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VARIABLE ORDER SMOOTHNESS PRIORS

FOR ILL-POSED INVERSE PROBLEMS

DANIELA CALVETTI, ERKKI SOMERSALO, AND RUBEN SPIES

Abstract. In this article we discuss ill-posed inverse problems, with an em-
phasis on hierarchical variable order regularization. Traditionally, smoothness
penalties in Tikhonov regularization assume a fixed degree of regularity of
the unknown over the whole domain. Using a Bayesian framework with hi-
erarchical priors, we derive a prior model, formally represented as a convex
combination of autoregressive (AR) models, in which the parameter control-
ling the mixture of the AR models can dynamically change over the domain of
the signal. Moreover, the mixture parameter itself is an unknown and is to be
estimated using the data. Also, the variance of the innovation processes in the
AR model is a free parameter, which leads to conditionally Gaussian priors
that have been previously shown to be much more flexible than the traditional
Gaussian priors, capable, e.g., to deal with sparsity type prior information.
The suggested method, the Weighted Variable Order Autoregressive model
(WVO-AR) is tested with a computed example.

1. Introduction

Consider the one-dimensional inverse problem of the following form: Let f : I =
[0, 1] → R be a piecewise continuous function, and {Gj}, 1 ≤ j ≤ m, a family of
linear or non-linear functionals acting on those functions. We define a model for
noisy indirect observations of f ,

(1) bj = Gj(f) + ej , 1 ≤ j ≤ m,

where ej represents a random additive noise. The inverse problem is to estimate
the function f on the interval I from the knowledge of {bj}.

Examples of problems of this type include deblurring, in which the functional Gj

is a convolution with a point spread function g, Gj(f) = (g ∗ f)(sj), sj ∈ I, and in-
terpolation with denoising, in which case Gj(f) = f(sj). Numerical differentiation
of a function vanishing at t = 0 can also be recast in this form by defining

Gj(f) =

∫ tj

0

f(t)dt.

A characteristic feature of these inverse problems is their ill-posedness of various de-
gree, meaning that without proper regularization, the solution may be non-unique,
may not exist, or may depend in a discontinuous way on the data, which renders
the solutions sensitive to noise and straightforward näıve solutions are doomed to
fail.
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The standard regularization methods of ill-posed inverse problems include the
Tikhonov regularization, truncated SVD, and numerous iterative methods; see, e.g.,
[9,11,13] for references. The classical regularization methods include a scalar regu-
larization parameter, such as the Tikhonov parameter or the truncation index, and
methods for finding in a given sense optimal values for regularization parameters
are well known, including Morozov’s discrepancy principle [14], the L-curve method
[12], or the generalized cross validation [10]. While performing well in many prob-
lems, the compression of the information about regularization into one single scalar
may be too restrictive. In the statistical framework, ([6, 13, 15], the Tikhonov reg-
ularization can be interpreted as a Maximum A Posteriori (MAP) estimate with
Gaussian prior and likelihood, and this interpretation opens rich possibilities to gen-
eralize the regularization to be spatially varying, and to deal with prior information
not handled well by quadratic regularization functionals ([4, 7, 8]). In particular,
the hierarchical models can be used as an alternative for sparsity priors such as the
�1-prior or total variation prior [1, 16].

We approach the variable smoothness priors through autoregressive (AR) models
that are widely used in time series analysis [3]. A commonly encountered problem
in AR analysis of time series is to find the coefficients of the autoregressive model,
as well as the degree of the model, and a number of standard techniques to do
this are known, starting from the classical reference [2]. In this article, we are only
borrowing the AR formalism to express a priori local smoothness in the sense of
regularization of an inverse problem, and not for prediction. In the latter case, the
root condition for the AR model for stability should be checked. In the context of
regularization, the stability is not an issue, while the question of determining the
model coefficients is tantamount to deciding the degree of the regularizing smooth-
ness penalty based on the signal itself. The methodology developed in this paper
starts with the idea of defining an AR model locally as a convex combination of two
fixed AR models, and the interpolation parameter is adjusted so as to optimally
capture the underlying signal. To assure flexibility, the AR model is allowed to
vary from point to point, as the regularity of the underlying signal may be varying.

2. Inverse problems in the statistical framework

To render the problem (1) computationally feasible, we discretize it first, e.g.,
by representing the unknown function in an appropriate basis, or, as we choose in
this article, by collocation, denoting

xj = f(tj), where tj =
j

n
, j = 0, 1, . . . , n,

and by x ∈ R
n+1 we denote the vector with entries xj .

To regularize the inverse problem, we recast it in the Bayesian framework, defin-
ing a multivariate random vector X ∈ R

n+1 with x as its realization, and define a
prior probability density that summarizes our a priori beliefs about the unknown,
most notably concerning its smoothness or modes of variation.

