
Pablo F. Castro Tableau Systems for Deontic
Action Logics based on Finite
Boolean Algebras, and Their
Complexity

Abstract. We introduce a family of tableau calculi for deontic action logics based on

finite boolean algebras (or DAL for short), these logics provide deontic operators (e.g.,

obligation, permission, prohibition) which are applied to a finite number of actions (the

vocabulary of the logic); furthermore, in these formalisms, actions can be combined by

means of boolean operators, this provides an expressive algebra of actions. We define a

tableau calculus for the basic logic and then we extend this calculus to cope with extant

variations of this formalism; we prove the soundness and completeness of these proof

systems. In addition, we investigate the computational complexity of the satisfiability

problem for DAL and its extensions; we show this problem is NP-Complete when the

number of actions considered is fixed, and it is Σp
2-Hard (in Stockmeyer’s polynomial

hierarchy) when the number of actions is taken as an extra parameter. The tableau

systems introduced here can be implemented in PSPACE, this seems reasonable taking

into consideration the computational complexity of the logics.

Keywords: Deontic Action Logics, Tableau Systems, Computation Complexity, SAT

1. Introduction

Deontic logic is a branch of logic and philosophy that is devoted to the
study of the logical properties of norms and related notions, one of the main
goals in this field is the formal understanding of normative concepts such as
permission, obligation and prohibition. The origin of the logical analysis of
norms, and related concepts, can be traced back to Aristotle and the scholas-
tic philosophers, a detailed discussion about the history of deontic logic is
given in [17, 13, 1]. It is worth noting that the first authors in proposing
formal deontic systems were Mally [18], von Wright [28] and Kalinowski [15];
since then philosophers, logicians and computer scientists have proposed dif-
ferent formalisms to reason about normative systems. Interestingly, in the
last few decades, deontic logics have been found particularly useful for rea-
soning about computing systems and for performing automated analysis of
legal systems, a good account of this is given in [29].

Presented by ; Received

Studia Logica (0) 0: 1–25 c©Springer 0

2 Pablo F. Castro

Among the different deontic logics proposed in the literature, we can
distinguish between two kinds of systems. On the one hand, we have the
ought-to-be deontic systems in which deontic operators are applied to states
of affairs, a simple example of this approach is given by the sentence: the
fence ought to be white, note that this statement prescribes a state of the
fence, or more generally it is a normative statement about a predicate de-
scribing a scenario or situation. standard deontic logic (or SDL) [8] has been
one of the most popular ought-to-be systems, this logic has sparked inter-
esting discussions about formal deontic logics, in particular regarding the
so-called “paradoxes”; a paradox in deontic logic is a normative statement
whose truth value contradicts our intuition about norms, a good account of
paradoxes in SDL is given in [20]. Ought-to-be logics have been deeply inves-
tigated by the community of deontic logic, standard references are [1, 8] and
we refer the interested reader to them. On the other hand, other authors
have introduced the so-called ought-to-do systems (the ones we are interested
in here) in which normative statements are used for prescribing actions and
their consequences or, as is called in the literature, practitions. As a sim-
ple example of this approach consider the following sentence: it is allowed
to drive while smoking, note that in this case the range of the prescription
is a composed action (the action composed of driving and smoking at the
same time). The importance of deontic action logics in computer science
has been pointed out by several authors, e.g. [29]. Actions can be identified
with basic programs, and action combinators can be think of as being pro-
gram operations: action conjunction is identified with parallel execution of
programs, action disjunction with nondeterministic choice, and action com-
plement with the execution of alternative code (many other operators can
be considered). These kinds of logics have been shown to be useful for rea-
soning about legal systems, fault-tolerant systems and electronic contracts,
just to name a few examples.

Over the last decades, several logics based on these ideas have been
proposed in the literature, dynamic deontic logic (DDL for short) [19] is one
of the most popular ought-to-do systems, roughly speaking, this formalism
reduces deontic operators to standard constructions of dynamic logic [12].
Recall that formulas of dynamic logic have the form [α]ϕ, where α is an
action and ϕ is a formula, this formula can be read as: after executing
action α, ϕ is necessarily true. In this setting, for example, prohibition is
formalized as: F(α) ≡ [α]V , here V is a fresh propositional symbol indicating
a violation, intuitively, this formula asserts that action α is forbidden iff
every execution of α leads to a violation. The main benefit of this approach,
as explained in [19], is the possibility of getting rid of usual problems of

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 3

ought-to-be deontic logics. For instance, in DDL, deontic operators cannot
be nested, avoiding in this way complex formulas that do not have a clear
semantics; also the notion of state change appears explicitly in formulas (in
contrast to standard deontic logic) which helps to avoid some paradoxes
of SDL, the interested reader is referred to [19] for examples about this.
However, as detailed in [2], dynamic deontic logic has its own problems and
paradoxes. One of the drawbacks of dynamic deontic logic is the strong
interplay between standard modalities and deontic operators, for instance,
the following formula is valid in DDL: P(α)→ 〈α〉>, whose intuitive reading
is: allowed actions can be executed, it is easy to devise scenarios where this is
not true, suppose a person that must pay taxes, the person is allowed to pay
the taxes, but perhaps she does not have money to do so. As we describe
below, many authors have pointed out that deontic operators should be
defined without resorting to standard modalities, we review these approaches
later in this section.

Several formalisms based on DDL have been proposed in the literature;
in [4], Broersen describes another possible formulation of dynamic deontic
logic where different violation constants are used for defining obligation and
permission, avoiding in this way the interdefinibility of these operators as
given by Meyer. Also, Broersen uses a different version of action complement
in his logic, arguing that this approach is more appropriate for computer
science. A modal action system (called MAL) similar to dynamic deontic
logic is investigated in [16], a similar relation to that imposed by Meyer
between permission and state properties is introduced in the semantics. In
this work a partial proof system is presented, although its properties are not
investigated in detail.

Other authors have proposed what are called process oriented norms,
that is, prescriptions do not only consider what happens in the resulting
state of an action, but also what happens during its execution. For instance,
van der Mayden in [27] defines a variation of dynamic deontic logic in which
the semantics of deontic operators is given by means of traces instead of
relations, the main aim of this system is to provide an alternative definition
of permission, which, in Meyer’s logic, exhibits some undesirable properties;
for instance, the sentence: if after shooting the president, one is allowed to
remain in silence, then it is allowed to shoot the president and remain in
silence is valid, and contradicts our intuition about permission, this para-
dox is related to the operation of action composition, written formally as
α;β, van der Mayden’s logic solves these issues of the original definition of
permission in DDL, the resulting logic is interesting for dealing with com-
position of actions and action iteration, it is worth remarking that here we

4 Pablo F. Castro

do not deal with action composition and related constructs. On the other
hand, Dignum et al. [9] introduced two variants of permission to solve the
paradox of free choice, which can be stated as: if one is allowed to talk to
the president, then one is allowed to talk the president or kill him; a rich
set of properties is provided for this system but completeness is not proven.
Another approach worth mentioning is that presented in [14], the authors
introduce an extension of dynamic deontic logic to deal with long term du-
ties, of the style Don’t ever do that, interestingly, the usual duality between
permission and obligation that holds in dynamic deontic logic is not longer
valid in this logic.

