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A B S T R A C T

Joint spatial variability of soil and climate variables offers the opportunity to delimit contiguous edaphoclimatic
zones. These zones can be useful to improve natural resource management. The aim of this work was to develop
a statistical protocol for multivariate zoning at regional scales. A zoning of Córdoba, Argentina, was generated
using data from a sample of 355 sites involving edaphic and climatic data (pH, TN, TOC, Na, K, CEC, Cu, Clay,
Sand, WHC, elevation, annual precipitation and mean temperature). We proposed a two-step algorithm that
considers the spatial correlation of these variables in a clustering of sites. The protocol was run after modeling
the spatial pattern of each soil variable to adapt information from different sources and formats to a fine grid. In
the first step of the protocol, MULTISPATI-PCA, an extension of the principal component analysis that considers
the spatial co-variability between variables, was used to obtain linear combinations of original data. In the
second step, such synthetic variables (spatial principal components) were used as input of the fuzzy k-mean
clustering method to delineate homogeneous zones. The number of clusters was established by internal vali-
dation indices. The use of MULlTISPATI-PCA was compared with the more conventional and non-spatial PCA.
Results suggest that previous geostatistical interpolation and spatially constrained multivariate analysis create
meaningful and spatially coherent zones. Four zones were identified in Córdoba region, Argentina.

1. Introduction

The most widely used tools to differentiate geographical areas with
different soil types in a region are soil maps (Buol et al., 1990;
Imbellone and Teruggi, 1993; Jarsún et al., 2006). Soil classification
has usually been performed using threshold models resulting from a
sequence of binary partitions (Burrough et al., 1991) for several vari-
ables that are addressed independently. While these tools are very
useful, they do not capitalize on the spatial continuum often present in
geostatistical data because they do not consider the joint correlation
and variation among variables. Moreover, when these models are ap-
plied to relatively homogeneous landscapes at a regional scale (i.e. little
diverse land uses), the variability due to soil-climate interaction may be
masked.

Different univariate geostatistical techniques have been used to
model spatial variability of a variable and identify gradients in its va-
lues (Cressie and Chan, 1989; Lark, 2000). Nevertheless, when more
than one variable is recorded at a site, the spatial co-variability between

variables requires less common analyses, such as multivariate geosta-
tistical analyses (Schabenberger and Gotway, 2004). Joint variability of
two georeferenced variables has been identified and used to char-
acterize and classify edaphic processes (Cosby et al., 1984). However, it
has been demonstrated that the spatial variability analysis of a variable
can be improved by incorporating the covariance structure of that
variable with respect to an auxiliary variable (Hengl et al., 2004; Wu
et al., 2003). Thus, the study of spatial variation pattern not only of that
variable but also of the spatial correlations among variables might
contribute to the understanding of joint variability and generate zoning
at a multidimensional level, i.e. considering a series or set of site
variables simultaneously. Currently available data analysis tools con-
sider not only the multivariate nature of data but also their spatiality
when data are georeferenced (Wackernagel, 2013). MULTISPATI-PCA
(Dray et al., 2008; Arrouays et al., 2011), an extension of principal
component analysis (PCA), incorporates spatial co-variability among
variables. It is based on linear combinations of the site variables that
maximize both spatial autocorrelation and variability rather than only
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variability, as classical non-spatial PCA does.
Another important aspect in multivariate zoning is the scale of

analysis. Studies on spatial patterns at the regional scale have shown a
level of noise and cover different from that found at the fine scale
(Miller and Schaetzl, 2016), which is characterized by a higher density
of data per surface unit. Different spatial interpolation techniques
(Oliver and Webster, 2014) can be used to perform a re-scaling of row
data and associate available data of different variables on a common
grid to facilitate the study of correlations (Long, 1998). The potential of
MULTISPATI-PCA as applied with spatial interpolated data has been
poorly explored at a regional scale.