2.1. Priors and Markov models. A commonly used family of stochastic models
leading to numerous useful prior models consists of autoregressive Markov models
of the form

(2) Xj =

p∑
k=1

αkXj−k +
√
γj Wj , Wj ∼ N (0, 1), 0 ≤ j ≤ n,
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where the order p and the regression coefficients αk are given, {Wj} is the innovation
process of mutually independent standard normal variables, and γj is the variance
of the jth innovation. For the sake of definiteness, we assume that

(3) Xj = 0 almost certainly for j < 0.

This restriction is natural for time series, but less so when Markov model induced
smoothness priors are discussed. We shall return to this condition later.

We will focus, in particular, on smoothness priors in inverse problems corre-
sponding to the following autoregressive models of order 0, 1 and 2,

(4) Xj =

√
γ
(0)
j Wj ,

(5) Xj = Xj−1 +

√
γ
(1)
j Wj ,

(6) Xj = 2Xj−1 −Xj−2 +

√
γ
(2)
j Wj ,

for j = 0, 1, . . . , n. To see the connection with smoothness priors, we write the
above models in a matrix form, yielding

(7) LpX = D
1/2

γ(p)W, p = 0, 1, 2,

where L0 = In+1, the unit matrix of size (n + 1) × (n + 1), and the matrices
Lp ∈ R

(n+1)×(n+1), p = 1, 2, are lower triangular finite difference matrices,

L1 =

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦ , L2 =

⎡
⎢⎢⎢⎢⎢⎣

1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1

⎤
⎥⎥⎥⎥⎥⎦ ,

and, finally, the matrices Dγ(p) ∈ R
(n+1)×(n+1) are diagonal matrices,

Dγ(p) =

⎡
⎢⎢⎣

γ
(p)
0

. . .

γ
(p)
n

⎤
⎥⎥⎦ .

From equation (7), we conclude that the prior distribution for X is

πprior(x) ∝ exp

(
−1

2
‖D−1/2

γ(p) Lpx‖2
)
,

the symbol “∝” indicating proportionality with an appropriate normalizing con-
stant.

When choosing the prior Markov model, it is usually assumed that the model
captures the regularity assumptions about the unknown function over the whole
interval. However, one may imagine a situation in which one model describes well
the prior belief over a subinterval, while another model would be more appropriate
over another. Moreover, in general, we may not know a priori how the smoothness
of the function f varies over the domain. Therefore we propose a weighted variable
order autoregressive (WVO-AR) model.
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Consider two AR models,

Xj =

p∑
k=1

αkXj−k +

√
γ
(1)
j W

(1)
j , W

(1)
j ∼ N (0, 1),(8)

Xj =

q∑
k=1

βkXj−k +

√
γ
(2)
j W

(2)
j , W

(2)
j ∼ N (0, 1),

j = 0, 1, . . . , n. For the sake of definiteness, we assume that p ≥ q. A convex
combination of these models results in the model

Xj =

p∑
k=1

[
(1− θj)αk + θjβk

]
Xj−k +

√
γj Wj , Wj ∼ N (0, 1),

where θj ∈ [0, 1], and the variance of the innovation term is

(9) γj = (1− θj)
2γ

(1)
j + θ2jγ

(2)
j ,

and it is interpreted that for k > q, βk = 0. By varying the parameter θj between
the extreme values the model varies locally between the Markov models of order p
and q. In matrix notation, the model can be written as

(10) LθX = D1/2
γ W,

where

Lθ = (I− Dθ)Lp + DθLq,

the matrix Dθ being

Dθ =

⎡
⎢⎣ θ0

. . .

θn

⎤
⎥⎦ .

We write the prior density of X, given the variable weight vector θ and the inno-
vation variance vector γ as

πprior(x | θ, γ) ∝ det
(
D−1/2

γ Lθ
)
exp

(
−1

2
‖D−1/2

γ Lθx‖2
)

(11)

= exp

⎛
⎝−1

2
‖D−1/2

γ Lθx‖2 −
1

2

n∑
j=0

log γj

⎞
⎠ ,

where we used

det
(
D−1/2

γ Lθ
)
= det

(
D−1/2

γ

)
det

(
Lθ
)
=

n∏
j=0

γ
−1/2
j ,

since the matrix Lθ is lower triangular with unit diagonal. We shall discuss later
modifications of the model in which this identity is not valid. We call the model
the (p, q)-Markov model.

We remark that the variances of the innovation processes of different order
Markov models may be significantly different when the models are used to explain
the same data. To compensate this effect, we will later consider also interpolated
models where the matrices Lp are first scaled appropriately.

