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a b s t r a c t

We performed a fully ab initio study of the relaxed volume optimization of the four orthorhombic IV–VI
compounds (GeS, GeSe, a-SnS and SnSe), finding good agreement with experimental data from the liter-
ature. Based on the framework of the density functional theory and with a pseudopotential approach, we
constructed the quasiparticle GW scheme to adjust the band structure and densities of states of the sys-
tems at different pressures, discussing the trends of the band gaps, that show metallization. Also, and
within an effective two-particle equation for the response function, which includes the electron–hole
interaction effects, we included the GW and the effective electron–hole contributions to the real and
imaginary parts of the dielectric function and to the absorption coefficient of the four compounds both,
at ambient and higher pressures. Comparison with experiments shows a satisfactory degree of
agreement.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

High-pressure studies have long been an important area of solid
state physics, specially since the development in the 1950s of the
Diamond Anvil Cell (DAC), that made possible to generate pres-
sures even above 100 GPa [1]. The issue of how electronic proper-
ties vary with pressure not only is of high interest on its own in the
realm of pure Physics (e.g. Ref. [2]), but appears in cutting-edge
applications such as high-pressure synthesis of materials [3],
nanomaterials characterization [4], and high-pressure sensing [5],
where the optical response to pressure has proven to be of para-
mount relevance [6].

In this work we study pressure effects on the orthorhombic
IV–VI compounds – GeS, GeSe, a-SnS and SnSe – which have elec-
tronic and optical properties that make them attractive for their
use in diverse technological applications such as cut-off devices
and photovoltaic cells, and in the manufacture of infrared lasers
[7–9] and detectors. Also, they have been studied for the evalua-
tion of nanostructures etching [10]. In particular, SnS and SnSe
have been used as shells for PbSe and PbS quantum dots, for the
development of infrared-based devices [11], and as alternative
for Cadmium in IR thin film coatings [12].

These compounds crystallize in an orthorhombic structure
(Pnma 62 ðD16

2hÞ space group) and form double layers that are
ll rights reserved.
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perpendicular to the direction of the unit cell largest axis. The unit
cell contains eight atoms organized in two adjacent double layers.
The atoms in each double layer bond to their three nearest neigh-
bors and form a chain in zigzag along the direction of the minor
axis of the crystal, see Fig. 1. The lattice parameters of the four
compounds are presented in Table 1, where lattice parameters a,
b and c – corresponding to the x, y, and z directions in the first Wig-
ner–Seitz cell – are found along the parameters of the Murnaghan
equation of state (see full discussion in Sections 2.1 and 3). Because
of the dominant Van der Waals character of the bonds between
adjacent layers, these materials cleave easily along the b–c (100)
planes. All four orthorhombic IV–VI compounds have an interme-
diate behavior between a two dimensional and a three dimensional
material.

These chalcogenides have been experimentally and theoreti-
cally assessed [13–30]. In particular, the pressure dependence of
the structural parameters of these materials was studied [27–30]
in experiments up to different pressures. It is to be remarked that
ab initio constant pressure calculations [31,32] predict a
Pnma ? Cmcm phase transition for GeS at 35 GPa, and for SnS at
�4.5 GPa. These phase transitions have not yet been experimen-
tally verified. Furthermore, in the case of SnS a pressure study
[29] up to �40 GPa shows no transition before �18 GPa, where a
first-order Pnma ? P21/c (monoclinic) is reported. Therefore, there
is controversy regarding the phase diagram of SnS, and potentially
of the rest of the IV–VI. In this work we model all systems using the
experimental Pnma symmetry that, even in the case of SnS is ex-
pected to be a good approximation given the remarkably smooth
second-order transition predicted in Ref. [32].
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Fig. 1. Two unit cell of GeS (left) and the first Brillouin zone (right). The axes x, y,
and z correspond to the lattice parameters a, b, and c, respectively. The cleavage
plane is perpendicular to axis x. The unit cell for the other three compounds is very
similar, differing only slightly in their dimensions (see Table 1).
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In previous works [33–35] we performed studies on these com-
pounds at ambient pressure, although neglecting the local field ef-
fects and the electron–hole interaction. Given the importance of
the involvement of effective two-particle interactions, in this work
we used the more sophisticated (and resource demanding) many-
body approaches in order to further ensure the quality of our re-
sults. Here we provide with an unified ab initio treatment of the
hydrostatic pressure to all four orthorhombic IV–VI compounds
under pressure that, to the best of our knowledge, has not been
published before: (i) a volume optimization study with relaxation
of atomic positions, in an extended range of pressures (from ambi-
ent pressure to �35 GPa), (ii) the calculation of the so called GW
corrections [2,36–41] to the band gaps trend, with metallization
ocurring upon increasing pressure, (iii) the calculation of optical
properties consequently with (ii) variations, using the effective
two-particle Bethe–Salpeter equation both, at ambient and higher
pressures.
2. Computational details