In a seminal paper [22], Segerberg introduced a different approach to
the logical analysis of norms applied to practitions, the logic proposed by
Segerberg (named DAL from now on) defines permission, prohibition and
obligation without resorting to other logical constructions. This logic pro-
vides a set of basic actions that can be combined by using boolean opera-
tions; it is important to remark that DAL does not include the modalities
of dynamic logic; this, in our opinion, simplifies the reasoning about deontic
operators and the logic itself, thus a main benefit of Segerberg’s approach is
the simplicity of its formal system: its action algebra is based on the well-
known theory of boolean algebras, which allows one to capture basic ways of
combining actions (as pointed out above), and to reason about the proper-
ties of norms when applied to these constructions. Segerberg’s logic inspired
other systems, for instance, those proposed by Trypuz and Kulicki [26] (de-
scribed in Section 2) and the system proposed by Castro and Maibaum [7].
It is important to remark that Segerberg’s original system considers an enu-
merable number of basic actions, whereas the systems described in [26, 7]
only consider a finite number of actions, this restriction has as a consequence
that the associated boolean algebra of actions is finite, and thus atomic; this
has some benefits, particularly, this makes it possible to refer to the basic
constituent actions, thus, we have a set of basic actions that can be used to
build any other action; this bears a direct analogy with computing systems
in which a set of basic instructions, or actions, are provided and from them
more complex programs can be constructed using programming constructs.

Axiomatic systems for DAL and its extensions were introduced in [26, 7],
and these systems were shown to be sound and complete; however, we are
not aware of any tableau system encompassing all these logics, a tableau
system for the logic introduced in [7] was presented in [6], but this deductive
system takes into account the Kripke semantics of the logic, and then it
is more complex that the ones presented in this article. Furthermore, the
computational complexity of DAL has not been investigated in the literature.

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 5

In this paper we present tableau systems for all the logics described in [26],
that extend Sergerberg’ original logic (and include the system introduced in
[7]). We also show that the computational complexity of the satisfiability
problem for these logics is NP-complete when a fixed number of actions
are considered, and it is Σp

2-Hard when the set of actions in the language is
taken as a parameter. In addition, we prove that the proof systems proposed
below are sound and complete. Tableau systems [11] have been shown to
be useful for providing automated methods of reasoning for several logics,
some examples are propositional logic [25], first-order logic [11] and temporal
logics [10]. Because of this, we believe that automated proof systems for DAL
and its variations can be useful for applying deontic action logics in practice.

The article is organized as follows. In Section 2 we introduce the basic
concepts needed to tackle the rest of the paper. In Section 3 we investigate
the computational complexity of the satisfiability problem for DAL (and
its variations). The tableau calculi for the deontic action logics considered
throughout this text are described in Section 4 and 5; finally, we discuss
some conclusions and further work.

2. Background

In this section we present the basic logics we use throughout this paper,
the formalisms introduced below are strongly inspired by the deontic logic
of actions presented by Segerberg in [22]. Given a finite set of primitive or
basic actions ∆0 = {a0, . . . , an}, the set of formulas of DAL is described by
the following BNF:

Φ ::= P(α) | F(α) | Φ ∨ Φ | ¬Φ | >
α ::= ai | α u α | α | α t α | 0 | 1

We use letters α, β, . . . as variables over actions, and letters ϕ,ψ, . . . as
variables over formulas. The set of all action terms is denoted by ∆.

Intuitively, P(α) says that action α is allowed to be executed, and F(α)
says that executing α is forbidden, the rest of the formulas have the standard
semantics. We call formulas of type P(α), F(α) (and their negations) basic
deontic formulas.

At this point, some words about our understanding of actions, and action
execution, are useful. Given an action α, we assume that there may be many
ways of executing it; consider, for instance, the action of driving, one may
drive while smoking, or perhaps while talking by phone; thus, one may
consider different scenarios in which an action can be performed. From our

6 Pablo F. Castro

point of view, these different ways in which an action can be executed are due
two things: firstly, because the combination of primitive actions by means of
parallel execution, and, secondly, since the non-determinism inherent in the
logic. Note that, in DAL, any action can be described as a non-deterministic
combination of a parallel execution of primitive actions. It is important
to remark that we have not introduced the obligation operator here, the
semantics of obligation is not as straightforward as those of permission and
prohibition, we will not deal with the obligation operator in this paper, but
this operator can usually be reduced to the other deontic operators [22, 26, 7].

Let us introduce the semantics of DAL, there are different ways of defining
the semantics for this logic, here we follows [26]. First we introduce the
notion of deontic structure (or deontic model); intuitively, each action is
interpreted as a set of basic events, these are abstract semantic entities that
identify the occurrence of actions. A deontic structure is a tuple 〈D, I〉 where
D = 〈E , Leg, Ill〉, and E = {e1, . . . , en} is a finite collection of events; Leg
represents the collection of legal (or permitted) outcomes, and Ill denotes
the collection of illegal (or prohibited) outcomes. Here, an outcome is a
collection of events, and then Leg ⊆ 2E and Ill ⊆ 2E . We require that
Leg ∩ Ill = {∅}, i.e., there is no outcome that can be both allowed and
forbidden. In addition, Leg and Ill must be ideals in the boolean algebra
〈22E , ∅, 2E ,∪,∩, \〉, i.e., they must satisfy the following conditions:

L1 s ∈ Leg ∧ s′ ⊆ s⇒ s′ ∈ Leg,

L2 s ∈ Leg ∧ s′ ∈ Leg ⇒ s ∪ s′ ∈ Leg,

I1 s ∈ Ill ∧ s′ ⊆ s⇒ s′ ∈ Ill,
I2 s ∈ Ill ∧ s′ ∈ Ill⇒ s ∪ s′ ∈ Ill,

We also consider an interpretation function I : ∆0 → 2E , which is extended
to the set ∆ of actions, as follows:

• I(0) = ∅
• I(1) = E
• I(α t β) = I(α) ∪ I(β)

• I(α u β) = I(α) ∩ I(β)

• I(α) = E \ I(α)

Furthermore, we require that the interpretation of the atomic actions (in
the sense given by boolean algebras) of the logic must be deterministic.
More formally, the axioms of boolean algebra [24] induce a quotient boolean

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 7

algebra of action terms (where each action term is an equivalence class of
action terms), this boolean algebra is finite and thus atomic, the atoms
are (equivalent to) monomials of the form a∗0 u a∗0 u · · · u a∗n where each
a∗i is either ai or ai; intuitively, these actions represent the basic actions
that can be performed by the system; further intuitions about this model of
actions can be found in [26, 7]. The atomic actions over a vocabulary ∆0

are denoted by letters δ0, . . . , δk. An interesting element of this collection is
action a0 u · · · u an, this term denotes the occurrence of an external action,
that is, no action from the system is executed in this case; we denote this
action by δ̂. The set of atomic action terms preceding an action is defined
as Atvα(∆0) = {δi | BA ` δi v α}, where BA is a complete set of axioms
for boolean algebra, and ` is the relation of provability. When ∆0 is clear
from context we just write At(α). Furthermore, we require:

I(δi) ≤ 1, (I)

that is, each atomic action when executed “produces” at most a unique
event, this means that we assume that atomic actions are deterministic. It
is worth noting that, in this setting, non-determinism arises as a consequence
of the combination of several atomic actions.