In the following, we will specify the statistical properties of the model parameters
θj and γj .
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2.2. Hierarchical priors. The WVO-AR models yield prior densities depending
on parameter vectors θ and γ. In order to convey the idea that the smoothness of f
may vary over its domain in an a priori unknown manner, we model the coefficient
vector θ = [θj ] and the variance vector of the innovation term, γ = [γj ] as multi-
variate random variables, Θ and Γ. Observe that formula (9) defines a dependency
between θ and γ, if γ(1) and γ(2) are given. However, since these parameter vectors,
too, are unknowns, we simply postulate that Θ and Γ are mutually independent,
the prior model for the triple (X,Θ,Γ) is given by the density

πprior(x, θ, γ) = πprior(x | θ, γ)πhyper,1(θ)πhyper,2(γ),

where the densities πhyper,1(θ) and πhyper,2(γ) constitute the hyperprior models.
The selection of the hyperpriors depends on the particular application. We

consider two different choices. In the first one, we express our belief that over
most of the domain the function f will have order p smoothness (that is, θj = 0 is
expected a priori) by writing a hyperprior for the vector Θ of the form

(12) πhyper,1(θ) ∝ exp

(
− 1

2η
‖θ‖2

)
χ[0,1]n+1(θ),

which assumes, in particular, that the θj are independent identically distributed.
Here, χ[0,1]n+1 is the characteristic function of the hypercube in R

n+1. This hyper-
prior gives preference to solutions with small Euclidean norm.

In another application, we assume that the values θj are varying slowly, and we
use model

(13) πhyper,1(θ) ∝ exp

(
− 1

2η
‖L1θ‖2

)
χ[0,1]n+1(θ),

that is, Θ itself satisfies a first order Markov model with non-negativity constraints.
This model prefers slowly warying solutions with small first finite differences.

When it comes to choosing a hyperprior for the γj , we assume that in general
the variable order model describe quite well the function f except at a few places
where it may have jumps or corners, which would be difficult for the autoregressive
model to explain. Moreover, in order to allow the function f to suddenly change
its smoothness, we assume that the variance of the innovation term at each grid
point is independent, and that most of the time the variance of the innovation will
be close to zero, leaving the option of a few points where it takes on large values.
To encode these beliefs, we use the family of generalized gamma distributions, Γj ∼
GenGamma(r, β, γ), defined as

πhyper,2(γ) = πhyper(γ; r, β, γ) ∝
n∏

j=0

γrβ−1
j exp

(
−
(
γj
γ

)r)

= exp

⎛
⎝− n∑

j=0

(
γj
γ

)r

+ (rβ−1)

n∑
j=0

log γj

⎞
⎠ .(14)

In particular, we remark that by choosing r = 1, we have the gamma distribution,
γj ∼ Gamma(β, γ) = GenGamma(1, β, γ),

πhyper,2(γ) ∝
n∏

j=0

γβ−1
j exp

(
−γj

γ

)
= exp

⎛
⎝−

n∑
j=0

γj
γ

+ (β − 1)
n∑

j=0

log γj

⎞
⎠ ,
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while with r = −1, we obtain γj ∼ InvGamma(β, γ) = GenGamma(−1, β, γ) which
is the inverse gamma distribution, and

πhyper,2(γ) ∝
n∏

j=0

γ−β−1
j exp

(
− γ

γj

)
= exp

⎛
⎝−

n∑
j=0

γ

γj
− (β + 1)

n∑
j=0

log γj

⎞
⎠ .

Above, we assume that the shape and scale parameters β and γ are given. The
hyperprior family in the context of inverse problems has been discussed in the article
[4].

2.3. Likelihood and posterior densities. The likelihood model is based on the
additive noise model (1). We will assume that the additive noise vector e = [ej ] is
a realization of a Gaussian random variable E,

E ∼ N (0,Σ),

and for notational convenience, we denote by S the Cholesky factor of the inverse
of the covariance,

Σ−1 = STS,

yielding a likelihood density

πlkh(b | x) ∝ exp

(
−1

2
‖S(b−G(x))‖2

)
.

By Bayes’ formula, the posterior density is given by

πpost(x, θ, γ | b) ∝ πlkh(b | x)πprior(x | θ, γ)πhyper,1(θ)πhyper,2(γ).

2.4. Approximating the MAP estimate. We outline a simple cyclic updating
algorithm for finding an approximate MAP estimate based on the posterior density
given in the previous section. The details of each step, and the discussion of the
convergence criterion are discussed separately.

Approximate MAP estimator

(1) Initialize: x = x0, θ = θ0, γ = γ0. Set k = 0.
(2) Update (xk, θk, γk) → (xk+1, θk+1, γk+1),

(a) xk+1 = argmaxx
{
π(x, θk, γk | b)

}
,

(b) θk+1 = argmaxθ
{
π(xk+1, θ, γk | b)

}
,

(c) γk+1 = argmaxγ
{
π(xk+1, θk+1, γ | b)

}
.

(3) If convergence criterion is met, stop, else, k ← k + 1 and continue from 2.

The maximization at each step in the above algorithm is done by minimizing
the negative logarithm of the posterior density, and the particular structure of each
problem can be utilized to make the iteration fast.
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2.4.1. Updating x. To maximize the posterior density with respect to x, it is suffi-
cient to consider the x-dependent factors of the posterior density. We define

Fx(x, θ
k, γk) = − log

(
πlkh(b | x)πprior(x | θk, γk)

)
=

1

2
‖S(b−G(x))‖2 + 1

2
‖D−1/2

γk Lθkx‖2︸ ︷︷ ︸
def
= Tk(x)

+
1

2

n∑
j=0

log γk
j .