Different clustering methods can be used with the aim of con-
glomerating grid nodes (Anderberg, 1973). For continuous phenomena,
fuzzy clustering methods (Bezdek et al., 1981) have resulted particu-
larly useful, since they classify the objects as belonging to one group or
another. The application of the fuzzy set theory (Burrough et al., 2000)
to clustering takes into account the probability of belonging to a cluster
rather than only a statistical measure (distance). Irvin et al. (1997)
demonstrated the value of the use of fuzzy k-means for classifying
spatial data. However, most of the algorithms, even fuzzy clustering
ones, have not been developed to handle spatial co-variability between
input variables. By coupling MULTISPATI-PCA and fuzzy clustering, the
spatial co-variability in the row data can be taken into account for
spatial zoning. Site clustering may be implemented either on the set of
original variables or on their linear combinations (PCA or MULTISPATI-
PCA) (Burrough and Swindell, 1997).

Clustering methods perform unsupervised classification, i.e., they
are applied without prior knowledge of the underlying clustering and,
therefore, the number of groups that the clustering structure defines is
unknown. Although there are numerous indices (Hennig, 2007) to
identify a recommended number of groups, there is no clear consensus
about which one to use for a particular dataset. In general, cluster va-
lidity indices combine information about the data variability within and
between clusters and dissimilarity measurements taken from the matrix
containing the distances between the objects that need to be grouped.
Recently, with the increase in computational power, stability indices
have also been used as validation measures obtained from information
intrinsic to the data (internal validation); these indices result from
comparing the clusters obtained from random successive removal of
part of the data. Since there is no consensus on which algorithm to use
to determine the number of clusters, it is important to explore the nu-
merous methodological criteria and compare the results with informa-
tion that was not used during the clustering process (Theodoridis and
Koutroumbas, 2008).

The aim of this work was to develop a zoning protocol based on
fuzzy clustering analysis of sites characterized by several layers of
variables, considering their spatial co-variability, to delimit homo-
geneous edapho-climatic zones at a regional scale.

2. Material and methods

2.1. Study area

The study area corresponds to Córdoba province, Argentina, be-
tween 29° and 35°S and 61° and 65°W (Fig.1). The landscape is com-
posed mostly of plains (~60%), with the remaining territory being
north-south mountain ranges to the west of the province. Elevation
varies between 79 and 2884 a.s.l. (m). The area is crossed by the
700 mm and 500 mm isohyets, determining an E-W humidity gradient
from humid, through subhumid, semiarid and arid climates. Mean an-
nual precipitation ranges between 900 and 400 mm, and mean annual
temperature between 10 °C and 24 °C. According to the hydrological
balance, annual hydric deficit ranges between 80 mm and −480 mm.
According to Soil Taxonomy (Soil Survey Staff, 1975), soils are classi-
fied as Mollisols (61%), Entisols (13%), Alfisols (7%) and Aridisols (5%)
(Jarsún et al., 2006).

2.2. Database

Soil data were obtained from a previous work conducted in an area
of 14.2 million hectares (Hang et al., 2015). Soils of Córdoba province
were sampled from the upper 15 cm using a regular 20 × 20 km grid
(355 points). Sampling sites corresponded mostly to Mollisols (72%),
followed by Entisols (13%), with Aridisols and Alfisols being re-
presented by 5% each. Sampling was mainly conducted in soil used for
agriculture (72%), with the remaining 28% corresponding to natural
vegetation (grasslands and woodlands) and implanted pastures.

Of the total of soil data available for this work, we selected 10
edaphic variables for zoning: pH, total nitrogen (TN), total organic
carbon (TOC), sodium (Na), potassium (K), cation exchange capacity
(CEC), cooper (Cu), Sand, Clay, and water holding capacity (WHC),
maintaining the chemical, physical and physico-chemical properties
most frequently used in soil characterization and discarding highly
correlated variables.

In addition to soil data, we used elevation, slope and other data
products obtained from the Digital Elevation Model provided by the
STRM (Shuttle Radar Topography Mission) (Farr et al., 2007) for each
sampling site. We also included site climatic information (mean annual
precipitations and temperatures), which was taken from the global
database of climatic analysis BIOCLIM (Busby, 1991) for the
1970–2000 period. Elevation and climate data were directly extracted
from the databases in raster format for the sites (points) to be classified.
We generated the database using the freely available software QGis
(QGIS Development Team, 2014).