Given a deontic structure M , the relation � of satisfiability between
models and formulas is defined as follows:

• M � P(α)⇔ I(α) ∈ Leg,

• M � F(α)⇔ I(α) ∈ Ill,
• M � >,

• M � α = β ⇔ I(α) = I(β),

• M � ¬ϕ⇔M 2 ϕ,

• M � ϕ ∨ ψ ⇔M � ϕ or M � ψ.

Given a formula ϕ, we say that � ϕ if M � ϕ for every model M .
We call this basic system DAL0, and it is equivalent1 to the basic deontic

logic of urn model action introduced in [22], adding further restrictions we
can obtain the following logical systems [26]. DAL1 is DAL0 extended with
condition:

∀ai ∈ ∆0 : I(ai) ∈ Leg ∨ I(ai) ∈ Ill, (II)

that is, in this system each basic action is allowed or forbidden, this is
sometimes called the closure property in jurisprudence: what is not forbidden

1When only finite vocabularies are considered.

8 Pablo F. Castro

is permitted. This logic is equivalent to the basic deontic closed logic of urn
model action of Segerberg [22]. It is matter of discussion whether this axiom
capture closeness, one may devise a scenario where smoking is allowed, but
smoking inside a building is not, thus the formula P(smoking)∨F(smoking)
does not hold in this situation.

DAL2 is DAL1 extended with condition:

(E \
⋃

ai∈∆0

I(ai)) ∈ Leg ∨ (E \
⋃

ai∈∆0

I(ai)) ∈ Ill, (III)

DAL3 is DAL1 extended with condition:

I(a1) ∪ · · · ∪ I(an) = E , (IV)

roughly speaking, the events that are considered in these logics are exactly
those “produced” by the basic actions. In this case, we call these structures
closed since they do not take into account events that occur outside of the
system being described. Let us illustrate these ideas with a simple example,
consider an automatic teller machine, then, in this case, you describe the
system by providing the basic actions in these class of devices: withdraw
money, deposit money, etc. But actions do not belonging to the teller are
usually not taken into account, an example is an electrical overload, this
event is not part of the system, and then it is not considered in the given
description. Of course, the vocabulary can be enlarged to consider further
actions.

DAL4 is DAL0 extended with the atom closure axiom:

P(δi) ∨ F(δi) (V)

for any atom δi of the boolean algebra of terms. Finally, we have the system
DAL5 that is DAL4 extended with condition IV.

Some comments are useful about this system, the condition above says
that any elemental action (that is, a parallel execution of basic actions)
is either forbidden or allowed. For instance, if we consider the actions of
driving and drinking, then might be the case that driving is neither allowed
nor forbidden, however, driving while drinking should be either permitted
or prohibited; this condition seems acceptable from the point of view of
normativeness, in particular if one adheres to the principle of closeness.

3. Computational Complexity

Let us investigate the computational complexity of the satisfiability problem
(abbreviated SAT from now on) for the logics described in Section 2. Note

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 9

that tableau proof systems are basically procedures for model finding (to
prove a formula we apply the procedure to its negation and then, if no
model is found, the formula is considered a theorem), thus the complexity
of SAT for DAL becomes relevant for evaluating the efficiency of the proof
systems described later on. First, it is important to note that the number of
actions in ∆0 is relevant when checking the satisfiability of a formula ϕ, for
instance formula: P(ata)∧¬P(a)∧¬P(a) is unsatisfiable for ∆0 = {a}, this
mainly since for this vocabulary we can have two events, one for indicating
the execution of a, and another for pointing out the occurrence of a, if more
actions are considered then the formula becomes satisfiable (as the reader
can check). Below we provide two results: if the vocabulary is considered
fixed, then SAT is NP-Complete for any version of DAL, but if we consider
the number of actions as an extra parameter (i.e., the problem is, given a
formula ϕ and a vocabulary ∆0, we want to know whether ϕ is SAT for
vocabulary ∆0) SAT becomes Σp

2-Hard in Stockmeyer’s hierarchy [3]. It is
interesting to note that SAT is EXPTIME-complete for dynamic logics (and
so for Dynamic Deontic Logics) [21]. The lower computational complexity
of DAL is due the simplicity of its semantics, wherein no Kripke structures
are present.

Theorem 3.1. Given a fixed vocabulary ∆0, SAT is NP-Complete for DALi

(for any i).
Proof. Proving that DAL0 is NP-hard is direct. Given any CNF formula in
propositional logic with variables x0, . . . , xn we consider a vocabulary ∆0 =
{x0,xn} of primitive actions, and translate each propositional formula xi
to a deontic formula P(xi), and ¬xi to ¬P(xi), while the boolean operators
are translated by applying the identity. We denote by τ(ϕ) the translated
formula. Let us prove that ϕ is SAT iff τ(ϕ) is SAT. Suppose that v is a
valuation, then we form the following action term: δ = x∗0 u x∗1 u · · · u x∗n
where x∗i = xi if v(xi) = >, and x∗i = xi otherwise. Now, consider the
structure M = 〈D, I〉 with D = 〈{δ}, {{δ}, ∅}, ∅〉, and I(ai) = {δ} if δ v ai,
and I(ai) = ∅, otherwise. it is direct to see that M � v(ϕ). For the other
direction, assume M � τ(ϕ) for some M , then we define a valuation v as
follows: v(xi) iff M � P(xi), it is direct to prove that v � ϕ. Furthermore,
note that this proof works for any version of DALi.

Let us now prove that DAL0 is in NP. Note that, given an atom δi and
an action term α we can check δi v α in linear time. An atom is simply
a term a∗1 u · · · u a∗n where a∗i is either ai or ai; the procedure for checking
δi v α is recursive: the base cases are given by α = ai in this case δi v ai
is true when ai does not appear negated in δi and false otherwise, thus a

10 Pablo F. Castro

simple inspection of δi is enough. If α = β then δi v α if it is not the case
that δi v β, which is checked recursively. If α = α′ u α′′, then ai v α′ u α′′
when δi v α′ and δi v α′′, the two can be checked applying recursion, for
α = α′ t α′′ the procedure is similar. It is direct to see that the time needed
for checking δi v α with this procedure is linear with respect to the length of
α.

