =
k∑

i=1

(

1 − p − ti + 1

p2

)

ε
(i)
1 + ε

(k+1)
1 −

k∑

i=1

(

1 − p − ti + 1

p2

)

ε
(i)
2 − ε

(k+1)
2

− 1

p2

k−1∑

i=1

(ti+1 − ti ) εri − 1

p2
(p − tk + 1) εrk

123



Ann Oper Res (2015) 235:233–258 245

=
k+1∑

i=1

(

1 − p − ti + 1

p2

) (
ε
(i)
1 − ε

(i)
2

)
− 1

p2

k−1∑

i=1

(ti+1 − ti ) εri

− 1

p2
(p − tk + 1) εrk . (7)

Now, by definition we have that ε(i)
1 ≤ 0 and ε

(i)
2 ≥ 0 for i ∈ {1, . . . , k + 1}. This implies

that (ε(i)
1 −ε

(i)
2 ) ≤ 0. By combining these observationswith the fact that (1− p − ti + 1

p2
) > 0

for i ∈ {1, . . . , k + 1}, we can conclude that A ≤ 0.
Moreover, A = 0 if and only if ε

(i)
1 = ε

(i)
2 = 0 for i ∈ {1, . . . , k + 1} and εri = 0 for

i ∈ {1, . . . , k}, that is, if x ′ = x̄ . This proves that Gw̄(w′) < Gw̄(w̄) for w′ �= w̄.
If F(w̄) = ∅ then Gw̄(w̄) = 3p and, furthermore, Gw̄(w) ≤ 3p for every feasible

solution w. Since w̄ ∈ {0, 1}3p , any w′ ∈ P attaining Gw̄(w′) = 3p must coincide with w̄

thus implying that w′ = w̄. ��
3.2 Neighboring extreme points

Proposition 2 provides the starting point for exploring the edges of the polytope P . Recall
that ei stands for the i-th unit vector of appropriate dimension.

Definition 3 Two extreme points of a polyhedron P are neighbors if they belong to the same
one-dimensional face of P .

Remark 3 Two extreme points w̄ and w̄′ of P are neighbors if and only if there exists a
linear function G such that they are the unique extreme points that are optimal solutions of
max{G(w): w ∈ P}. That is, the set {w ∈ P:G(w) = G(w̄)} is a one-dimensional face of
the polytope P .

In the following three propositions we consider particular pairs of extreme points of P
which turn out to be neighbors.

Proposition 3 Letwi = (xi , yi , ai )be an extremepoint of P with yi = 0 and i ∈ {2, . . . , p}.
Then w̄i = (xi , yi + ei , ai ) is an extreme point of P and wi and w̄i are neighbors.

Proof It is clear that w̄i is an extreme point of P . For any w = (x, y, a) ∈ P , let us consider
the function Gi (w) = Gw̄i (w) − yi , i.e., the functions Gi and Gw̄i coincide except for the
coefficient of the yi -variable, which is not present in Gi . In order to show that wi and w̄i are
neighbors, we will prove that the points wi and w̄i are the unique extreme points that are
optimal solutions of max{Gi (w): w ∈ P}.

For w ∈ P , Gi (w) takes the following form

Gi (w) = Gw̄i (w) − yi

= G1
w̄i (y) − yi + G2

w̄i (a) + G3
w̄i (x) + G4

w̄i (x)

=
∑

j �=i
ȳij=1

y j +
∑

j :ȳij=0

(1 − y j ) + G2
w̄i (a) + G3

w̄i (x) + G4
w̄i (x).

It is easy to prove that

Gw̄i (w) − Gwi (w) = 1 (8)
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and

Gi (w
i ) = Gi (w̄

i ). (9)

We define the operator Hi :S → R
3p to be Hi (w) = ŵi = (̂xi , ŷi , âi ), with

x̂ i =x, âi = a,

ŷii =1, ŷij = y j j �= i.

Note that if yi = 1 then Hi (w) = w.
If w ∈ S and ŵi = Hi (w) then

Gi (w) = Gw̄i (ŵ
i ) − 1. (10)

Since w̄i is optimal for Gw̄i , we have Gw̄i (w̄i ) ≥ Gw̄i (w) for all w ∈ P , implying

Gi (w) ≤ Gw̄i (w̄
i ) − 1 = Gi (w̄

i ). (11)

By (9) we have that wi and w̄i satisfy (11) at equality, hence Gi achieves its maximum value
at these points. If there were another extreme pointw∗ ∈ P verifyingGi (w

∗) = Gi (w̄
i ) then

y∗
i = 0 or y∗

i = 1. On the one hand, if y∗
i = 1, then Gi (w) = Gw̄i (ŵi )−1 and Proposition 2

imply that

Gi (w
∗) = Gw̄i (w

∗) − 1 < Gw̄i (w̄
i ) − 1 = Gi (w̄

i ),

a contradiction. On the other hand, if y∗
i = 0 then by combining (8), (10) and Proposition 2

we get

Gi (w
∗) = Gw̄i (w

∗) = Gw̄(w∗) + 1 < Gw̄(w̄) + 1 = Gw̄i (w̄) = Gi (w̄),

which is also a contradiction. This shows that w̄i and w̄i are neighbors. ��
The following results are proved in much the same way as Proposition 3, hence the proofs

are omitted.