2.3. Data preprocessing

The zoning protocol was run after modeling the spatial pattern of
each variable in order to obtain a fine grid (2.5 × 2.5 km) and adapt
information layers for soil and climate covariates. Each soil variable
was processed using a spatial structure analysis by regression kriging
with the slope, extracted from the Digital Elevation Model (DEM), as a
covariate (Hengl et al., 2004). The slope yielded a better fit than other
DEM covariates. Experimental semivariograms were calculated using
Cressie's robust estimator (Cressie, 1993) and the semivariograms were
fitted using the WLS (Weighted Least Squares) estimation method
(Cressie, 1985; Oliver and Webster, 2014). Spatial variability was es-
timated using the “gstat” library (Pebesma, 2004) in R (R Development
Core Team, 2016).

2.4. Protocol sequence

2.4.1. Step 1: deriving spatial synthetic variables
A principal component analysis with spatial restriction,

MULTISPATI-PCA (Dray et al., 2008), was performed considering as
inputs soil, elevation and climate variables associated with the sites of
the grid to be classified. MULTISPATI-PCA introduces a spatial
weighting matrix to calculate spatial correlations among original data.
Spatial autocorrelations are obtained using Moran's index, taking into
account the network of neighboring observations of each raw data.
Neighbors can be defined using different connection networks
(Wartenberg, 1985). We established a maximum distance of 50,000 m
to create neighborhoods consistent with the phenomena under study.
This value was determined considering the cell size of the grid to be
classified and the fitted ranges of the semivariograms of each variable.
Spatial principal components (sPCs) necessary for accounting the cu-
mulative variability percentage of at least 80% of the total variability
were selected for further clustering. We did not include all the com-
ponents in order to remove residual variability, i.e. variability that is
little explained by repeatable spatial patterns. Such noise is expected to
be associated with the last principal components. MULTISPATI-PCA
procedure was implemented using the library “ade4” (Chessel et al.,
2004) and “spdep” (Bivand et al., 2014) in the software R (R
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Development Core Team, 2016).

2.4.2. Step 2: cluster analysis
The sPCs were used as inputs of a non-hierarchical fuzzy k-means

cluster analysis (Bezdek et al., 1981). The classification algorithm k-
means clusters objects in k groups, maximizing variation among clus-
ters and minimizing variation within the cluster. This method starts
with an initial clustering or with a group of seed points (centroids) that
will form the centers of the groups. Then, each object is assigned to the
group that contains the nearest centroid (mean). Fuzzy classification
determines the degree of resemblance of an object to a cluster by its
membership to the cluster. We used the squared Euclidean distance and
a fuzzyness coefficient k = 2 with the package “e1071” (Meyer et al.,
2014) in R (R Development Core Team, 2016). Other coefficient values
(1.5 and 2.5) were also evaluated, but they did not improve the clus-
tering reached with a fuzziness coefficient k = 2.

The number of clusters used for zoning was determined considering
17 clustering validity indices included in the “Nbclust” library of R
software. Table 4 includes names of indices and their corresponding

references. These indices combine information about intracluster
compactness and intercluster isolation, i.e. multivariate variability
within and between groups. Some indices also involve other statistical
properties of the data, such as the number of data objects to be clus-
tered and dissimilarity measurements between objects. A detailed for-
mulation of each of these 17 indices can be found in Charrad et al.
(2014). As Charrad et al. (2014) proposed, after calculating several
indices we applied the majority rule, i.e., we selected the number of
clusters recommended by most of the indices that were calculated for
the same data.

2.5. Protocol assessment

To evaluate the proposed methodological workflow (Fig. 2), the
fuzzy k-means cluster analysis was computed using as input variables
the synthetic variables obtained by MulTISPATI-PCA (sPC) and those
derived from the conventional non-spatial PCA (PC). For both types of
input variables (sPC and PC), the protocol was evaluated using k-fold
cross validation, for k = 10. The membership of 10% of sites, which