Now, we describe a non-deterministic procedure for checking satisfiabil-
ity, given a formula ϕ we proceed as follows:

1. For each sub formula ¬P(α) or ¬F(α) in ϕ we guess an element of
{δ0, . . . , δm, 0} = At(∆0) ∪ {0} , and we store 〈¬P(α), x〉 or 〈¬F(α), x〉
where x ∈ At(∆0) ∪ {0}, to keep track of the atoms guessed.

2. For the set of equations appearing in ϕ (denoted by Eq(ϕ)), we choose
(nondeterministically) a collection eqs = {eq0, . . . , eqn} of equations.

3. For each δi guessed, we calculate the set equiv(δi) = {δj | ∃α = β ∈
els ∧ δi v α ∧ δj v β}, this can be done in polynomial time w.r.t. the
formula size, since the number of δ′s does not depend on the formula, and
the number of equation equations is bounded by |ϕ|, in addition checking
δi v α is linear in the size of α. After that, we proceed as follows:

• If ϕ = P(α) we search for a tuple 〈¬P(β), δk〉 such that δi v β for
some δi ∈ equiv(δk), in such a case we return false, otherwise we
return true.

• If ϕ = F(α) we search for a tuple 〈¬F(β), δk〉 such that δi v α for
some δi ∈ equiv(δk), in such a case we return false, otherwise we
return true.

• If ϕ = ¬P(α), we look for the tuple 〈¬P(α), δi〉 and check δi v α, if
this does not hold we return false, otherwise we return true,

• If ϕ = ¬F(α), we look for the tuple 〈¬F(α), δi〉 and check δi v α, if
this does not hold we return false, otherwise we return true,

• If ϕ = α = β and this equation is in eqs, then we return true,
otherwise we return false,

• If ϕ = ϕ0 ∨ϕ1, we apply the algorithm to ϕ0 and ϕ1 and return true
if someone of them returns true, otherwise we return false,

• If ϕ = ¬ϕ, we apply the algorithm to ϕ and return true if the algo-
rithm returns false and viceversa.

We only need to prove that this procedure is correct, that is: SAT (ϕ) returns
true iff there is a model M such that M � ϕ. Suppose that SAT (ϕ) returns

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 11

true, we build a model as follows. First, we define the collection of sets:

per = {{δi} | there is no pair 〈¬P(α), δk〉 with δk ∈ equiv(δi)}

Roughly speaking, this set contains all the atoms that should be allowed,
similarly we define:

forb = {{δi} | there is no pair 〈¬F(α), δk〉 with δk ∈ equiv(δi)}

The collection of atoms that must be forbidden. Finally, we define the model
as follows: D = 〈〈E , Leg, Ill〉, I〉,

• E = {δi | δi ∈ ∆0},
• Leg = Id(per),

• Ill = Id(forb),

• I(ai) = {δi | δi ∈ Atvai(∆0/eqs(ϕ))}

Where Id(S) is the ideal generated by the collection S, ∆0/eqs(ϕ) is the
boolean algebra obtained from vocabulary ∆0 modulo equations eqs(ϕ) and
Atvai(∆0/eqs(ϕ)) is the set of atoms in this algebra preceding ai. We need
to prove M � ϕ. The proof is by induction, the base cases are basic deontic
formulas

By contradiction suppose that M 2 ϕ, and ϕ is a basic deontic formula,
if ϕ = P(α) note that P(α) is false in M since α /∈ Leg, and by definition
this happens when we have some pair 〈δi,¬P(β)〉 but then the algorithm
cannot return true, and by contradiction we obtain D � ϕ. If ϕ = α = β,
since α = β ∈ eqs(ϕ) we have I(α) = I(β) (they have the same atoms in
∆0/eqs), for the other basic deontic formulas are similar and the inductive
cases are direct by applying the inductive hypothesis, so M � ϕ.

For the other side, suppose that there is a model M ′ � ϕ, for this M ′ we
have that a set of equations in Eq(ϕ) are true, say eqs, and also also some
subformulas of the form ϕi = ¬P(αi) (or ϕi = ¬F(αi)) such that M ′ � ϕi, if
this collection of sub formulas is empty, then note that the algorithm should
have guessed eqs and returned true. Then the collection of ϕi must be non-
empty, now for each subformula ¬P(αi) we have an atom δj v αi such that
M ′ � ¬P(δi) these δi’s can be guessed by the algorithm above, and if the
algorithm does not return true for these δ’s is since any sub formula of ϕ
has a sub formula P(α) such that δi v α and δi is in the set guessed, and so
M ′ � P(δi), this is a contradiction, then the algorithm must return true.

For the other logics the proof is similar. For DAL1 we can add the formula
P(ai) ∨ F(ai) for each ai in ϕ. The length of this formula does not depend

12 Pablo F. Castro

on ϕ and so it does not affect the efficiency of the algorithm discussed above.
For DAL2 we add the formula P(a0 u · · · u an) ∨ F(a0 u · · · u an) to ϕ. For
DAL3 we add the equation a0t· · ·tan = 1 to eqs. For DAL4 we add formulas
P(δi)∨F(δi) to ϕ, as before note that the length of this formula do not depend
on ϕ, and similarly for DAL5. The result follows.

If we consider vocabularies as an extra parameter of the decision method
the complexity of the SAT problem gets “harder”, this is proven in the
following theorem.

Theorem 3.2. Given a formula ϕ and a vocabulary ∆0, the problem of de-
ciding whether ϕ is satisfiable for some model of ∆0 is Σp

2-Hard for DALi

(for any i).
Proof. We reduce a complete problem for Σp

2 to DAL satisfiability, in par-
ticular we use Quantified Boolean Formulas (QBF), the reader is referred to
[3] for the details about this logic. Consider quantified boolean formulas of
the style:

∃x0, . . . , xn : ∀y0, . . . , ym : ϕ, (VI)

where the xi’s and yj’s are propositional variables, and ϕ is a boolean formula
in conjunctive normal form in which only quantified variables occur. Decid-
ing the truth of these kinds of formulas is a problem that is Σp

2-Complete [3].
Given a quantified boolean formula φ, we define a DAL formula τ(φ) (note
that the proof below works for any version of DAL). Assume that φ has the
form of formula VI; first, we define the vocabulary:

∆0 = {X0, . . . , Xn, x0, . . . , xn, Y0, . . . , Ym,¬Y0, . . . ,¬Ym},

where x0, . . . , xn are the variables that appear existentially quantified in φ,
and the rest are fresh symbols. First we define a mapping from boolean literal
to action terms as follows:

• τ(xi) = Xi,

• τ(¬xi) = Xi,

• τ(yi) = Yi,

• τ(¬yi) = ¬Yi.

Let us define some auxiliary formulas.

Φ∀ =
∧
Yi

F(Yi u ¬Yi) ∧ F(Yi u ¬Yi) ∧ Yi 6= ∅ ∧ ¬Yi 6= ∅ ∧P(Yi t ¬Yi) (VII)

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 13

Roughly speaking, this formula states that some way of executing both Yi
and ¬Yi must be allowed. On the other hand, we have another formula for
existentially quantified variables.