Proposition 4 Letwi = (xi , yi , ai )bean extremepoint of P with aii = 0 and i ∈ {2, . . . , p}.
Then w̄i = (x̄ i , ȳi , ā + ei ) is an extreme point of P and wi and w̄i are neighbors.

Proposition 5 Let wi = (xi , yi , ai ) ∈ {0, 1}3p be an extreme point of P with xii = 0 and
i ∈ {kprod + 1, . . . , p}. We define w̄i = (xi + ei , ȳi , ai ) such that ȳii = 1 and ȳij = yij for

every j �= i . Then w̄i is also an extreme point of P and wi and w̄i are neighbors.

Proposition 6 Let wi = (xi , yi , ai ) be an extreme point of P with F(wi ) = {t1, . . . , tk}
where i ∈ {rk + 1, . . . , p} such that xii = 0 for rk ∈ {tk, . . . , p} such that xi1rk = d1rk . We

define w̄i = (xi + ei , ȳi , ai ) such that ȳii = 1 and ȳis = yis for s ∈ T � {i}. Then w̄i is also
an extreme point and wi and w̄i are neighbors.

In what follows, if i = p we assume that {i + 1, . . . , p} = ∅.
The following result shows under which conditions we can move from an extreme point

to a neighboring extreme point by setting a non-zero and non-saturated x-variable to 1.

Lemma 2 Let wi = (xi , yi , ai ) be an extreme point of P satisfying 0 < xii < 1 and
xij ∈ {0, 1} for j ∈ {i + 1, . . . , p}. Consider w̄i = (x̄ i , ȳi , āi ) such that ȳi = yi , āi = ai ,

x̄ ik = xik for every k except for x̄ ii = 1. Then w̄i is also an extreme point of P.
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Proof Let F(wi ) = {t ∈ T : 0 < xit < 1} and F(wi ) ∪ {p + 1} = {t1, . . . , tk+1} be as in
Theorem 6, where ts < ts+1 for s ∈ {1, . . . , k} and tk+1 = tp+1. By hypothesis, tk = i . Since
wi is an extreme point of P , by Theorem 6, we have xi1rs = d1rs for every s ∈ {1, . . . , k}
and for some rs ∈ {ts, . . . , ts+1 − 1}. Since wi ∈ P , the fact that 0 < xii < 1 implies that
ȳi = 1 shows w̄i ∈ P .

Observe that F(w̄i ) = {t ∈ T : 0 < x̄ it < 1} = F(w̄) � {tk} and F(w̄i ) ∪ {p + 1} =
{t1, . . . , tk−1} ∪ {tk+1}. Since x̄ i1 j = x̄1 j for j ∈ {1, . . . , tk − 1}, we have that x̄ i1rs = d1rs
for every s ∈ {1, . . . , k − 2} and for some rs ∈ {ts, . . . , ts+1 − 1}. Moreover, there exists
rk−1 ∈ {tk−1, . . . , tk+1 − 1} such that x̄ i1rk−1

= d1rk−1 . By Theorem 6, we conclude that w̄i

is an extreme point of P . ��

Using this last result we exhibit another pair of neighboring extreme points.

Proposition 7 Let wi = (xi , yi , ai ) be an extreme point of P with 0 < xii < 1 and
xij ∈ {0, 1} for j ∈ {i + 1, . . . , p}. Consider w̄i = (x̄ i , ȳi , āi ) such that ȳi = yi , āi = ai ,

x̄ ik = xik for every k except for x̄ ii = 1. Then w̄i is also an extreme point of P. Moreover, if
aii = 1 then wi and w̄i are neighbors.

Proof By Lemma 2, w̄i is an extreme point of P . In order to show that wi and w̄i are
neighbors we define a particular objective function Gi over P and prove that the points wi

and w̄i are the unique extreme points that are optimal solutions of max{Gi (w) : w ∈ P}.
For any w = (x, y, a) ∈ P we consider the function Gi (w) = Gw̄i (w) − : xi , i.e., the

functions Gi and Gw̄i coincide except for the coefficient corresponding to the xi -variable,
which is not present in Gi .

For any w ∈ P , we have

Gi (w) = Gw̄i (w) − xi

= G1
w̄i (y) + G2

w̄i (a) + G3
w̄i (x) + G4

w̄i (x) − xi

= G1
w̄i (y) + G2

w̄i (a) +
∑

j �=i
x̄ ij=1

x j +
∑

j :x̄ ij=0

(1 − x j ) + G4
w̄i (x). (12)

It is easy to prove that
Gi (w

i ) = Gi (w̄
i ). (13)

We define the operator Hi : S → R
3p to be Hi (w) = ŵi = (̂xi , ŷi , âi ) with

x̂ ij = x j , ŷij = y j , âij = a j j �= i and

x̂ ii = ŷii = âii = 1. (14)

Note that if xi = yi = ai = 1 then Hi (w) = w.
If w ∈ S and ŵi = Hi (w) then

Gi (w) ≤ G1
w̄i (y) + (1 − yi ) + G2

w̄i (a) + (1 − ai )

+
∑

j �=i
x̄ ij=1

x j + (1 − x̄ ii ) +
∑

j :x̄ ij=0

(1 − x j ) + G4
w̄i (x)

= Gw̄i (ŵ
i ) − x̄ ii (15)
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Since w̄i is optimal for Gw̄i , Gw̄i (w̄i ) ≥ Gw̄i (w) for all w ∈ P and then

Gi (w) ≤ Gw̄i (w̄
i ) − 1 = Gi (w̄

i ) (16)

If we combine the inequality in (16) for w = wi with (13), we have that Gi achieves it
maximum value at wi and w̄i .