Fig. 1. Study area, Córdoba province, Argentina. Sites of edaphic in-
formation (Hang et al., 2015).
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Fig. 2. Zoning protocol sequence scheme.
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have not been used for zoning, to one of the clusters was established
considering the Euclidean distance between the site to be classified and
the centroid of each cluster. The sites were assigned to the cluster with
centroid that was nearest its variable profile, and the correct classifi-
cation percentage was calculated by comparing the assignment to a
given cluster by the protocol with the true location of the point as in-
dicated by its coordinates. Zoning was also validated externally by
comparing means of zones for a set of edaphic variables (Zn, Fe, Mn, P
and EC) that were not used in the implementation of the zoning pro-
tocol. These variables were selected to determine differences among
clusters, since all of them result from the same edaphogenetic factors
that the original variables. The comparison of centroids between groups
was made via a multivariate analysis of variance (Johnson and
Wichern, 1998). The objective of this analysis was to determine pos-
sible mean differences in the validation variables between the proposed
clusters.

3. Results

Soil variables (pH, TN, TOC, Na, K, Cu, CEC, WHC, Sand and Clay),
as well as topographic (elevation) and climatic (pp and Tm) variables
and the parameters of the selected spatial structure models for each soil
variable are presented in Table 1. Coefficients of variation (CV) ranging
between 10 (pH) and 273% (Na) exhibited high edaphic variability in
the study area. The variables that were closely associated with parental
material and weathering (Sand, Clay, CEC and WHC) exhibited a
coefficient of variation between 33 and 54%. Variables associated with
soil organic matter (SOM), such as TOC and TN, had a similar CV
(45%). Noticeably, Elevation exhibited high variability (CV = 76%)
and pp. showed a wide range of variation (547 mm), whereas Tm only
varied in 7 °C.

The parameters of the semivariagram functions fitted to the soil
variables showed that the extension of the spatial correlation (range)
varied between 50 and 180 km. The lowest range value was recorded
for WHC, whereas high range values were recorded for variables as-
sociated with SOM, such as TOC, CEC, and TN. A high percentage of
total variability was found to be spatially structured (between 40 and
68%), mainly for K, Cu and Sand.

The application of PCA and MULTISPATI-PCA to the preprocessed
data indicated that three PCs would be necessary to represent the
edaphoclimatic information, accounting for> 80% of the total varia-
bility. Variances and spatial autocorrelation coefficients of each

synthetic variable derived from MULTISPATI-PCA and PCA are pre-
sented in Table 2. The spatial autocorrelation index was lower in the
first PC than in the first sPC. Eigenvectors associated with the synthetic
variables derived from MULTISPATI-PCA and PCA were compared
(Table 3). The elements in these vectors are the weights of each original
variable in the linear combination representing the new variables
(synthetic variables). The higher the weight (in absolute value), the
higher contribution of the variable to explain variability. For the first
sPC, variability was mostly explained by Sand, Clay, WHC and CEC. The
most important variables in the second sPC were pH, K, Tm, and pp.
The variability of the third sPC was correlated with variations in Ele-
vation and Na (Table 3). The main differences between sPCs and PCs
were observed in the assigned role to Tm and Elevation. MULTISPATI-
PCA weighted in the first sPC those variables that account for global
spatial variation and with greatest spatial autocorrelation.

As result of the fuzzy k-means clustering analysis we identified four
clusters of sites, independently of which type of synthetic variable was
used. The values of all indices for 2,3,4,5, and 6 clusters obtained from
the sPCs are indicated in Table 4. The spatial representation of the four
delineated zones is presented in Fig. 3 as obtained from MULTISPATI-
PCA (Fig. 3a) as well as from conventional non-spatial PCA (Fig. 3b).

The validation of the complete protocol used for zoning, via cross-
validation, yielded a correct classification of 80% of sites when using
MULTISPATI-PCA; that value dropped to 69% with the use of the
conventional PCA. The comparison of means of zones for external
variables that were not used in the classification protocol (Zn, Fe, Mn,
P, and EC) indicated statistical differences (p < 0.05) between the
delimited zones (Table 5).