Φ∃ =
∧
xi

((Xi = xi ∨Xi = xi) ∧Xi 6= ∅ ∧P(xi)⇒ F(xi) ∧P(xi)⇒ F(xi))

(VIII)
This formula says that any occurrence of Xi can be replaced by either xi or
xi, and only one of them is allowed.

Now, we can define the translation of the boolean formula (recall that φ
is in CNF form).

• τ(z0 ∨ · · · ∨ zk) = P(τ(z0) t · · · t τ(zk)) ∧ F(τ(z0) u · · · u τ(zk)),

• τ(c0 ∧ · · · ∧ ct) = τ(c0) ∧ · · · ∧ τ(ct)

and for the complete formula te translation is as follows:

τ(φ) = Φ∃ ∧ Φ∀ ∧ τ(ϕ(x0, . . . , xn, y0, . . . , ym)))

Intuitively, each atom in the term algebra denotes an assignment to variables,
for instance, the atom x u y denotes the assignment in which x is true and
y is false. The main idea is that atomic action terms representing satisfying
assignments will belong to the set Leg in a DAL model.

First observe that, for any QBF ϕ, the size of τ(ϕ) is linearly bounded
by the size of ϕ, that is, the translation can be done in polynomial time. We
now need to prove that this translation is correct, that is, ϕ is true iff τ(ϕ)
is SAT.

Let us prove the implication from left to right first, suppose that φ is true,
recall that the boolean part is a CNF formula, that is, it is a conjunction of
clauses φ0∧· · ·∧φk. Consider valuation v : {x0, . . . , xn} → Bool that makes
formula φ true, we build a model of τ(φ) as follows:

M = 〈〈E , Leg, Ill〉, I〉, where E = At(∆0); for defining the sets Leg and
Ill we consider the following auxiliar function for every a ∈ ∆0 and δ ∈ E:

val(a)(δ) =

{
true if a does not appear negated in δ

false otherwise

that is, this function says if a primitive action appears negated or not in a
given atomic action term. Using val we can define the following collection
of sets:

S = {{δ} | δ ∈ E∧∀xi : ϕ[xi := val(δ)(xi)] = true∧∀yi : val(Yi) 6= val(¬Yi)}
(IX)

14 Pablo F. Castro

and we also consider:

S = {{δ} | δ ∈ E ∧ {δ} /∈ S}

Then we define:

Leg = Id(S)

the ideal generated by S, furthermore:

Ill = Id(S).

that is the ideal generated by the complement of S. Furthermore, for each
a ∈ ∆0 we define I(a) = At(a) ∩

⋃
S.

Rest to prove that M � τ(φ), let us prove that M � Φ∀ ∧ Φ∃ ∧ τ(φi), for
every clause φi, we know that φi = `0 ∨ · · · ∨ `k, that is: τ(φi) = P(τ(`0) t
· · · t τ(`k)) ∧ F(τ(`0) u · · · u τ(`k)) this could be false since there is a δ ∈
I(τ(`0)t· · ·tτ(`k)) such that {δ} /∈ Leg, by definition this only may happen
when M � τ(`0) t · · · t τ(`k) = ∅, and this by Definition IX implies that
there is no boolean values v0, . . . , vn such that φi[x0 := v0, . . . , xn := vn] is
true, but this contradicts our initial assumption that φ is true, and then we
have M � φ.

For the other direction, suppose M � τ(φ), we define an assignment v
from existentially quantified variables to boolean values, for defining v we
take any atomic term δ such that M � P(δ) ∧ δ 6= ∅, there must be at least
one of such terms, otherwise Leg = {∅} and φ cannot be true in the model
since Φ∃ and Φ∀ would be false. Then, we define v(xi) = true iff xi appears
positively in δ. Now we assert that φ[x0 := v(x0), . . . , xn := v(xn)] = true,
let us prove this, if φ[x0 := v(x0), . . . , xn := v(xn)] = false that is, there is a
clause in which all literals are false on this valuation, suppose φi = `0∨· · ·∨`k
is such a clause we have that all the literals that are x’s (or their negations)
are false under v, thus if x = `i for some i, then x does not appear in δ, and
if ¬x = `i for some i then x appears positively in δ; if we change, in this
action term, any yi occurring in δ by yi (its negation), since Φ∀ we should
have that M � P(δ′) where δ′ is the resulting term, but we should have that
M � F(δ′) (because the definition of τ(φi)), and this contradicts Φ∀, and
therefore M 2 φ but this is a contradiction, the result follows.

4. The Basic Tableau for DAL0

Now we present a tableau for DAL0, we extend this system in Section 5 to
cope with the other logics. The tableau rules for the boolean operators are

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 15

standard, and are shown in Figure 5. We follow Smullyan’s terminology [25]
and we classify DAL0 formulas into A, B, C, and D classes of formulas; the
first ones are formulas that can be thought of as being conjunctions (Figure
1); formulas of type B are those that can be identified with disjunctions
(Figure 2); formulas C are those corresponding to deontic operators applied
to conjunctions of actions (Figure 3), whilst formulas D are negations of
basic deontic formulas (Figure 4). The tableau method takes as parameters
a formula to be proven (say ϕ) and the vocabulary over which the formula
is defined (say ∆0). The notions of tableau and branch are standard and

A A1 A2

ϕ ∧ ψ ϕ ψ

¬(ϕ ∨ ψ) ¬ϕ ¬ψ
P(α t β) P(α) P(β)

F(α t β) F(α) F(β)

¬P(α u β) ¬P(α) ¬P(β)

¬F(α u β) ¬F(α) ¬F(β)

P(α u β) P(α) P(β)

F(α u β) F(α) F(β)

Figure 1. Formulas of Type A

B B1 B2

ϕ ∨ ψ ϕ ψ

¬(ϕ ∧ ψ) ¬ϕ ¬ψ
¬P(α t β) ¬P(α) ¬P(β)

¬F(α t β) ¬F(α) ¬F(β)

¬P(α u β) ¬P(α) ¬P(β)

¬F(α u β) ¬F(α) ¬F(β)

Figure 2. Formulas of Type B

can be found in the literature [25, 11], for the sake of clarity, we recast them
here.

Definition 4.1. A tableau is an (n-ary) rooted tree, where each node is
labelled with a set of formulas and a branch is a path from the root to some
leaf.