2.1. Ground state electronic structure and volume optimization

We worked in the framework of the density functional theory
(DFT) [42–44], using a plane-wave basis set using norm-conserving
pseudopotentials method as implemented in the ABINIT package
[45–47]. We used Trouiller-Martins type pseudopotentials imple-
menting the Perdew–Burke–Ernzerhof (PBE) GGA parametrization
scheme [48] as generated with the FHI98PP [49] code. The eigen-
values and eigenfunctions of the Kohn–Sham [50] equations were
solved self-consistently using a 5 � 10 � 10 Monkhorst and Pack
[51] grid to sample the Brillion zone (BZ), and a 40 Ry cut-off
energy for the wave functions. These parameters yielded a
Table 1
Experimental ambient pressure volume and our parameters of the Murnaghan EOS. Where
moduli are in GPa.

a b c V0exp BM fit on ou

V0

GeS 10.495a 3.643a 4.305a 164.594 169.560
GeSe 10.862b 3.862b 4.414b 185.163 190.920
a-SnS 11.200c 3.987c 4.334c 193.532 199. 003
SnSe 11.4976d 4.1533d 4.440d 212.0232 218.858

a Ref. [27].
b Ref. [28].
c Ref. [29].
d Ref. [30].

⁄ Estimation according to BV0exp
¼ B0 þ B00PðV0exp Þ, as in Ref. [66].
convergence of the total energy better than 10�4 Ry for the four
compounds, and where used for the relaxation of atomic positions
and the calculation of the densities of states and the band
structures.

For each structure as well as for each pressure, we let the atomic
positions relax to minimize internal forces: this probed indispens-
able to much better agree with the experimental data. In order to
simulate hydrostatic pressure, when available, we used the lattice
parameters found in the literature. It is to be remarked that the
three lattice parameters change differently with pressure, thus a
simultaneous variation by a given percentage to all of them would
have not reproduced the effect of hydrostatic pressure. To fit the
calculated energy vs. volume data, we evaluated three equations
of states (EOS): the one by Teter et al. [52], the classical EOS by
Murnaghan [53], and Birch–Murnaghan [54] EOS. Since the Murna-
ghan EOS best fits our results, we only report its E(V) curve, and its
negative volume derivative, PðVÞ ¼ � @E

@V ðVÞ.

2.2. Many-body treatement: GW and BSE

As it is well known, the local density approximation (LDA) for
the exchange and correlation potential underestimates band gaps.
This drawback, though sometimes less severe when other func-
tionals such as GGA are used (e.g., Refs. [55–57]), is a common fea-
ture of ground state DFT and is due, at least partially, to the fact
that the theory does not account for the electron–electron interac-
tion. In order to include it in a description, Hedin [41,40] (see also,
e.g., the thorough review by Onida et al. [38]) proposed the follow-
ing quasiparticle eigen-equation:

bH0ðr1Þwðr1Þ þ
Z

R r1; r2; Eð Þwðr2Þd3r2 ¼ Ewðr1Þ ð1Þ

where the interaction clearly comes as a perturbation to the non-

interacting ground state hamiltonian, bH0ðr1Þ ¼ T þ VNðr1Þ þ Vxcðr1Þ,
that consists of the kinetic energy, the Hartree potential (i.e., Cou-
lomb potential due to the nuclei), and the exchange-correlation (ex-
pressed as a functional of the electronic density, n0). In Hedin’s
equation the so called self-energy operator, R, is non-local, non-her-
mitian, and energy-dependent. The fundamental building blocks [47]
of the equations that Hedin proposed to find R are, besides R itself,
the Green’s function of the interacting many-body system, G(r1, r2),
the Green’s function of an appropriate non-interacting system,
G0(r1, r2), and the irreducible polarizability, ~vðr1; r2Þ ¼ �iGG which,
through the inversed dielectric matrix e�1ðr1; r2Þ ¼ 1� v~v, re-nor-
malizes the static (unscreened) Coulomb potential, vðr1; r2Þ ¼ e2

jr1�r2 j
,

resulting in the dynamical screened interaction W(r1, r2) = e�1v. Fi-
nally, the vertex function !(r1, r2, r3) describes the interactions be-
tween virtual holes and electrons, which is neglected in the so
called GW method, yielding the self-energy operator as:
the lattice parameters are in Å, volumes are in Å3, the energy E0 is in eV, and the bulk

r calc. B0exp B00exp

E0 B0 B00
⁄BV0exp

�1543.6 31.1 4.9 37.4
� 1458.6 31.1 4.6 35.8 40.7 ± 3.5b 5.0 ± 0.4b

�1498.1 30.3 5.5 35.3 36.6(9)c 5.5(2)c

�1413. 2 33.3 5.2 39.2
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Fig. 2. Total energy and pressure as a function of unit cell volume. Continuous lines
are the Murnaghan’s EOS fit of our calculations. aRef. [27], bRef. [28], cRef. [29].
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Rðr1; r2; EÞ ¼
i

2p

Z
Gðr1; r2; Eþ E0ÞWðr1; r2; E

0ÞdE0 ð2Þ

We calculated GW corrections for the four compounds at the C
point of the Brillion zone (BZ) (which contributes to defining the
band gap) and used them as a uniform correction [58–63] to the
conduction band of all the DOS and band structures we report in
Section 3.2. For the GW calculations we used a 4 � 6 � 6
Monkhorst and Pack [51] grid to sample the Brillion zone (BZ), a
20 Ry cut-off energy and 100 bands for the Kohn–Sham, and as
usually acceptable, a lower cut-off energy for the expansion of
the wave functions and the screening, 4 Ry for both, and 9 and 7
Ry for the wave functions and the self-energy, respectively. This
set of parameters allowed a convergence of the GW corrections
for the band gap better than 10 meV.

The GW corrections, which utilize the Kohn–Sham electronic
structure together with the screened Coulomb interaction, were in-
cluded in the Bethe–Salpeter equation (BSE) [64,38] to calculate
the imaginary part of the dielectric function, e2, and included also
in the other reported optical functions.

According to the BSE (see Eq. (4.12) in Ref. [38]), the macro-
scopic dielectric function considering electron–hole interaction is:

eMðxÞ ¼ 1� lim
q!0

4pe2

q2

X
k

P
v;c

v jeiq�rjc
� �

Av;c
k

�����
�����
2

x� Ek þ ig
ð3Þ

where q is a wave vector inside the Brillion zone (BZ), indexes v and
c refer to valence and conduction bands respectively and Ek and Av;c

k

are the eigenvalues and eigenvectors of bHexc
vc;v 0c0A

v 0c0
k ¼ EkAvc

k . The two-
particle excitonic hamiltonian has three terms: bHexc

vck;v 0c0k0 ¼bHdiag
vck;v 0c0k0 þ bHexch

vc�fk;v 0c0k0 þ bHscr
vck;v 0c0k0 . The diagonal term accounts for

the one particle-like photoabsorptive transitions and reads:

bHdiag
vck;v 0c0k0 ¼ ðEck � EvkÞdvv 0dcc0dkk0 ð4Þ

The second term accounts for the so called electron–hole exchange,
incorporating the bare Coulomb interaction, �t, which does not in-
clude the long range interaction (see G – 0 below), i.e., it describes
the local field effects (due to the spatial variation of the density):

bHexch
vck;v 0c0k0 ¼ 2tv 0c0k0

vck

¼ 2
4p
X

X
G–0

1

jGj2
ckjeiG�rjvk
� �

� c0k0je�iG�rjv 0k0
� �

ð5Þ

The third term takes care of the screening (due to the spatial varia-
tion of the self-energy) through e�1

M :

bHscr
vck;v 0c0k0 ¼Wv 0c0k0

vck

¼ �4p
X

X
GG0

e�1
GG0 ðqÞ
jqþ Gj2

ckjeiðqþGÞ�rjc0k0
� �

� v 0k0je�iðqþGÞ�rjvk
� �

dq;k�k0 ð6Þ

The G and G
0

are vectors of the reciprocal lattice. We used 24
bands (12 valence and 12 conduction) and, since the Haydock algo-
rithm [65] implemented in ABINIT (chosen due to its smaller de-
mand of computational resources) only calculates the imaginary
part of the dielectric tensor, Im[eM(x)] = e2(x), we computed the
real part, e1(x), from e2(x) using the Kramers–Kronig relations in
the form:

e1ðxÞaa ¼ 1þ 2
p

P
Z 1

0

x0e2ðx0Þaa

x02 �x2 dx0 ð7Þ

where P means the principal value of the integral. Finally, we also
computed the absorption coefficient:
aðxÞaa ¼
2x
c
�e1ðxÞaa þ eðxÞaa

�� ��
2

� �1
2

ð8Þ
3. Discussion of results

3.1. Volume optimization

The top panel of Fig. 2 shows our calculated total energy vs. unit
cell volume for GeS, GeSe, a-SnS and SnSe. We report results only
on the orthorhombic phase of SnS (a-SnS), which suffers a phase
transition into a monoclinic phase (c-SnS) at 18.15 GPa [29]. All
curves were referred to their corresponding E0 so as to be plotted
together in the same energy range: the highest energy increment
is around 5 eV (�0.3% of E0) for the highest pressures (�35 GPa
for GeSe). In the bottom panel of the figure we plot our calculation
of the pressure dependence of volume for the four systems, along
with the available experimental data (none was found in the case
of SnSe). A general feature is that our calculations overestimate
the equilibrium volume around 3%: compare V0 and V0exp in Table
1. In the same Table, we stress that the calculated bulk moduli to
be compared with the experimental ones are not the ones under
the column ‘‘B0’’ (31.1, 31.1, 30.3 and 33.3) but instead the ones un-
der the column ‘‘⁄BV0exp

’’ (37.4, 35.8, 35.3, and 39.2), calculated with
the linear approximation expressed at the foot of the Table, as in
Ref. [66]. The need of this correction comes from the overestima-
tion of the equilibrium volumes that, in term, implies the assign-
ment of a non-zero (positive) pressure to the experimental
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volume (V0exp ) with no pressure applied (we call it PðV0exp Þ). In the
bottom panel of Fig. 2, and in the following sections we take as ref-
erence the experimental ‘‘zero pressure’’ (i.e., ambient pressure),
meaning that we substract PðV0exp Þ to the calculated pressures of
Fig. 2 so as to label ‘‘0 GPa’’ our calculations made with the exper-
imental ‘‘zero pressure’’ lattice parameters. Our results slightly
overestimate the equilibrium volume and underestimate the bulk
moduli, which is a typical behavior of GGA–PBE calculations [67].
In spite of this, the trend of our curves follows the experimental
data quite satisfactorily, in particular for GeS and GeSe; and our
calculated BV0exp

also are close to the experimental B0exp , most spe-
cially for a-SnS.