The characteristics of each of the four delimited edaphoclimatic
zones are shown in Table 6. Zone I, located to the west of the province,
exhibited the lowest mean annual precipitation (531 mm) and the
highest mean pH (7.5). Zone I and zone IV presented the lowest values
of TOC (I= 11.3 g kg−1 and IV = 9.9 g kg−1), TN (I = 0.11% and
IV = 0.10%), Clay (I = 11.7% and IV = 13.4%) and CEC
(I= 12.2 cmolc kg−1 and IV = 10.9 cmolc kg−1). In turn, Zone IV lo-
cated to the south of the province, differed from zone I in its low pH
(6.5) and high pp. (744 mm); moreover, Zone IV presented the highest
Sand content (63.7%) and the lowest Cu content and (0.9 mg kg−1).
Zone II corresponds to the central mountain range and the piedmont
with the highest mean elevation, 761 a.s.l. (m), and lowest mean tem-
perature, 16 °C. In this zone, TOC, TN and Cu had the highest means
(22.3 g kg−1, 0.21% and 2.2 mg kg−1, respectively). Zone III covers a

Table 1
Summary statistics for soil and climatic variables, and spatial variability of soil variables in Cordoba (n = 355).

Variable Units Mean Min Max CV (%) Fitted semivariogram for soil variables Prediction Errord (%)

Best Nugget Partial Range RSV

Modelc Sill (km)

pH 1:2.5 (s:w) 6.8 5.31 10 10 Sph 0.2 0.2 102 48 8.5
TN % 0.13 0.04 0.52 45 Sph 0.0 0.0 149 45 30.8
TOC g kg−1 13.8 2.8 59.3 45 Exp 13.7 7.3 180 35 33.3
Na Cmol kg−1 1.44 0.02 53.7 273 Gau 0.3 0.5 113 64 37.6
K Cmol kg−1 1.86 0.4 4.8 31 Sph 0.2 0.1 58 40 24.7
CEC Cmol kg−1 17.7 5.3 35.8 33 Sph 7.8 11.4 101 59 4.4
Cu mg kg−1 1.63 0 5.9 61 Exp 0.3 0.7 104 68 23.9
Sand g kg−1 42 0.6 94.8 57 Gau 95.8 171.5 91 64 30.8
Clay g kg−1 18.6 0.1 44.6 43 Gau 20.1 16.4 86 45 32.3
WHCa % p:p 17.7 5 34 33 Exp 8.3 9.6 50 54 22.8
Elevation m 312 80 1421 76
pp mm 738 461 908 14
Tmb °C 17.2 13.8 20.8 7

a WHC: Water Holding Capacity.
b Tm: average daily mean temperature (°C).
c Sph: Spherical, Exp: Exponential, Gau: Gaussian.
d Root Mean Square Prediction Error expressed as percentage of the mean.
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large area in the east of the province; mean annual precipitations are
the highest, 807 mm, and elevation is the lowest, 200 a.s.l. (m),
showing the highest contents of Clay, 24.53%, as well as the highest
values of K, CEC and WHC (2.3 cmolc kg−1, 19.8 cmolc kg−1 and
22.7%, respectively).

4. Discussion

The study area covers a wide latitudinal and longitudinal variation
range (6 and 4°, respectively), as well as important differences in to-
pography due to the presence of a central mountain range and its

piedmont area. These characteristics were reflected in the high coeffi-
cients of variation in most of the variables. We also detected variability
in the ranges of the semivariance functions fitted for each variable;
thus, some variables, such as K and WHC, showed variations at the local
level, whereas others showed regional variations, such as pH and TOC.
An important proportion (over 40%) of edaphic, topographic and cli-
matic variability was found to be spatially structured, showing that this
territory has sufficient spatial heterogeneity to support and justify
edaphoclimatic zoning.

4.1. Methodological proposal

The protocol, based on fuzzy-k-means clustering of sites applied to
sPCs (Fig. 2), as a tool to capture spatial co-variability, allowed us to
summarize not only individual behavior of the variables used but also
their spatial co-variation. In the context of this study – the regional
scale –, the method produced clusters of sites with spatial consistency,
i.e., neighboring sites showed to belong to the same cluster.

Preprocessing raw data via the study of the spatial pattern of each
variable allowed us to re-grid and adapt information from different
sources and formats. Thus, we went from relatively few observations to
regularly spaced and highly dense predictions of the same target phe-
nomena.