From now on, we identify any branch B with its set of formulas. An
interesting observation is that formulas of the type ¬P(α) (or ¬F(α)) have

16 Pablo F. Castro

C C(δi)

F(α u β) F(δi) for some δi ∈ Atom(α) ∩Atom(β)

P(α u β) P(δi) for some δi ∈ Atom(α) ∩Atom(β)

P(α t β) for some δi /∈ Atom(α) ∩Atom(β)

F(α t β) for some δi /∈ Atom(α) ∩Atom(β)

F(ai) F(δi) for some δi ∈ Atom(ai)

P(ai) P(δi) for some δi ∈ Atom(ai)

F(ai) F(δi) for some δi /∈ Atom(ai)

P(ai) P(δi) for some δi /∈ Atom(ai)

Figure 3. Formulas of Type C

D(ai) D(δi)

¬F(ai) ¬F(δi) for some δi ∈ Atom(ai)

¬P(ai) ¬P(δi) for some δi ∈ Atom(ai)

¬F(ai) ¬F(δi) for some δi ∈ Atom(ai)

¬P(ai) ¬P(δi) for some δi ∈ Atom(ai)

Figure 4. Formulas of Type D

an “existential” character, in the sense that they state that there is some
way of executing α which is not permitted (or not forbidden), these formulas
imply that α 6= ∅, thus there must be some way of executing α, this fact
inspires the following definition:

Definition 4.2. Given any branch B, we define the following set:

B∗ = {α 6= 0 | ¬P(α) ∈ B or ¬F(α) ∈ B} ∪ B

Thus, B∗ is the branch extended with a collection of inequations implied
by the deontic formulas already in the branch. Furthermore, any branch
introduces an equational theory:

Definition 4.3. Given a branch B, we define:

Eq(B) = {α = β | α = β ∈ B} ∪ {α = 0 | P(α) ∈ B ∧ F(α) ∈ B}

Consider the tableau rules shown in Figure 5. The tableau calculus for
DAL0 consists of rules A,B,C, D, Ref and Eq. Rules of type A and B are
standard, more interesting for us are rules C and D. Roughly speaking, rule
D says that, if we have formula ¬P(ai) in a branch, for some ai ∈ ∆0, then
there is some atom δi with δi v ai, such that we have ¬P(δi) in the branch,

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 17

A :
A

A1

A2

B :
B

B1 B2

C :
C(α u β)

C(δi)
[Proviso 1] D :

D(α)

D(δ0) | · · · | D(δn)

Ref :
α = α

Eq :
φ

φ[α := β]
[Proviso 2]

Figure 5. Tableau Rules for DAL0

i.e., this atom provides a witness for the formula. Note that for rule C we
have the following proviso:

• Proviso 1: For some δi appearing in the branch with δi ∈ At(α) and
δi ∈ At(β)

For instance, given P(α u β) we can add to the actual branch the formula
P(δi), where δi is an atom of both α and β that is already in the branch,
thus, it was added in the branch by the application of another rule. On the
other hand, Rules Ref and Eq are standard rules for equality [11]; Ref is
the rule for reflexivity, in any branch we may add the equation α = α to
the branch (we restrict the application of this rule to actions α appearing in
the branch). Rule Eq is the replacement of equals by equals, we have the
following proviso for this rule:

• Proviso 2: φ is a basic deontic formula or an equation, and equation
α = β belongs to the actual branch.

That is, if we have a formula φ where an action α occurs, and equation α = β
belongs to the branch, then we can add φ[α := β] (the formula obtained by
replacing some occurrences of α by β) to the branch. As described in [11]
the other properties of equality can be proven from these rules. Note that,
when constructing the tableau, standard rules are applied first, this implies
that we have the set of equations occurring in the input formula at hand
before we start to apply deontic rules; also note that Eq is directional, that
is, it allows us to replace the left term in the equation by the right term, but
not viceversa.

As usual we define the notions of closed and open branches, intuitively,
the former captures those branches that are inconsistent, and the latter

18 Pablo F. Castro

identifies the branches that are satisfiable. To this end, we define some
conditions about sets for formulas. Given a set of DAL0 formulas S over a
vocabulary ∆0 = {a0, . . . , an}, we consider the following conditions:

C0 Eq(S) ` 1 = 0,

C1 ϕ ∈ S and ¬ϕ ∈ S,

C2 Eq(S) ` α = β and α 6= β ∈ S,

C3 Eq(S) ∪ {1 = a0 t · · · t an} ` α = β and α 6= β ∈ S.

Now, we can define the notion of closed branch:

Definition 4.4. Given a branch B of a tableau, we say that B is closed for
DAL0 if either C0, C1 or C2 holds for B∗,

Note that we do not have used condition C3 in this definition, this
condition is needed for the other versions of DAL.

Let us prove the soundness and completeness of the tableau calculus
for DAL0; towards this end we introduce the notions of complete and SAT
branch.

Definition 4.5. We say that a branch B is complete for DAL0 if:

• A formula A belongs to B, then A1 and A2 belong to B,

• A formula B belongs to B, then either B1 or B2 belong to B,

• A formula D belongs to B, then some D(δi) belongs to B, and δi appears
in other formula in the branch.

• A formula C belongs to B, and for some C(δi), δi appears in other formula
in the branch, then C(δi) belongs to B.

• A basic deontic formula or an equation φ and an equation α = β belong
to B, such that α occurs in φ, then φ[α := β] belongs to B.

Intuitively, a branch is complete if all the possible rules have been applied.
The following definition is needed for proving the soundness of the tableau
calculus.

Definition 4.6. A branch B is SAT if there is a deontic structure M such
that M � B.

In the definition above, recall that we identify branches with its collection
of formulas, thus, a deontic structure satisfies a branch iff it satisfies all the
formulas in the branch.

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 19

Theorem 4.7. Given a SAT branch B, then any branch B′ obtained by
applying the rules for DAL0 is SAT.
Proof. Let B a branch, and M = 〈D, I〉 and D = 〈E , Leg, Ill〉.

• Rule A, the case of boolean formulas is straightforward. For P(α t β),
suppose M � P(α t β), that is, I(α t β) ∈ Leg, thus, I(α) ∈ Leg and
I(β) ∈ Leg which implies M � P(α) and M � P(β). For F(α t β)
is the same. The proof for negated formulas is similar, for instance, if
M � ¬P(α u β) then, by definition, I(α u β) /∈ Leg, thus by condition
L1, I(α) /∈ Leg and I(β) /∈ Leg, and then M � ¬P(α) and M � ¬P(β).

• Rule B, again the proof for boolean formulas is direct. For ¬P(α t β),
if M � ¬P(αt β), then I(αt β) /∈ Leg, and therefore (by condition L2)
I(α) /∈ Leg or I(β) /∈ Leg, thus M � B1 or M � B2. The proofs for the
other formulas are similar.

• Rule D, suppose D ∈ B, if M � ¬P(ai), then I(ai) /∈ Leg, thus we must
have some δi ∈ At(ai) such that I(δi) = {e} and {e} /∈ Leg this implies
that M � ¬P(δi).

• Rule C, the proof is similar to the case of rule D.

• The proof for rules Ref and Eq are standard and the reader is referred
to [11].

The soundness of the tableau calculus follows:

Corollary 4.8. If ϕ is tableaux provable in DAL0 (that is, there exists a
closed tableau for ϕ), then � ϕ.

Towards the proof of completeness we introduce the notion of Hintikka
sets.

Definition 4.9. Let S be a set of formulas we say that S is Hintikka for
DAL0 iff:

• S is not closed for DAL0,

• S is complete.