Assume that there is another extreme point of P , namely w∗ = (x∗, y∗, a∗), verifying
Gi (w

∗) = Gi (w̄
i ). We divide our analysis into the following cases:

Case 1 x∗
i = y∗

i = a∗
i = 1.

By using the operator in (14) we obtain that Hi (w∗) = w∗ is an extreme point different
from w̄i . By Proposition 2, Gw̄i (w∗) < Gw̄i (w̄i ). From (15) we have

Gi (w
∗) ≤ Gw̄i (w

∗) − x̄ ii < Gw̄i (w̄
i ) − x̄ ii = Gi (w̄

i ),

that is, a contradiction.
Case 2 y∗

i = 0 or a∗
i = 0.

By using the operator in (14) we have

Gi (w
∗) < G1

w̄i (y
∗) + (1 − y∗

i ) + G2
w̄i (a

∗) + (1 − a∗
i ) +

∑

j �=i
x̄ ij=1

x∗
j

+ (1 − x̄ ii ) +
∑

j :x̄ ij=0

(1 − x∗
j ) + G4

w̄i (x
∗)

= Gw̄i (Hi (w∗)) − x̄ ii . (17)

After (17) and Proposition 2 we have

Gi (w
∗) < Gw̄i (Hi (w∗)) − x̄ ii ≤ Gw̄i (w̄

i ) − x̄ ii = Gi (w̄
i ).

Again, a contradiction.
Case 3 y∗

i = a∗
i = 1 and x∗

i < 1.
Sincew∗ is different fromwi and w̄i there must exist k �= i such that y∗

k �= yik or a
∗
k �= aik

or x∗
k �= xik . Indeed, if we assume that y∗

k = yik , a
∗
k = aik and x∗

k = xik for every k �= i ,
then we can either have (a) 0 ≤ x∗

i < xii or (b) x̄i < x∗
i < 1.

If (a) holds then wi would be a convex combination of w∗ and w̄i . On the other hand, if
(b) is satisfied,w∗ would be a convex combination ofwi and w̄i . In both cases, we arrive
at a contradiction.
Using Lemma 2 and the definition of Hi in (14), we have that Hi (w∗) is an extreme point
of P . Therefore, Hi (w∗) andw∗ coincide except for the xi -variable. After Proposition 2,

Gi (w
∗) = Gi (H

i (w∗)) < Gw̄i (w̄
i ) − x̄ ii = Gi (w̄

i ),

again, a contradiction.

This completes the proof that wi and w̄i are neighbors. ��
3.3 Bounding the diameter of P

The results in the previous section allow us to bound the diameter of the polytope P . Studying
this parameter is of theoretical interest, since the diameter provides a lower bound on the
maximum number of iterations performed by any implementation of the simplex method
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on the convex hull of feasible solutions. Such an execution is theoretically beyond reach
unless P = N P , so studying this parameter has—in principle—no practical consequences.
Nevertheless, the diameter of a polytope is a measure of the connectivity properties of the
polytope, and some polytopes arising in the context of integer programming formulations for
combinatorial optimization problems have been shown to have low diameters. The results in
this section show that this is also the case for the lot-sizing polytope studied in this work.

Given a polyhedron Q, we define an associated graph G(Q) whose vertices are the
extreme points of Q, and whose edges correspond to vertex pairs that belong to the same
one-dimensional face of Q. That is, two extreme points are joined by an edge in G(Q) if
they are neighbors in the polyhedron. Taking this definition into account we use the notions
of path, distance and diameter from graph theory.

Definition 4 Given v and w two extreme points of a polyhedron Q, a path (of length k)
from v to w is a sequence v = v0, v1, . . . , vk = w of extreme points such that vi−1 and vi
are neighbors for every i ∈ {1, . . . , k}. The distance from v to w is the length of a shortest
such path in the polyhedron Q and it is denoted by dist(v,w). If Q is a bounded polyhedron
(i.e., a polytope), the diameter of Q, diam(Q), is the maximum distance between any two
extreme points of Q.

Recall that throughout this paper we are assuming that d1 > 0 and then y1 = a1 = 1.

Theorem 7 If P = conv(S) where S is described by the inequalities (1a)–(1f) then

diam(P) ≤ 4p − 2.

Proof Let w = (x, y, a) and w′ = (x ′, y′, a′) be two extreme points of P . By applying
Proposition 4 we get that the distance between w and ŵ = (x, y, 1) is at most p − 1 (since
ā1 = 1). If F(ŵ) = {t1, . . . , tk}, we apply successively Proposition 7 starting at ŵ for i = tk
and over all the indices in F(ŵ). In this way we build a path of neighboring extreme points
between ŵ and w̃ = (x̃, y, 1), where

x̃ j =
{
1 j ∈ F(ŵ),

x̄ j elsewhere.