The comparison of the results of classical non-spatial PCA and
MULTISPATI-PCA showed some advantages of the latter over the
former for the spatial analysis. The spatially restricted method max-
imized the spatial autocorrelation in the first synthetic variable; these
results are consistent with the nature of the method (Arrouays et al.,
2011). Clustering from sPCs showed a lower cross classification error
(20%) than from PCs (32%). By coupling fuzzy K-means with
MULTISPATI-PCA we generated more contiguous variation (deleting

Table 2
Eigenvalues table for MULTISPATI-PCA and classical PCA analysis.

Axis MULTISPATI-PCA PCA

Eigenvalue Percentage Cumulative percentage Moran's Index Eigenvalue Percentage Cumulative percentage Moran's Index

1 4.46 0.38 0.38 0.90 5.12 0.39 0.39 0.82
2 2.92 0.3 0.68 0.75 3.91 0.3 0.69 0.78
3 1.46 0.16 0.85 0.69 2.01 0.15 0.85 0.77

Table 3
Contribution of variables to the first components after spatial data interpolation.

Variable MULTISPATI-PCA PCA

sPC 1 sPC 2 sPC 3 PC 1 PC 2 PC 3

pH 0.04 −0.43 0.3 0.1 −0.32 0.4
TN −0.13 −0.31 −0.19 0.32 −0.3 −0.09
TOC −0.17 −0.33 −0.18 0.29 −0.32 −0.11
Na −0.04 −0.05 0.56 4.00E−03 0.06 0.57
K −0.26 0.38 0.01 0.1 0.45 −0.06
CEC −0.39 −0.14 0.05 0.42 0.01 0.07
Cu −0.25 −0.32 0.09 0.32 −0.15 0.2
Sand 0.45 −0.01 −0.06 −0.38 −0.21 −0.08
Clay −0.43 0.03 −0.05 0.39 0.19 −0.05
WHCa −0.44 −0.04 0.06 0.41 0.15 0.08
Elevation −0.02 0.1 0.61 0.09 −0.44 −0.15
pp −0.29 0.36 −0.27 0.19 0.35 −0.33
Tmb 0.07 −0.44 −0.25 −0.08 0.22 0.55

a WHC: Water Holding Capacity.
b Tm: average daily mean temperature (°C).

Table 4
Optimum number of clusters. Best partition according to 17 internal validation indices.

Index Number of clusters Best partition Author

2 3 4 5 6

KLa 2.9 0.6 4.9 3.0 1.0 4 (Krzanowski and Lai, 1988)
CHa 165 139 149 133 119 2 (Caliński and Harabasz, 1974)
CCCa −0.3 0.0 4.4 4.8 4.6 5 (Sarle, 1983)
Silhouettea 0.3 0.4 0.4 0.3 0.2 4 (Rousseeuw, 1987)
Ratkowskya 0.2 0.2 0.3 0.2 0.2 4 (Ratkowsky and Lance, 1978)
Ptbiseriala 0.5 0.5 0.6 0.5 0.5 4 (Milligan, 1980, 1981)
McClaina 0.7 0.9 1.1 1.7 2.3 2 (McClain and Rao, 1975)
Dunna 0.05 0.05 0.06 0.04 0.04 4 (Dunn, 1974)
Cindexb 0.2 0.3 0.2 0.2 0.2 4 (Hubert and Levin, 1976)
DBb 1.4 1.3 1.2 1.2 1.4 4 (Davies and Bouldin, 1979)
SDindexb 1.0 0.8 0.8 1.0 1.2 4 (Halkidi et al., 2000)
SDbwb 1.1 0.6 0.6 1.0 0.7 4 (Halkidi and Vazirgiannis, 2001)
Hartiganc 74 89 36 23 20 4 (Hartigan, 1975)
Scottc 426 736 1167 1310 1422 4 (Scott and Symons, 1971)
TrCovWc 2.2E+05 1.2E+05 7.9E+04 6.0E+04 5.3E+04 3 (Milligan and Cooper, 1985)
Friedmanc 2.9 4.3 8.2 9.9 12.2 4 (Friedman and Rubin, 1967)
Ballc 1180 634 369 264 205 3 (Ball and Hall, 1965)