The minimizer of this expression is the least squares solution that minimizes the
functional Tk(x). The problem can be viewed as a Tikhonov regularized solution
of the inverse problem. In particular, if G is linear, that is, G(x) = Gx for some
matrix G, the update xk is the least squares solution of the linear system

(15)

[
SG

D
−1/2

γk Lθk

]
x =

[
Sb
0

]
,

and the solution can be approximated, e.g., by using iterative solvers.

2.4.2. Updating θ. The updating of θ is similar to the previous step. In this case,
the θ-dependent part is

Fθ(x
k+1, θ, γk) = − log

(
πprior(x

k+1 | θ, γk)πhyper,1(θ)
)

=
1

2
‖D−1/2

γk Lθx
k+1‖2 + 1

2η
‖Cθ‖2︸ ︷︷ ︸

def
=Hk(θ)

+
1

2

n∑
j=0

log γk
j ,

defined over the hypercube Q = [0, 1]n+1, where the matrix C is either the identity
or L1, corresponding to the hyperpriors (12) or (13), respectively. To minimize Hk,
we rewrite the θ-dependency out explicitly. We have

Lθx
k+1 = (I− Dθ) Lpx

k+1 + DθLqx
k+1

= Dθ (Lq − Lp) x
k+1 + Lpx

k+1 = Qk+1θ + vk+1,

where

Qk+1 = diag
[
(Lq − Lp)x

k+1
]
, vk+1 = Lpx

k+1.

With these notations, the problem is reduced to the constrained optimization prob-
lem,

(16) minimize

∥∥∥∥∥
[

D
−1/2

γk Qk+1

η−1/2C

]
θ +

[
D

−1/2

γk vk+1

0

]∥∥∥∥∥
2

subject to 0 ≤ θ ≤ 1,

the inequalities understood componentwise. The minimization, due to the fact that
the objective function is quadratic, can be carried out using linear least squares
methods with projections to enforce the bound constraints. The minimization
problem with bound constraints is computed with the algorithm described in [5].
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2.4.3. Updating γ. Finally, we define

Fγ(x
k+1, θk+1, γ) = − log

(
πprior(x

k+1 | θk+1, γ)πhyper,2(γ)
)

=
1

2
‖D−1/2

γ Lθk+1xk+1‖2 −
(
rβ − 3

2

) n∑
j=0

log γj +
n∑

j=0

(
γj
γ

)r

.

We observe that

‖D−1/2
γ Lθk+1xk+1‖2 =

n∑
j=0

(
uk+1
j

)2
γj

,

where

uk+1 = Lθk+1xk+1,

which makes the minimization of Fk particularly simple for certain values of r. In
particular, by differentiating Fγ with respect to γj and setting the derivative equal
to zero, we have the equation

−1

2

(
uk+1
j

)2
γ2
j

−
(
rβ − 3

2

)
1

γj
+ r

γr−1
j

γr = 0, γj > 0,

which in particular cases has an explicit solution: For r = 1, corresponding to a
gamma hyperprior for Γ,we have

(17) γj =
γ

2

⎛
⎝κ+

√
κ2 +

2(uk+1
j )2

γ

⎞
⎠ , κ = β − 3/2,

while for r = −1, which amounts to the inverse gamma hyperprior, it follows that

(18) γj =

(
uk+1
j

)2
+ 2γ

2β + 3
,

0 ≤ j ≤ n. For general r, a numerical solution is required.

2.4.4. Stopping criterion. The stopping criterion for the iterations is based on the
relative change of the norm of the unknowns. We define

Δk
x =

‖xk − xk−1‖2
‖xk‖2 , Δk

θ =
‖θk − θk−1‖2

‖θk‖2 , Δk
γ =

‖γk − γk−1‖2
‖γk‖2 ,

and set the number of iterations to

(19) kmax = min
k

{
√
Δk

x +Δk
θ +Δk

γ < δ},

where δ > 0 is a given tolerance.

3. Boundary conditions

The prior models discussed so far are based on the assumption (3) inherited
from the time series formulation of the prior, while the values for j > n are not of
interest. When applied to inverse problems, however, it is often natural to impose
boundary conditions both at t = 0 and t = 1. For simplicity, we restrict ourselves
to homogenous boundary conditions here. Also, for the sake of clarity, consider the
case p = 2.
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Consider the prior model πprior(x), x = (x0, x1, . . . , xn). The model was derived
by assuming the condition (3), that is, for p = 2,

πprior(x) = πprior(x | x−1 = x−2 = 0).