This shows that dist(ŵ, w̃) ≤ |F(ŵ)| and then dist(w, w̃) ≤ p + |F(ŵ)| − 1. Finally, we
build a path of neighboring extreme points between w̃ and 1 by applying Proposition 5 to the
null x−variables in w̃ and we get that the distance between w̃ and 1 is at most p − |F(ŵ)|.
Then

dist(w, 1) ≤ p + |F(ŵ)| − 1 + p − |F(ŵ)| = 2p − 1.

The same reasoning shows that dist(w′, 1) ≤ 2p − 1. Therefore, dist(w,w′) ≤ 4p − 2 for
any pair w, w′ of extreme points of P . Then, diam(P) ≤ 4p − 2. ��

Now we focus on finding lower bounds for the diameter of P . To this end, we first present
preliminary results studying conditions that ensure that two extreme points are not neighbors.
We first show that this is the case if two points differ by two y-variables.

Proposition 8 Let wi j = (xi j , yi j , ai j ) be an extreme point of P such that yi ji = yi jj = 0

and i �= j in T . We define w̄i j = (xi j , ȳi j , ai j ) such that ȳi ji = ȳi jj = 1 and ȳi js = yi js for

s ∈ T � {i, j}. Then w̄i j is also an extreme point and wi j and w̄i j are not neighbors.
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Proof Clearly, w̄i j is an extreme point. If wi j and w̄i j were neighbors, there would be a
linear function f of the form f (w) = cw for which they are the only optimal solutions
in P . In particular, f (wi j ) = f (w̄i j ) = max{ f (w):w ∈ P}. If cys is the coefficient of
the ys-variable then cyi + cy j = 0. If cyi > 0 then ŵ = (xi j , yi j + ei , ai j ) would satisfy
f (ŵ) > f (wi j ) contradicting the optimality of wi j . Analogously, we have cy j ≤ 0. Then,
cyi = cy j = 0.

However, this fact implies that ŵ is also an optimal solution, contradicting the fact that
wi j and w̄i j are the only two optimal solutions for f in P . ��

A similar result holds for the a-variables, and we omit the proof since it goes along the
same arguments as Proposition 8.

Proposition 9 Let wi j = (xi j , yi j , ai j ) be an extreme point of P such that ai ji = ai jj = 0

and i �= j in T . We define w̄i j = (xi j , yi j , āi j ) such that āi ji = āi jj = 1 and āi js = ai js for

s ∈ T � {i, j}. Then w̄i j is also an extreme point and wi j and w̄i j are not neighbors.

The following result provides conditions ensuring non-neighborhood and applies to the
x-variables. Recall that for w ∈ P , F(w) = {s ∈ T : 0 < xs < 1}. If it is nonempty we
assume that F(w) = {t1, . . . , tk} and tk+1 = p + 1.

Proposition 10 Let wi j = (xi j , yi j , ai j ) be an extreme point of P with F(wi j ) =
{t1, . . . , tk} and i �= j in the set {rk +1, . . . , p} such that xi ji = xi jj = 0 and rk ∈ {tk, . . . , p}
satisfies xi j1rk = d1rk . We define w̄i j = (xi j + ei + e j , ȳi j , ai j ) such that ȳi ji = ȳi jj = 1 and

ȳi js = yi js for s ∈ T � {i, j}. Then w̄i j is also an extreme point of P and wi j and w̄i j are not
neighbors.

Proof Let i, j > rk . Since F(w̄i j ) = F(wi j ) and x̄ i j1rs = xi j1rs = d1rs for every s ∈ F(w̄i j ),

then, by Theorem 6, w̄i j is an extreme point.
Ifwi j and w̄i j were neighbors, there would be a linear function f of the form f (w) = cw

for which they are the only optimal solutions in P . In particular, f (wi j ) = f (w̄i j ) =
max{ f (w) : w ∈ P}. Then if cxs is the coefficient of the xs-variable and cys is the coefficient
of the ys-variable, we have that cxi + cx j + cyi (1 − yi ji ) + cy j (1 − yi jj ) = 0.

With a similar reasoning as in the proof of Proposition 8 we obtain cyi = cy j = 0.

If cxi > 0 then ŵ = (x̂, ŷ, ai j ) with x̂i = ŷi = 1, x̂s = xi js for s ∈ T � {i} and ŷs = yi js
for s ∈ T � {i} would satisfy f (ŵ) > f (wi j ) contradicting the optimality of wi j . Similarly,
cx j ≤ 0. Then, cxi = cx j = 0.

However, under these conditions ŵ would be an optimal solution, contradicting the fact
that wi j and w̄i j are the only two optimal solutions for f in P . ��

The following result can be proved using similar techniques, hence its proof is omitted.

Proposition 11 Let wi j = (xi j , yi j , ai j ) be an extreme point of P with F(wi j ) =
{t1, . . . , tk}. Assume that i = tk , j ∈ {rk + 1, . . . , p} are such that xi ji < 1 and xi jj = 0,

where rk ∈ {tk, . . . , p} satisfies xi j1rk = d1rk . We define w̄i j = (x̄ i j , ȳi j , ai j ) such that

x̄ i ji = x̄ i jj = 1, x̄ i js = xi js for s ∈ T � {i, j}, ȳi ji = ȳi jj = 1 and ȳi js = yi js for s ∈ T � {i, j}.
Then w̄i j is also an extreme point of P and wi j and w̄i j are not neighbors.