a Value of the index should be maximized.
b Value of the index should be minimized.
c Difference between sequential levels of the index should be maximized.
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small spots within a zone) than with non-spatial PCA.
To identify the zones, it was necessary to define the appropriate

number of clusters in the partitioning. Different approaches have been
described to investigate cluster validity, some of them based on com-
paring the results of the cluster analysis with other classifications pro-
vided externally (external criteria) and others using information ob-
tained from the clustering process itself (internal criteria) (Theodoridis
and Koutroubas, 2008). The protocol included the use of several indices
to determine the optimum number of clusters (Charrad et al., 2014).
The zoning validation with external variables allowed us to confirm
that the classification performed also describes the spatial variability of

the external validation variables (Zn, Fe, Mn, P and EC).
A generic framework, called scorpan-SSPFe method, has been used

to predict digital soil maps. This method is based on seven predictive
factors (soil, climate, climatic, organisms, topography, parent material,
time factor, spatial or geographic position), a generalization of Jenny's
formative factors (McBratney et al., 2003). The use of a large amount of
complementary information, which is now easily available and of lower
cost than soil sampling, such as that extracted from digital elevation
models and satellite images, has stimulated the implementation of au-
tomated soil mapping techniques to be used with big data, such as
automatic learning techniques. Random forest algorithms (Breiman,
2001), support vector machines and self-organizing maps (Kohonen,
1982) have been used to obtain automatic classifications based on
multidimensional information. However, these methods do not provide
information about the magnitude of spatial covariances among the
original variables, which hinders the understanding of the processes
explaining zoning. By contrast, the algorithm we implemented provides
measures of the relative contribution of the different variables to
zoning. These methods are undoubtedly of different nature, each having
advantages and disadvantages, and, importantly, they are com-
plementary. For example, the results of the classifications made using
machine learning methods might be used as another form of

Fig. 3. Zoning of Córdoba, Argentina. a) Zoning map obtained from MULTISPATI-PCA. b) Zoning map obtained from classical PCA.

Table 5
Zones differences for external validation variables (Zn, Fe, Mn, P, and EC).

Zone identification Zn Fe Mn P EC 1:2.5 (s:w) Hotelling test1

(mg kg−1) (ppm) (dS m−1)

I 1.2 154.6 34.7 41.3 2.4 a
II 1.8 142.4 25.2 82.8 0.2 b
III 1.7 188.3 55.6 124.9 0.5 c
IV 0.7 94.9 36.9 135.9 0.6 d

1 Different letters are significant to p < 0.05.

Table 6
Soil and climatic variables for each homogenous edaphoclimatical zone in Cordoba, Argentina.

Zone pH TN TOC Na K CEC Cu Sand Clay WHC Elevation pp Tm

1:2.5 (s:w) (%) (g kg−1) (cmolc kg−1) (mg kg−1) (g kg−1) (%) (m) (mm) (°C)

I 7.5a 0.11 11.3 4.9 1.3 12.2 1.9 57.8 11.7 14.3 332 531 19.5
(8) (41) (51) (237) (31) (26) (28) (19) (63) (25) (43) (12) (5)

II 7.2 0.21 22.3 1.2 1.4 18.1 2.2 41.3 20.0 19.0 761 673 16.0
(7) (43) (39) (38) (38) (24) (47) (41) (39) (26) (26) (8) (7)

III 6.8 0.15 15.3 1.1 2.3 19.8 2.0 18.9 24.5 22.7 200 807 17.3
(8) (24) (26) (118) (20) (25) (48) (54) (23) (16) (60) (7) (4)

IV 6.5 0.10 9.9 0.9 1.7 10.9 0.9 63.7 13.4 12.6 258 744 16.8
(9) (30) (33) (106) (24) (22) (65) (21) (36) (27) (66) (9) (2)

a Values are averages and coefficient of variations (between parentheses).
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statistically-based zoning validation.