We want to modify the density to correspond a symmetric boundary condition,

x−1 = xn+1 = 0,

while x−2 is arbitrary. To do so, we write the autoregressive models

Xj − 2Xj−1 +Xj−2 =
√
γj Wj = 0, j = 0, 1, . . . , n+ 1

where, for notational simplicity, we write γ = γ(2). Assuming that X−1 = Xn+1 =
0, while X−2 = a, where a for the time being is arbitrary, the matrix form of the
stochastic model with the n+ 2 equations above becomes

(20)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

X0

X1

...
Xn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

a
0
...
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

√
γ0 W0

...√
γn+1 Wn+1

⎤
⎥⎦ .

The prior model for the vector X = (X0, X1, . . . , Xn) conditioned on zero bound-
ary conditions X−1 = Xn+1 = 0, is then obtained by marginalizing the conditional
prior with respect to the history X−2 = a, leading to the probability density

◦
πprior (x) =

∫
πprior(x | x−1 = 0, xn+1 = 0, x−2 = a)da.

To find the explicit form, we define the (n+ 1)× (n+ 1) matrices

◦
L2=

⎡
⎢⎢⎢⎣

−2 1
1 −2 1

. . .
. . .

1 −2

⎤
⎥⎥⎥⎦ ,

◦
Dγ=

⎡
⎢⎣ γ1

. . .

γn+1

⎤
⎥⎦ ,

and write the probability density corresponding to the model (20) as

πprior(x | x−1=0, xn+1=0, x−2 = a) ∝ exp

(
− 1

2γ0
(x0 + a)2− 1

2
‖

◦
D −1/2

γ

◦
L2 x‖2

)
,

Finally, by integrating with respect to a, we therefore find that

◦
πprior (x) ∝ exp

(
−1

2
‖

◦
D −1/2

γ

◦
L2 x‖2

)
,

a formula that is often found in literature as the second order smoothness prior.
In a similar fashion, we may derive the smoothness priors with desired left or right
boundary conditions for Markov models of any order.

In this work, we are interested in the models of order 0, 1, and 2, and their
linear combinations. We will work out in detail the interpolated model between the
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10 DANIELA CALVETTI, ERKKI SOMERSALO, AND RUBEN SPIES

second and the first order. The first order matrix we work with is

◦
L1=

⎡
⎢⎢⎢⎣

−1 1
−1 1
. . .

. . . 1
−1

⎤
⎥⎥⎥⎦ ,

and the corresponding (2, 1)-model is

(21)
◦
Lθ= (I− Dθ)

◦
L2 +Dθ

◦
L1=

⎡
⎢⎢⎢⎣

θ1 − 2 1
1− θ2 θ2 − 2 1

. . .
. . .

1− θn+1 θn+1 − 2

⎤
⎥⎥⎥⎦ .

While the posterior model with this matrix is obtained in a similar fashion as
with the non-symmetric model, one significant difference emerges: The matrix is no
longer a lower triangular matrix, and consequently, the computation of the determi-
nant is not as straightforward. Moreover, it has to be taken into consideration in the
MAP estimation problem. In particular, the objective function in the optimization
problem (16) becomes

Hk(θ) =

∥∥∥∥∥
[

D
−1/2

γk Qk+1

η−1C

]
θ +

[
D

−1/2

γk vk+1

0

]∥∥∥∥∥
2

− 2 log
[
det

( ◦
Lθ

)]
,

with the obvious modifications in the definitions of Qk+1 and vk+1.

3.1. The determinant. In this section, we derive the formulas needed for com-
puting effectively the determinants and their gradients with respect to the model

parameter θ for optimization methods. Consider the interpolated matrix
◦
Lθ in (21),

which has tridiagonal structure,

◦
Lθ=

⎡
⎢⎢⎢⎣

α1 1
β2 α2 1

. . .
. . .

βn+1 αn+1

⎤
⎥⎥⎥⎦ ,

where αj = θj − 2, j = 1, 2, . . . , n+ 1, and βj = 1− θj , j = 2, 3, . . . , n+ 1.
To evaluate the determinant, we use the Gaussian elimination to reduce the

matrix to an upper triangular matrix, repeating the elimination step⎡
⎢⎢⎢⎣

α1 1
β2 α2 1

. . .
. . .

βn+1 αn+1

⎤
⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎣

α1 1
α2 − β2/α1 1

. . .
. . .

βn+1 αn+1

⎤
⎥⎥⎥⎦ ,

yielding an upper triangular matrix with the diagonal entries dj , satisfying the
recurrence relation

(22) d1 = α1, dj+1 = αj+1 −
βj+1

dj
, 1 ≤ j ≤ n.
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VARIABLE ORDER SMOOTHNESS PRIORS FOR ILL-POSED IP 11

Hence, we have

(23) det
( ◦
Lθ

)
=

n+1∏
j=1

dj .

We have the following result.

Lemma 3.1. The dj given by (22) form an increasing sequence bounded below by
−2 and above by −1,

−2 ≤ dj ≤ dj+1 ≤ −1, j = 1, 2, . . . , n.