We present a final preliminary proposition in order to prove the main result in this section.
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Proposition 12 Let wi j = (xi j , yi j , ai j ) be an extreme point of P with F(wi j ) =
{t1, . . . , tk}. Assume i = tk−1 and j = tk . We define w̄i j = (x̄ i j , yi j , ai j ) such that
x̄ i ji = x̄ i jj = 1 and x̄i js = xi js for s ∈ T � {i, j}. Then w̄i j is also an extreme point of

P and wi j and w̄i j are not neighbors.

Proof Let i = tk−1 and j = tk . Since F(w̄i j ) = F(wi j ) � {tk−1, tk} and x̄ i j1rs = xi j1rs = d1rs
for every s ∈ F(w̄i j ), then, by Theorem 6, w̄i j is an extreme point.

Ifwi j and w̄i j were neighbors, there would be a linear function f of the form f (w) = cw
for which they are the only optimal solutions in P . In particular, f (wi j ) = f (w̄i j ) =
max{ f (w):w ∈ P}. Then if cxs is the coefficient of the xs-variable we have that cxi (1 −
xi ji ) + cx j (1 − xi jj ) = 0.

If cx j > 0 then ŵ = (x̂ i j , yi j , ai j ) with x̄ i jj = 1 and x̄ i js = xi js for s ∈ T � { j} would
satisfy f (ŵ) = f (wi j ) + cx j (1 − xi jj ) > f (wi j ) contradicting the optimality of wi j . This
implies that cx j ≤ 0.

Now we assume that cxi > 0. Let ε = 1 − xi j and we define w̃ = (x̃ i j , yi j , ai j ) with

x̃ i ji = 1, x̃ i jj = (xi jj − ε)+ and x̃ i js = xi js for s ∈ T � {i, j}. After Theorem 6, it is clear that
w̃ is an extreme point of P . Then w̃ would satisfy

f (w̃) = f (wi j ) + cxi (1 − xi ji ) + cx j ((x
i j
j − ε)+ − xi jj ) > f (wi j )

contradicting the optimality of wi j .
Then, cxi = cx j = 0.However, this implies that ŵ is also anoptimal solution, contradicting

the fact that wi j and w̄i j are the only two optimal solutions for f in P . ��
We are now in position of presenting the main result of this section, which provides both

lower and upper bounds on the diameter of the polytope P . LetP be the family of the lot-sizing
polytopes with continuous start-up costs and p periods.

Theorem 8 If diam(P) = maxQ∈P diam(Q), then p ≤ diam(P) ≤ 4p − 2.

Proof After Theorem 7 it only remains to show the lower bound. To this end, we present an
instance for which P satisfies diam(P) ≥ p.

Consider 0 < ε < 1
p and di = ε for every i ∈ {1, . . . , p}. Let w̄ = (ε1, 1, 1). Note that

in this case F(w̄) = T and x̄1i = d1i for every i ∈ T . Under the notation in Theorem 6,
ri = i for every i ∈ T and then, w̄ is a extreme point of P .

We can apply Proposition 7 successively starting from w̄ for i = p over all the indices in
T backwards and obtain a path of neighboring extreme points connecting w̄ with the extreme
point 1 ∈ P . Then, dist(w̄, 1) ≤ p. By Proposition 12 we get that the distance between w̄

and 1 is exactly equal to p. Hence, we conclude that diam(P) ≥ p, hence p ≤ diam(P). ��

4 The polytope P for high demands

In this section we analyze the particular case of high demands implying nonzero production
in every period. More precisely, we assume that dt ≤ 1 for every t ∈ T but such that d1 < 1
and kprod = p. This ensures that yt = 1 for every t ∈ T , and we show that the resulting
polyhedral structure is much simplified in this case. We provide a complete characterization
of P in terms of linear inequalities, andwe show that the inequalities in such a characterization

123



252 Ann Oper Res (2015) 235:233–258

are separable in polynomial time, implying the existence of a polynomial-time algorithm for
this particular lot-sizing situation.

The key addition to the model constraints is given by the family of valid inequalities
described in Definition 1 with kprod = p. The main result of this section asserts that the
model constraints reinforced with these inequalities provides a complete characterization of
P in this case. It is important to note that not all the inequalities (5) define facets of P , hence
the characterization given by Theorem 10 below is—in this sense—redundant.

We now present two results by Pochet and Wolsey (2006), which are used to prove the
main result of this section. Let us denote by XLS−U [see Pochet and Wolsey (2006)] the
standard uncapacitated lot-sizing model, i.e., the set of feasible solutions to:

st−1 + xt = dt + st t ∈ {1, . . . , p}, (18a)

xt ≤ Myt t ∈ {1, . . . , p}, (18b)

s ∈ R
p+1
+ , x ∈ R

p, y ∈ [0, 1]p, (18c)

y ∈ Z
p, (18d)

s0 = s∗
0 , sp = s∗

p, (18e)

where

xt : the amount produced in period t ,
st : the amount in stock at the end of period t ,
yt : the 0-1 set-up variable which must have the value 1 if xt > 0,
M : a large positive number and
s∗
0 , s

∗
p: nonnegative real numbers (fixed).