The interesting fact about Hintikka sets is that they are SAT.

Theorem 4.10. Any Hintikka set for DAL0 is SAT.
Proof. Given a Hintikka set S we define a deontic structure. Let Eq(S) all
the equations in S. We denote by ∆0/Eq(S) be the boolean action algebra of
terms modulo Eq(S), and At(∆0) the set of atoms in this algebra (denoted

20 Pablo F. Castro

by δ0, δ1, . . . , δn). Recall that, for any action ai we denote by At(ai) its set
of atoms. Now, for each ai ∈ ∆0 we define the following sets:

Per = {{δi} | @¬P(δi) ∈ B}

and similar for forbidden actions:

Forb = {{δi} | @¬F(δi) ∈ B}

We define the model M∗ = 〈〈At(∆0), Leg∗, Ill∗〉, I〉 where:

• Leg∗ = Id(Per),

• Ill∗ = Id(Forb)

Thus, Leg∗ is the ideal in the boolean algebra 〈22E , ∅, 2E ,∪,∩, \〉 generated
by the basis Per; and Ill∗ is the ideal generated by the basis Forb. The
interpretation function is defined as follows:

I(ai) = {δi | δi ∈ At(ai)}

Now, we need to prove that M∗ is a model for B, that is, M∗ � B. The
proof is by induction. The base cases are formulas of the style P(α) and
F(α). In this case we apply again induction on α, if α = ai and ai ∈ B,
suppose M∗ 2 P(ai), thus we have I(ai) /∈ Leg∗, since ai = δ1 t · · · t δk
where δi ∈ At(ai), we must have I(δi) /∈ Leg∗ by definition of Leg∗ this only
happens when ¬P(δi) ∈ B, but then by application of Rule C we must have
P(δi) ∈ B and the branch is closed, which is a contradiction and the result
follows. The proof for F(ai) is similar. For the rest of the action terms
the proofs are similar applying the corresponding rules and the inductive
hypothesis.

This theorem implies the completeness of the calculus.

Theorem 4.11. The tableau calculus for DAL0 is complete, that is: � ϕ
implies ` ϕ.
Proof. Suppose that 0 ϕ, that means that we have an open tableau for ¬ϕ,
by theorem 4.10 this implies that we have a model M∗ � ¬ϕ and so 2 ϕ, the
result follows.

5. Extensions of the Basic Tableau System

We extend the tableau shown above to cope with any DALi. Let us consider
the additional rules shown in Figure 6. The tableau calculus for DAL1 con-

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 21

R1a
¬P(δi)

F(ai)
R1b

¬F(δi)

P(ai)

R2a :
¬F(δ̂i)

P(δ̂i)
R2a :

¬P(δ̂i)

F(δ̂i)

R4a :
¬F(δi)

P(δi)
R4b :

¬P(δi)

F(δi)

Figure 6. Tableau Rules for DAL1, DAL2, DAL3, DAL4, DAL5

sists of rules of DAL0 plus rules R1a,R1b. For DAL2 we have the rules of
DAL0 plus rules R2a,R2b. For DAL3 we have the same rules as for DAL0.
For DAL4 we have the rules of DAL0 and rules R4a,R4b. Note that DAL3

has the same rules as DAL0, the difference between these two systems is
given by the notion of closed branch.

Definition 5.1. B is closed for DAL3,DAL4 and DAL5 if either C0, C1 or
C3 holds,

For the other versions of DAL the definition of closed branch is as in
Definition 4.4. The notions of complete branch and Hintikka branch for
these logics are direct.

Definition 5.2. Given a branch B we say that it is complete for DAL1 or
for DAL3 if it is complete for DAL0 and:

• If ¬P(δi) ∈ B, then F(ai) ∈ B where δi ∈ At(ai),
• If ¬F(δi) ∈ B, then P(ai) ∈ B where δi ∈ At(ai),

Definition 5.3. Given a branch B we say that it is complete for DAL2 if it
is complete for DAL1 and:

• If ¬P(δ̂i) ∈ B, then F(δ̂i) ∈ B where δi ∈ At(ai),
• If ¬F(δ̂i) ∈ B, then P(δ̂i) ∈ B where δi ∈ At(ai),

Definition 5.4. Given a branch B we say that it is complete for DAL4 and
DAL5 if it is complete for DAL0 and:

• If ¬P(δi) ∈ B, then F(δi) ∈ B where δi ∈ At(ai),

22 Pablo F. Castro

• If ¬F(δi) ∈ B, then P(δi) ∈ B where δi ∈ At(ai),

The notion of Hintikka branch is the same as in Definition 4.9. The
proofs of soundness for these tableau calculi can be obtained by extending
both the definition of complete branch and the proof of Theorem 4.7 in a
direct way.

Theorem 5.5. The tableau calculus for DALi (with i ∈ {1, 2, 3, 4, 5}) is
sound.

More interesting are the proof of completeness for these extensions.

Theorem 5.6. If B is a Hintikka branch for DALi, then there is a model M∗

such that M∗ � ϕ.
Proof. First let us prove the property for DAL1. We define the model M∗

exactly as in Theorem 4.10; we just need to prove that M∗ holds Condition
II. Suppose that M∗ � ¬P(ai) and M∗ � ¬F(ai), by the definition of M∗

this implies that ¬P(δi) ∈ B and ¬F(δj) ∈ B for some δi, δj ∈ B, by rules R1
and the definition of complete branch we have that F(ai) ∈ B, and by rule
C, we must have F(δj) ∈ B, which implies that the branch is closed giving a
contradiction. For DAL2 the proof is similar, but using rules R2a and R2b.
For DAL3 we add the equation a0 t · · · t an = 1 to Eq(S), and the result
follows. The proof is more complex for DAL4, in this case if M∗ � ¬P(δi)
and M∗ � ¬F(δi), thus by definition of M∗ we have that ¬P(δi) ∈ B and
¬F(δi) ∈ B, but then by rules R4a and R4b we obtain P(δi) ∈ B and
F(δi) ∈ B which implies that B is not Hinttika, giving us a contradiction.The
proof for DAL5 is similar.

A standard argument can be used to prove that the tableau methods
proposed above can be computed in PSPACE.

Theorem 5.7. For any formula in DAL, the tableau can be developed in
PSPACE.
Proof. The proof is based on observing that each branch can be developed in
polynomial space, and branches can be inspected one per time in a backtrack-
ing fashion. In any branch we have a collection of sub formulas of the given
initial formula, first note that the number of sub formulas is polynomially
bounded by the length of the formula, also we may add (by Rule C) new
formulas to the branch, but we only can add one of these formulas for each
application of rule D in the branch, and we have at most one application
of this rule for each sub formula (which is polynomially bounded), then in
each branch we can only add a polynomial amount of formulas of type C(δi),

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 23

that is, the size of any branch is polynomially bounded by the size of the
original formula, we inspect one branch per time, and for each branch we
only need polynomial space. On the other hand, since boolean theoremhood
is CONP-Complete, equational reasoning can be encoded in the method, the
use of rule Ref is convenient for the presentation of the calculus, but it is
not optimal for implementing the decision method. That is, we apply the rest
of the rules until we get all the basic deontic formulas and equations, and
then we check (for instance) if there are some P(α) and ¬P(β) belonging
to the branch and check if equation α = β can be proven from the equations
already in the branch, this can be done in PSPACE, and similar for the rest
of contradictory formulas.