Proof. First notice that

dj+1 = αj+1 −
βj+1

dj
= dj +

(
αj+1 −

βj+1

dj
− dj

)

= dj +
αj+1dj − βj+1 − d2j

dj
(24)

= dj +
(θj+1 − 2) dj − (1− θj+1)− d2j

dj

= dj +
θj+1 (dj + 1)− (dj + 1)

2

dj
,

and proceed by induction.
For j = 1 we have

d1 = α1 = θ1 − 2,

therefore −2 ≤ d1 ≤ −1. Also, from (24) it follows that

d2 = d1 +
θ2 (d1 + 1)− (d1 + 1)2

d1
.

Since θ2 ≥ 0 and d1 + 1 ≤ 0, it follows that

θ2 (d1 + 1)− (d1 + 1)
2

d1
≥ 0,

and therefore d2 ≥ d1, the equality holding only if d1 = −1. On the other hand,

1 + d2 = 1 + α2 −
β2

d1
= 1 + θ2 − 2− (1− θ2)

d1
= (θ2 − 1)

(
1 +

1

d1

)
≤ 0,

where the last inequality follows from the fact that θ2 ≤ 1 and d1 ≤ −1. Summa-
rizing, we have proved that

−2 ≤ d1 ≤ d2 ≤ −1.

Suppose now that our claim holds for j − 1, that is,

(25) −2 ≤ dj−1 ≤ dj ≤ −1,

and we want to prove that it holds for j. Since (25) implies that

θj+1 (dj + 1)− (dj + 1)
2

dj
≥ 0,
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12 DANIELA CALVETTI, ERKKI SOMERSALO, AND RUBEN SPIES

it therefore follows from (24) that dj+1 ≥ dj , the equality holding only if dj = −1.
Moreover,

1 + dj+1 = 1 + αj+1 −
βj+1

dj
= 1 + θj+1 − 2− 1− θj+1

dj

= (θj+1 − 1)

(
1 +

1

dj

)
≤ 0,

where the last inequality follows from the fact that θj+1 ≤ 1 and, from (25), dj ≤
−1. Thus dj+1 ≤ −1, hence

−2 ≤ dj ≤ dj+1 ≤ −1,

which completes the proof. �

It should be pointed out that if n → ∞, it follows immediately from the last
theorem and from the recursive formula (24) that limj→∞ dj = −1. This is an
important result because, since from (23)

(26) log
∣∣ det ( ◦

Lθ
)∣∣ = log

∣∣ n+1∏
j=1

dj
∣∣ = n+1∑

j=1

log
∣∣dj∣∣,

then it is possible that if the convergence is fast enough, just a few terms of the
sum in (26) will suffice to give a good approximation of the determinant. In this
regard, the following result is also important.

Lemma 3.2. For every k ∈ N,

∣∣dk − (−1)
∣∣ ≤ ∏k

j=1 (1− θj)∏k−1
j=1 (−θj)

≤
k∏

j=1

(1− θj) .

Proof. We write

1 + dj+1 = 1 + αj+1 −
βj+1

dj
= 1 + (θj+1 − 2)− 1− θj+1

dj

= θj+1 − 1 +
θj+1 − 1

dj
=

(θj+1 − 1) (dj + 1)

dj
.

Then

0 ≤ − (1 + dj+1) = (1− θj+1)
dj + 1

dj

=
(1− θj+1) [− (1 + dj)]

−dj
.

Since − (1 + dj) =
∣∣dj − (−1)

∣∣, the above inequality can be written in the form

(27)
∣∣dj+1 − (−1)

∣∣ ≤ (1− θj+1)

∣∣dj − (−1)
∣∣

−dj
, ∀j ∈ N.

It follows from (27) that for all k ∈ N,

∣∣dk − (−1)
∣∣ ≤ ∏k

j=1 (1− θj)∏k−1
j=1 (−dj)

≤
k∏

j=1

(1− θj) ,

where the last inequality follows from the fact that dj ≤ −1 for all j. �
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It follows from the previous lemma that if dk = −1, or θk = 1, then dj = −1 for
all j ≥ k, in which case it follows that

log
∣∣ det ( ◦

Lθ
)∣∣ = k−1∑

j=1

log
∣∣dj∣∣.

The determinant depends on the parameter θ, and in order to maximize the pos-
terior density, we need to compute the gradient of the determinant. The necessary
formulas for this computation are given in the following lemma.

Lemma 3.3. The gradient vector ∇θdet
( ◦
Lθ

)
∈ R

n+1 is given by the formula

(28) ∇θdet
( ◦
Lθ

)
= det

( ◦
Lθ

) [
1/d1 1/d2 · · · 1/dn+1

]
M,

where the matrix M ∈ R
(n+1)×(n+1) is a lower triangular matrix, and its entries

mjk are obtained columnwise by the formulas

mkk = 1 +
1

dk−1
(m11 = 1),

mjk =
βj

d2j−1

mj−1,k, j > k.