Proposition 13 [Pochet andWolsey (2006)] Let � ∈ {1, . . . , p}, L = {1, . . . , �} and S ⊆ L,
then the (�, S)-inequality

∑

j∈S
x j ≤

∑

j∈S
d j�y j + s� (19)

is valid for X LS−U .

Theorem 9 [Pochet and Wolsey (2006)] When s0 = sp = 0, the original constraints
(18a)–(18c) plus the (�, S)-inequalities (19) give a complete linear inequality description of
conv(XLS−U ).

These results help us to provide a complete description of the polytope P for a particular
situation described previously.

Theorem 10 Let 0 < di ≤ 1 for i ∈ T such that d1 < 1 and kprod = p. Then, the
polytope P is completely described by the constraints (1a), (1d), x, y, a ∈ [0, 1] and the
(k0, M)-inequalities (5) for every k0 ≥ 1 and M ⊆ {k0, . . . , p − 1}.
Proof Consider the linear system defined by the constraints (1a)–(1f). In our case we have
yt = 1 for t ∈ T and then the system becomes

0 < xt ≤ 1 t ∈ T,

a1 = 1,

at+1 ≥ 1 − xt t ∈ T � {p},
d1t ≤ ∑t

k=1 xk t ∈ T,

at ∈ {0, 1} t ∈ T .
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By applying the transformation x ′
t = 1 − xt for t ∈ T to the above system we obtain:

0 ≤ x ′
t < 1 t ∈ T, (20a)

a1 = 1, (20b)

at+1 ≥ x ′
t t ∈ T�{p}, (20c)

∑t
k=1 x

′
k ≤ t − d1t = d ′

t t ∈ T, (20d)

at ∈ {0, 1} t ∈ T�{1}. (20e)

If a′
t = at+1, the constraints (20b), (20c) and (20e) become

a′
0 = 1,

a′
t ≥ x ′

t t ∈ T�{p},
a′
t ∈ {0, 1} t ∈ T�{p}.

Define a′
p = 1. For t ∈ T , let st ∈ R+ be such that

t∑

k=1

x ′
k + st = d ′

t . (21)

Then, by subtracting
∑t−1

k=1 x
′
k + st−1 = d ′

t−1 from
∑t

k=1 x
′
k + st = d ′

t we obtain

x ′
t + st = d ′

t − d ′
t−1 + st−1

or, equivalently, by the equality in (20d),

x ′
t + st = 1 − dt + st−1. (22)

If

x ′′
j = x ′

p− j+1, s′′
j = sp− j , s′′

0 = sp,

a′′
j = a′

p− j+1, d ′′
j = 1 − dp− j+1 (23)

then (22) implies that

x ′′
j + s′′

j−1 = d ′′
j + s′′

j

for j ∈ {1, . . . , p}. According to this, the variable s′′
j represents the stock at the end of period

j for this new model.
By using this last transformation and by denoting d ′′

j� = ∑�
k= j d

′′
k we rewrite the linear

system (20a)–(20e) as follows:

x ′′
j + s′′

j−1 = d ′′
j + s′′

j j ∈ T, (24a)

x ′′
j ≤ a′′

j j ∈ T, (24b)

a′′
j ∈ {0, 1} j ∈ T, (24c)

s′′ ∈ R
p+1
+ , x ′′ ∈ [0, 1)p, (24d)

s′′
0 = 0, s′′

p = s∗
p. (24e)

Observe that the a′′-variables behave as if they were set-up variables for periods 1 to p.
Moreover, the inequalities (24a)–(24e) give the feasible solution set of a lot-sizing problem
of the form (18a)–(18e). Then, in order to describe the polytope P = conv(S), we only
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need to add the corresponding (�, S)-inequalities (19) of Proposition 13. More precisely, let
� ∈ T , L = {1, . . . , �} and S ⊆ L . The (�, S)-inequality becomes

∑

j∈S
x ′′
j ≤

∑

j∈S
d ′′
j�a

′′
j + s′′

� . (25)

After Theorem 9 for s′′
0 = s′′

p = 0 we have the complete description of P .
By using definition of d ′′

j� in (23) we have that

d ′′
j� =

l∑

k= j

(1 − dp−k+1) = � − j + 1 − d(p−�+1)(p− j+1)

and

d ′′
1� = � − d(p−�+1)p.

By denoting jp = p− j+1 for each j ∈ T and by using the definitions in (23), the inequality
(25) becomes

∑

jp∈Sp
x ′
jp ≤

∑

jp∈Sp
( jp − �p + 1 − d�p jp )a

′
jp + s�p−1 (26)

where Sp = {k ∈ T : p − k + 1 ∈ S} ⊆ L p = {p − � + 1, . . . , p}.
By using (21) and the definition of d ′ in (20d) we have

�p−1∑

k=1

x ′
k + s�p−1 = d ′

�p−1 = �p − 1 − d1(�p−1)

and

∑

jp∈Sp
x ′
jp ≤

∑

jp∈Sp
( jp − �p + 1 − d�p jp )a

′
jp + �p − 1 − d1(�p−1) −

�p−1∑

jp=1

x ′
jp .