4.2. Zoning of Córdoba

The general characteristics of the entire territory were captured by
the zoning performed. The territory has more or less abrupt gradients of
three of the five soil forming factors: climate, parent material and relief
(Jenny, 1941). The Pampas loess has a W-E decreasing grain size gra-
dient associated with the direction of the transporting winds (Rocca
et al., 2006). Moreover, the CaCO3 levels of the Pampas loess range
between 5 and 10% (Gorgas and Tassile, 2002), and its depth in the soil
profile corresponds to the precipitation gradient, which increases W-E
(Iriondo and García, 1993; Manzur, 1997). Thus, zones III and IV, the
largest ones, covering together 72.7% of the total of sites, correspond to
the plain area of the province and two smaller zones (I, II) correspond
to the sierras (mountain) area and the west of the mountain range. The
general characteristics of the territory comprising zones I and II include
high spatial and vertical heterogeneity due to abrupt changes in relief
and highland Pampas patches (Gorgas and Tassile, 2002) as well as the
presence of CaCO3 near the surface and a region of salt flats to the NW.
Another particular aspect of this area is that it bears the highest pro-
portion of native vegetation (Zak and Cabido, 2002; Cabido et al.,
2005).

Zone I exhibited concordance with an area named Bolsón chaqueño,
characterized by strong topographic heterogeneity (piedmont and
plains), a negative hydrological balance and a marked thermal ampli-
tude (Gorgas and Tassile, 2002). This is the zone with the highest pH,
which is partly explained by the origin of the alkalinity associated with
the presence of CaCO3 on the surface (Manzur, 1997), It corresponds to
a salt flat area, which was originated from a NE-SW geological fault that
left the bed of an old sea exposed (Gorgas and Tassile, 2002). It is also
characterized by the abundance of sodium chloride, sodium sulfate,
which along with other minerals have been originated by cyclical se-
dimentation and evaporation of waters with high mineral concentration
(Bertolino et al., 2000; Gorgas and Tassile, 2002). Zone II covers the
mountain region and part of the piedmont in the east and west, being
the area of highest altitude of the four defined zones. The positive re-
lationship between TOC and CEC is associated with organic colloids or
humified organic matter (Parfitt et al., 1995), suggesting that SOM of
zone II would present abundant fresh or barely humified organic
matter. Another distinctive trait that reinforces this assumption is that
Cu content is the highest of all zones and extractable forms of this
element are favored by the increase in pH. However, the dynamics of
Cu related to SOM due to the formation of complexes (Mortensen, 1963;
McGrath et al., 1988; Burke et al., 1989; Alvarez and Lavado, 1998)
needs to be further studied. Zone III was one of the largest zones,
geologically corresponding mostly to the so called “loess plains/flat-
lands” (high, flat, of Altos de Morteros) (Gorgas and Tassile, 2002). It
presented several distinctive characteristics, since it is the area of
lowest altitude and presented the highest values of pp., clay, K, WHC,
and CEC. This set of traits defines a region with agricultural potential,
which is indeed the main use (Cabido et al., 2005; Jarsún et al., 2006).
Finally, zone IV is the largest (40.3% of the sites) and given that sand
content is the most characteristic trait, grain size was clearly the factor
that discriminated this portion of the territory from the remaining
zones. It corresponds to a group of regions defined earlier in the lit-
erature by their grain size as Pampas characterized by dunes and high
and flat sandy Pampas (Gorgas and Tassile, 2002). The lowest mean
contents of TOC, TN and CEC and several elements as Zn, Mn, and Cu
were on average consistent with the grain size traits of zone IV. These
results suggest that, despite its edapho-climatic indicators of agri-
cultural potential, this zone that also presents fragile characteristics.

5. Conclusions

The proposed workflow allows us to differentiate homogeneous

zones within a large area based on soil and climatic variables with high
spatial co-variability. Modeling spatial behavior of each variable al-
lowed us to gather information from different sources. The classifica-
tion of the sites using spatial principal components of soil, topographic
and climatic variables, as input of the fuzzy k-means algorithm, created
spatially coherent zones. Spatial covariances between variables en-
hance the understanding of zoning. Spatial co-variation among site
variables allowed us to define four contiguous and homogeneous eda-
phoclimatic zones in the territory of Cordoba province, Argentina.
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