Proof. We define the matrix M above through

mjk =
∂dj
∂θk

.

The matrix M is lower triangular, because, by the recurrence relation (22), dk is
independent of θj for j > k.

To prove (28), we observe that

∂

∂θk

(
d1 · · · dn+1

)
=

n+1∑
�=k

∂d�
∂θk

n+1∏
j=1,j �=�

dj =

⎛
⎝n+1∏

j=1

dj

⎞
⎠ n+1∑

�=k

1

d�

∂d�
∂θk

=

⎛
⎝n+1∏

j=1

dj

⎞
⎠ n+1∑

�=k

1

d�
m�k,

which is the claimed identity (28) in component form.
To prove the formulas for the components of the matrix, we use the recurrence

relation (22), implying that

mkk =
∂

∂θk

(
αk − βk

dk−1

)
= 1 +

1

dk−1
,

and for j > k,

mjk =
∂

∂θk

(
αj −

βj

dj−1

)
=

βj

d2j−1

∂dj−1

∂θk
=

βj

d2j−1

mj−1,k,

by the definition of the matrix M. �

Licensed to Instituto de Matematica Aplicada Litoral IMAL. Prepared on Mon Nov 24 17:27:05 EST 2014 for download from IP 200.9.237.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



14 DANIELA CALVETTI, ERKKI SOMERSALO, AND RUBEN SPIES

We point out that the gradient of the logarithm of the determinant is found by
the formula

∇θ log det
( ◦
Lθ

)
=

∇θdet
( ◦
Lθ

)
det

( ◦
Lθ

) =
[
1/d1 1/d2 · · · 1/dn+1

]
M.

In the following section, further details of the algorithm are given in connection
with a computed example.

4. Computed example

The computed test involves a signal that changes its smoothness characteristics.
Consider a deconvolution problem with noisy data,

bj =

∫ 1

0

K(sj − t)f(t)dt+ ej ,

where the convolution kernel is the Airy function appearing in optical applications,

K(t) =

(
J1(κt)

κt

)2

,

where J1 is the Bessel function of first kind of order 1, and k is a parameter
controlling the width of the function. Here we use κ = 50. We discretize the
convolution model to obtain a Toeplitz matrix G ∈ R

(n+1)×(n+1),

Gij = K(si − tj) = K(h(i− j)), h = 1/n, 0 ≤ i, j ≤ n,

where n = 200. The input signal f generated as

f(t) =
1

1 + e(t−t0)/τ
, 0 ≤ t ≤ 1/2,

where t0 = 1/2 and τ = 0.08, and

f(t) = A

20∑
j=1

sin(2πνj(t− ηj)), 1/2 < t ≤ 1,

where A = 0.8, and the frequencies νj and phase shifts ηj are randomly generated,

νj = 20 (1 + ξj), ξj , ηj ∼ Uniform([0, 1]).

The additive noise components ej are drawn independently form zero mean normal
distribution with standard deviation σ = 0.02. Figure 1 shows one realization of
the input signal and the computed noisy data.

Observe that because of the narrowness of the convolution kernel, this problem
is close to a denoising problem; however, the noise level in this example is quite
significant.

For this signal, one could expect that a smoothness prior gives optimal results
over the interval [0, 1/2] while over [1/2, 1], the rough nature of the signal could be
better captured by the L0-prior. Therefore, we consider here the (2, 0)–WVO-AR
model.

As a choice of the hyperpriors, we use the Gamma hyperprior for γ, that is, r = 1
in (14), while for θ, we use the L1-hyperprior (13).
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Figure 1. The input signal of the computed example (left panel)
and the corresponding convolved noisy data (right). (Color avail-
able online.)

The algorithm as described in the previous section, runs into a scaling problem
due to the difficulty in comparing the variations in the signal measured by the
L0-prior, and the the variations in its curvature measured by the L2-prior. As
the hyperparameter γ controls the trade-off between the prior and the likelihood,
an imbalance ensues: To avoid resorting to large values of γ with low hyperprior
probability, the algorithm chooses values of θ which keep the prior probability of
the unknown relatively low without increasing γ, even at the cost of fidelity. Thus,
effectively, the smoothness prior is strongly favored, even when the signal is non-
smooth.