This implies that

�p−1∑

jp=1

x ′
jp +

∑

jp∈Sp
x ′
jp ≤

∑

jp∈Sp
( jp − �p + 1 − d�p jp )a

′
jp + �p − 1 − d1(�p−1).

Finally, returning to the original variables we have that the (�, S)-inequality in (25) cor-
responds to

�p−1∑

jp=1

x jp +
∑

jp∈Sp
x jp +

∑

jp∈Sp
( jp − �p + 1 − d�p jp )a jp+1 ≥ d1(�p−1) + |Sp|. (27)

By denoting k0 = �p , M = L p � Sp , A = Sp and B = {1, . . . , �p − 1} ∪ Sp we obtain
that the inequality (27) is a (k0, M)-inequality (see Definition 1). After Theorem 9 the result
is proved. ��

To conclude this section, we study the separation problem associated with the (k0, M)-
inequalities. If C is a family of valid inequalities, the separation problem associated with
C takes as input a point (x, y, a) within the linear relaxation PLR of P , and consists of
deciding whether (x, y, a) violates some inequality from C or not. The separation problem
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for the (k0, M)-inequalities is relevant in this context, since by Theorem 10 these are the
only nontrivial inequalities in the description of P . If the separation problem for the class of
facet-inducing inequalities of a polytope Q is solvable in polynomial time, then the results
in Grötschel et al. (1988) imply that the optimization problem over Q is also solvable in
polynomial time. The following theorem shows that this is indeed the case for P when
d1 < 1 and kprod = p.

Theorem 11 The separation problem for the (k0, M)-inequalities (5) can be solved in
O((p − 1)2) time.

Proof Consider the linear relaxation PLR of P .Given ŵ = (x̂, ŷ, â) ∈ PLR wewant to decide
if there exists a (k0, M)-inequality which is violated by this point. The (k0, M)-inequality
(5) can be written as

k0−1∑

i=1

(xi − di ) +
∑

i∈A

(
xi + (i − k0 + 1 − dk0i )ai+1 − 1

) ≥ 0, (28)

where k0 ≥ 1, M ⊆ {k0, . . . , p − 1}, A = {i ∈ {k0, . . . , p − 1}: i /∈ M} and B = {i ∈
{1, . . . , p − 1}: i /∈ M}.

Given a possibly fractional solution ŵ = (x̂, ŷ, â), consider the following algorithm. For
each k0 ∈ {1, . . . , p − 1}, define J to be the set of periods j ∈ {k0, . . . , p − 1} such that
v̂ j,k0 = x̂ j + ( j − k0 + 1 − dk0i ) â j+1 − 1 < 0. Some inequality (28) associated with k0 is

violated if and only if
∑

j∈J v̂ j,k0 <
∑k0−1

i=1

(
di − x̂i

)
. For this inequality we take A = J .

This algorithm provides an O((p − 1)2) separation procedure. ��
Theorem 11 implies that the problem associated with this special case can be solved in

polynomial time for any linear objective function.

4.1 Shortest path algorithm for the special case of high demands

Recall that F(w) = {t ∈ T : 0 < xt < 1} := {t1, . . . , tk} for every w ∈ P . In this special
case of high demands null production in a period is not feasible, therefore, T � F(w) = {t ∈
T : xt = 1} for everyw ∈ P . In Sect. 3 we have characterized the extreme points of P . Under
the assumptions of high demands we can provide a combinatorial algorithm for solving the
lot-sizing problem.

Corollary 1 Let w = (x, y, a) ∈ S with F(w) �= ∅. Then w is an extreme point if and only
if

x1t1 = d1t1 ,
x(ti+1)ti+1 = d(ti+1)ti+1 for i ∈ {1, . . . , k − 1},

xt = 1 for t ∈ T � F(w).

Proof It is immediate to check that ifw satisfies the conditions as above, then it is an extreme
point by Theorem 6. Now, let w be an extreme point of P . From Theorem 6 we know that
for every i ∈ {1, . . . , k} there exists ri ∈ {ti , . . . , ti+1 − 1} such that x1ri = d1ri .

Moreover, we now prove that ri = ti for i ∈ {1, . . . , k}. To this end, assume that this is
not the case for some j ∈ {1, . . . , k}. This implies that there exists r j ∈ {t j + 1, . . . , t j+1 −
1}(�= ∅) such that x1r j = d1r j . The assumption t j �= r j implies x1t j > d1t j . However,
by definition of the set F(w) and the hypothesis of high demands, we have xt = 1 for
t = t j + 1, . . . , t j+1 − 1 which, together with dt < 1 for any t ∈ T , implies x1r j > d1r j , a
contradiction. Therefore, the result follows. ��
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Using this characterization of the extreme points of P for this case of high demandswe can
follow the same reasoning used for the uncapacitated lot-sizing problem. Define a directed
graph D = (N , A) with N = {0, 1, . . . , p} and A = {(i, j): i, j ∈ V, i < j}. The arc
(i, j) will correspond to an interval [i, j − 1] such that there is fractional production in i
and j , with demand satisfaction at equality in these two periods, and saturated production in
every period between them (this corresponds to the concept of regeneration intervals for the
uncapacitated lot-sizing problems). Clearly, any path from 1 to p provides a feasible solution
to our lot-sizing problem. Furthermore, this solution satisfies the structure of the extreme
points in Corollary 1.