6. Final Remarks

In this article we have described tableau methods for deontic action log-
ics based on finite boolean algebras, these logics have been investigated in
the literature, but no automated methods of reasoning seem available for
them (though as remarked in Section 1, in [6] a tableau calculus is given
for DAL5). Furthermore, we proved that SAT is NP-Complete for DAL (in
any of its versions) when vocabularies are fixed, and the problem is Σp

2-Hard
when vocabularies are taken as parameters, note that for most modal logics
SAT is in PSPACE, the “improvement” in the complexity seems to reside on
the simplicity of the semantics of DAL, where no Kripke structures or sim-
ilar formal devices are used. The proof methods provided here for DAL are
in PSPACE, this seems reasonable taking into account the computational
complexity of the logic. As already remarked in Section 1, the usefulness
of deontic action logics for reasoning about computing systems has been
noted by several authors; however, automated proof methods amenable to
be implemented in software tools are needed to be able to apply these for-
malisms in practice; in particular, when one intends to study complex and
large computing systems. Thus, we believe that the proof methods intro-
duced in this paper can be used as a basis for constructing (semi) automatic
theorem provers for deontic action logics, we leave this as a future work.

References

[1] Åqvist L., Deontic Logic, in D. Gabbay (eds), Handbook of Philosophical Logic, vol.

8, Springer Netherlands, 2002.

[2] Anglberger A.J.J., Dynamic Deontic Logic and Its Paradoxes, Studia Logica,

89:427–435, 2008.

24 Pablo F. Castro

[3] Arora S., B. Barak, Computational Complexity: A Modern Approach, Cambridge

University Press, 2009.

[4] Broersen, J. M., Modal Action Logics for Reasoning about Reactive Systems, PhD

thesis, Vrije University, 2003.

[5] Broersen, J. M., Action Negation and Alternative Reductions for Dynamic Deontic

Logics, Journal of Applied Logic, 2: 153–168, 2004.

[6] Castro P.F., T.S.E. Maibaum, A Tableaux System for Deontic Action Logic, 9th

International Conference DEON, Lecture Notes in Computer Science, vol. 5076, pp.

34–48, Springer, 2008.

[7] Castro, P.F., T.S.E. Maibaum, Deontic Action Logic, Atomic Boolean Algebras and

Fault-Tolerance, Journal of Applied Logic, 7(4): 441-466 (2009)

[8] Chellas B.F., Modal Logic: An Introduction, Cambridge University Press, 1980.

[9] Dignum, F., J.-J.Ch Meyer, and R.J. Wieringa Free Choice and Contextually

Permitted Actions, Studia Logica, 57:193–220, 1996

[10] Emerson E.A., Temporal and Modal Logic, in J. van Leeuwen (eds.), Handbook of

Theoretical Computer Science (vol. B), MIT Press, 1990.

[11] Fitting, M, First-Order Logic and Automated Theorem Proving, Springer-Verlag,

1996.

[12] Harel, D., Dynamic Logic, in D.Gabbay and F.Guenthener (eds.), Handbook of

Philosophical Logic, Volume II: Extensions of Classical Logic, Reidel, 1984, pp. 497-

604.

[13] Hilpinen, R., P. McNamara, Deontic Logic, A Historic Survey and Introduction, In

D. Gabbay, J. Horty, R. van der Meyden, X. Parent, L. van der Torre (eds), Handbook

of Deontic Logic and Normative Systems, College Publications, 2013.

[14] Hughes, J., and L.M.M. Royakkers, Don’t ever do that! Long-term duties in

PDeL, Studia Logica, 89:59–79, 2008.

[15] Kalinowski, J. Theorie des Propositions Normatives, Studia Logica, 1:147–182,

1953.

[16] Kent S., W. Quirk, T.S.E. Maibaum, Specifying Deontic Behaviour in Modal Action

Logic. Technical report, Forest Research Project, 1991.

[17] Knuuttila, S., The Emergence of Deontic Logic in the Fourteenth Century, in R.

Hilpinen (eds.), New Studies in Deontic Logic: Norms, Actions and the Foundations

of Ethics, Springer, 1981, pp. 225–248

[18] Mally, E., Grungesetza de Sollens: Elemente del Logik des Willens, Leuscher

and Lubensky, Graz, 1926. Reprinted in Mally. E., Logische Schriften: Groβes

Logikfragment-Grundgesetze des Sollens, pp.227–324, edited by K. Walf and

P.Weingartner, D. Reidel, Dordrecht, 1971.

[19] Meyer J. J-.Ch., A Different Approach to Deontic Logic: Deontic Logic viewed as a

Variant of Dynamic Logic, Notre Dame Journal of Formal Logic, 29:106-136, 1988.

[20] Meyer J. J-,Ch. , F.P.M. Dignum, R.J. Wieringa The Paradoxes of Deontic Logic

Revisited: A Computer Science Perspective, Technical Report, Ultrech University,

1994.

[21] Pratt V., A Practical Decision Method for Propositional Dynamic Logic, in Pro-

ceedings of the 10th Annual ACM Symposium on Theory of Computing, New York,

NY: ACM, 326?337.

Tableau Systems for Deontic Action Logics based on Finite Boolean Algebras . . . 25

[22] Segerberg K., A Deontic Logic of Action, Studia Logica, 41:269–282, 1982.

[23] Segerberg K, A Blueprint for Dynamic Deontic Logic, Journal of Applied Logic,

7:388–402, 2009.

[24] Sikorski R., Boolean Algebras, Springer-Verlag, 1969.

[25] Smullyan R.M, First-order logic, Springer-Verlag, 1968.

[26] Trypuz R., Kulicki, On Deontic Logics Based in Boolean Algebra, J. Log. Comput.,

25:1241-1260, 2015.

[27] Van del Meyden, R. The Dynamic Logic of Permission, Journal of Logic and

Computation, 6:465–479, 1996.

[28] von Wright, G. H, Deontic Logic, Mind, 60: 1-15, 1951.

[29] Wieringa, R.,J., J.-J.Ch. Meyer, Application of Deontic Logic in Computer Sci-

ence: A Concise Overview, in R.J.Wieringa, J.-J.Ch. Meyer (eds), Deontic Logic in

Computer Science, John Wiley & Sons, Inc, 1994.

Pablo F. Castro
Departamento de Computación
Universidad Nacional de Rio Cuarto
Ruta 36 Km 601
Rio Cuarto, Argentina
pcastro@dc.exa.unrc.edu.ar