As a remedy, we suggest a scaling of the matrices Lj using the following strategy.
Assume first that the underlying signal in the deconvolution problem is a smooth,
slowly varying signal, and an estimate of the noise level is available. The stan-
dard non-statistical method for solving the inverse problem is to use the Tikhonov
regularization, defining the solution as

xμ = argmin
{
‖Gx− b‖2 + μ2‖L2x‖2

}
,

and to seek the regularization parameter μ from Morozov’s discrepancy principle,

‖Gxμ − b‖ = τ × {estimated norm of the noise vector},

where τ ≥ 1 is a safeguard factor. If the noise vector is zero mean normally dis-
tributed with variance σ2, a rather standard estimate for the noise vector norm
would be

√
n+ 1σ, square root of its expected variance. We denote the value for

μ thus defined by μ∗. On the other hand, the Tikhonov regularized solution corre-
sponds to the MAP estimate for x with the L2-smoothness prior with constant prior
variance. Indeed, considering the least squares problem (15) with γj = γ = con-
stant and with the second order smoothness matrix, we find that the regularization
parameter, the noise variance and the prior variance are related by the formula

γ

σ2
= μ2.
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Figure 2. The reconstruction using either the L0- (left) or L2-
penalty (right) in the Tikhonov regularization and Morozov’s dis-
crepancy principle for selecting the regularization level. The red
curve is the true signal used for data generation, the black one is
estimated from the data. It is evident that both methods perform
poorly, since a single regularization parameter has to compromise
between a small value at the rough end and a larger value at the
smooth end of the signal. (Color available online.)

In order to scale the prior model (7) in such a way that the regularization parameter
value found by the Morozov discrepancy principle corresponds to an innovation
process with unit variance, we use the scaling

L2 → 1√
γ
L2, γ = σ2μ2

∗.

The value μ∗ is different from problem to problem, and even from one realization
of the noise to another. We therefore run the Tikhonov regularization scheme with
different smooth inputs and several realizations to find an order of magnitude of γ.
We then repeat the scaling with L0, using different smooth and non-smooth input
functions.

To have a reference point, we first solve the inverse problem using the Tikhonov
regularized solution with Morozov’s discrepancy principle with either the L0- or
the L2-penalty alone. The results are shown in Figure 2. It is obvious form these
reconstructions that since the underlying signal does not quite correspond to either
one of the assumptions underlying these penalties, the reconstructions suffer from
the compromise between the smooth and rough part of the signal.

We then run the alternating MAP approximation. The updating of x requires a
least squares solution in each step, while the updating of γ is done using formula
(17). The updating of θ is performed by a simple steepest descent algorithm with
projected gradient in the orthogonal complement of the active set. In Figures 3–5,
we show four snapshots of the progression of the algorithm, following the evolution
of the estimates of the three variables. The initial value for θ is θj = 1/2, j =
1, . . . , n + 1. Due to the smoothness prior with assumed boundary value at the
left (θ−1 = 0), the value at the left end settles quickly to small values, while
the right end, due to the roughness of the signal, starts to increase towards the
maximum value θj = 1. As soon as this value is reached, the corresponding pixel
xj becomes independent of its neighbors, and the pointwise estimate of the signal
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becomes significantly good (Figure 3). At the points where θj < 1, the prior
correlation with the neighboring values keep the estimated function rather rigid and
thus unable to estimate the fast oscillations well. Figure 6 plots the relative change

rk =
√
Δk

x +Δk
θ +Δk

γ appearing in the stopping criterion (19). The algorithm

requires a relatively high number of iterations (597 for this example) to converge,
but seems to work very consistently, and the results over numerous restartings are
stable.
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iter = 598

Figure 3. Four snapshots of the progression of the updating of
the estimate of the signal. The true signal is indicated by the red
curve, the current estimate is plotted in black. The number of
iterations in indicated in the figure. (Color available online.)
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Figure 4. Snapshots of the estimate of the θ vector. Observe
that the boundary condition implied by the Markov model keeps
the value θ0 close to zero. This must be thought of as part of the
prior information: If no reason to assume that the signal starts as
a smooth signal exists, the boundary condition should be removed.
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Figure 5. Four snapshots of the update of the innovation variance
γ. Observe a maximum close to where the signal switches from
smooth to rough at t = 1/2, demonstrating a significant jump at
that point.
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Figure 6. The relative change of the update as the iteration
proceeds. The horizontal line indicates the stopping tolerance
δ = 1 × 10−4. At kmax = 598, the stopping criterion is satis-
fied, but for demonstrating the stability, the iteration is run until
k = 900. (Color available online.)
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5. Discussion

The article discusses the regularization of ill-posed inverse problems approaching
the problem from the Bayesian statistical viewpoint, in which the regularization
corresponds to prior information about the unknown. In particular, smoothness
penalties correspond to autoregressive prior models. In this context, the degree
of the AR model corresponds to the a priori smoothness of the unknown, which
may itself be poorly known, but can be addressed by using hierarchical Bayesian
models. The computed example demonstrates that if the forward model is not too
strongly smoothing, the data may contain enough information about the smooth-
ness properties of the underlying signal for judiciously adjusting the order of the
AR prior. The example suggests that the method could be applicable for imaging
problems (denoising, deblurring) when parts of the image are characterized by tex-
ture of different degree of smoothness. For wider convolution kernels, it is to be
expected that resolving the degree of smoothness of the prior model based on data
becomes increasingly difficult. Extensions from one dimension to two dimensions
pose further challenges, such as the anisotropic nature of the underlying textures.
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