We now define costs associated to the arcs of D. Let G be the objective function for a
point w ∈ P , i.e., G(x, y, a) = ∑

i∈T ci xi + ∑
i∈T fi yi + ∑

i∈T giai . Since every feasible
solution has yi = 1 for every i ∈ T then the problem is equivalent to optimizing

∑
i∈T ci xi +∑

i∈T giai . Hence, we define arc (i, j) to have cost

c̄(i, j − 1) = c j (d(i+1) j − ( j − i − 1)) + gi+1 +
j∑

k=i+2
gk<0

gk .

The length of a shortest path in this graph plus a constant value
∑

i∈T fi , corresponding to the
y-variables, gives the value of the optimum solution of the capacitated lot-sizing problemwith
start-up costs (and high demands). This provides a polynomial-time combinatorial algorithm
for this case.

5 Conclusions and open problems

In this work we have addressed a lot-sizing problem including a particular definition of
start-up costs, which we call continuous start-up and gives rise to an interesting structure.
We have presented a first polyhedral study of a natural integer programming formulation for
this problem. Besides general results on the polytope, we have introduced an exponentially-
sized family of valid inequalities and we have provided bounds on its diameter. Finally,
we presented a complete characterization of the polytope for a special sub-problem, and
we showed by polyhedral methods that in this case the lot-sizing problem can be solved in
polynomial time.

Many open questions remain. It would be interesting to find further families of valid
inequalities and to study their facetness properties. Many families of valid inequalities com-
posed by O(p) inequalities are known, but the (k0, M)-inequalities presented in this work
are the only known exponentially-sized family of valid inequalities particular to this poly-
tope. Further families would provide more information on the structure of this polytope. It
would also be interesting to know whether the known O(p)-families can be generalized into
a common super-family.

The characterization in Sect. 4 of the polytope for a special case and the polynomial-time
separation of the inequalities in the complete description are an example of a polynomial-
ity result provided by a polyhedral approach. This result holds for any objective function
expressed as a linear function of the model variables, so it may include production costs
and inventory costs (associated with the x-variables), fixed production costs (associated
with the y-variables), and continuous start-up costs (associated with the a-variables). The
low-complexity combinatorial algorithm in Sect. 4.1 is the algorithmic counterpart of these
polyhedral results. It may be worthwhile to explore whether the approach in that section can
be generalized for other special cases of this lot-sizing problem.
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Appendix: An example

In this last section we summarize the results presented in Sect. 4 in a particular example. We
consider the problemwith a planning horizon consisting of periods T= {1, . . . , 5}. For periods
inT ,wehavedemandsd = (0.8, 0.7, 0.8, 0.9, 0.9). It verifies the conditionsdi < 1 for 1 ∈ T
and kprod = 5. Using the PORTA package (see http://www.zib.de/Optimization/Software/
Porta/) we obtain the following description of P by equations and linear inequalities.

( 1a) +y5-a1 == 0
( 2a) +y4-y5 == 0
( 3a) +y3-y4 == 0
( 4a) +y2-y3 == 0
( 5a) +y1-y2 == 0
( 6a) +a1 == 1
( 1b) -10x1-10x2-10x3-10x4-10x5 <= -41
( 2b) -3a3-5a4-6a5 -10x1-10x2-10x3-10x4 <= -38
( 3b) -2a4-3a5 -10x1-10x2-10x3-10x4 <= -35
( 4b) - a5 -10x1-10x2-10x3-10x4 <= -33
( 5b) -3a3 -6a5 -10x1-10x2 -10x4 <= -28
( 6b) -5a4-6a5 -10x1 -10x3-10x4 <= -28
( 7b) -3a3-5a4 -10x1-10x2-10x3 <= -28
( 8b) -2a4 -10x1-10x2-10x3 <= -25
( 9b) -3a5 -10x1-10x2 -10x4 <= -25
(10b) -3a3 -10x1-10x2 <= -18
(11b) -5a4 -10x1 -10x3 <= -18
(12b) -7a4 -10x3 <= -10
(13b) -3a5 - 5x1 - 5x4 <= -9
(14b) -a2 - 5x1 <= -5
(15b) -4a5 - 5x4 <= -5
(16b) - a3 - 2x2 <= -2
(17b) + x5 <= 1
(18b) + x4 <= 1
(19b) + x3 <= 1
(20b) + x2 <= 1
(21b) + x1 <= 1
(22b) + a5 <= 1
(23b) + a4 <= 1
(24b) + a3 <= 1
(25b) +a2 <= 1

The following remarks categorize these 25 facets within the model constraints and the known
families of valid inequalities.
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• The equalities (1a)–(6a) correspond to the minimal equation system for P .
• The constraint (1b) corresponds to the total demand satisfaction (see Theorem 3(i)).
• The inequalities (17b)–(21b) induce facets as we prove in Theorem 3(ii).
• The constraints (22b)–(25b) correspond to the inequalities inducing facets in Theo-

rem 3(v).
• The constraints (12b), (14b), (15b) and (16b) belong to the family of (k0, M) -inequalities

(see Remark 1) which define facets for P (see Theorem 4).
• The constraints (1b)–(11b) and (13b) are (k0, M)-inequalities (see Definition 1 and The-

orem 5).
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