3.2. Electronic structure

3.2.1. Energy bands
Fig. 3 shows our calculated energy bands. We have plotted them

along a normalized k-path in the first Brillouin Zone, so that bands
for different pressures would span along the whole (and same)
plotting range. Otherwise, different pressures and so different unit
cell volumes, would force Brillouin Zones of different sizes making
difficult the comparison among them. It is to be noticed that upon
this normalization of the k-axis, the high symmetry points (C, Z, U,
X, etc.) do not exactly coincide but rather fall near each other.

In Fig. 3, labels correspond to zero pressure and only the ticks
for the high symmetry points for the higher pressures are plotted
(color online, the higher the pressure, the more to the right the cor-
responding tick). At zero pressure, bands for GeS and GeSe are in
general similar to each other. They both have an indirect gap in
C ? Z and a greater (�0.15 eV) competing direct gap in C. Bands
for a-SnS also show an indirect gap in C ? Z and one almost direct
in C ? Y � 0.1 eV greater. A similar behavior is seen for SnSe.

Our calculated gaps with and without the GW corrections, all of
which we found indirect and in the C ? Z direction of the Brillion
zone (BZ), are presented in Table 2, along with the ranges of exper-
imental gaps for ambient pressure found in the literature: it can be
seen that the agreement for zero pressure is excellent except for
the GeSe and SnSe, for which even with the GW correction we
underestimate the band gap. This suggests that the PBE–GGA that
we used for the ground state calculation underestimates the band
gap too severely for the perturbative GW method to correct it.
With regards to the selenides’ gaps being more underestimated
than those of the sulfides, this is a trend also found in the litera-
ture. For example, Vogel et al. [68] studied II–VI compounds and
found the very same effect (being the underestimation for the tel-
lurides even worse than the one for the selenides and the sulfides).
The authors suggest that this is closely related to the inaccurate
description of the strongly localized semicore d-electrons with an
underestimation of their binding energies. This indeed could ac-
count for our results, given that the presence of semicore d-elec-
trons in Selenium is a crucial difference with Sulphur. As
pressure rises the valence and conduction band approach each
other (i.e., metallization occurs): the gap decreases until it disap-
pears when the bands overlap in energy, but do not cross, thus
yielding a semimetalllic behavior.

Our calculations also suggest that even at the highest pressures
we evaluated, the four systems remain semiconducting in the
C ? X direction (i.e., perpendicular to the easy-cleavage planes),
indicating that conduction perpendicular to the bi-layers still pre-
sents a gap.



Table 2
Energy band gaps as a function of pressure.

Pressure (GPa) Band gap (eV)

E0
g EGW

g EExpt:
g

GeS 0 1.09 1.53 1.35–2.04a

4.95 0.62 1.00
16.91 Semimetal

GeSe 0 0.68 0.93 1.07–1.29b

4.23 0.08 0.26
12.60 Semimetal

a-SnS 0 0.69 1.07 1.049–1.600c

7.03 0.00 0.28
13.09 Semimetal

SnSe 0 0.42 0.58 0.889–1.238d

4.39 0.00 0.10
15.19 Semimetal

a See Table 2 in Ref. [33].
b See Table 2 in Ref. [34].
c See Table 1 in Ref. [69].
d See Table 2 in Ref. [69].
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3.2.2. Densities of states
In what follows, we make a general description of the DOS in

terms of the cation (Ge and Sn) and the anion (S and Se), unless
specific reference is needed (see Fig. 4). At zero pressure four main
structures (three making the valence band and a forth constituting
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the conduction band) can be identified in the total DOS: a sharp
peak at ��12.5 eV due to anion-s orbitals; a broader structure be-
tween �9.0 and �5.5 eV (for the two tin compounds), and between
�8.7 and �5.2 eV (for the two Ge compounds) mainly due to
cation-s orbitals with a smaller contribution of anion-p orbitals;
another broad structure up to the fermi energy (EF = 0 eV in our
plots) mainly due to anion-p orbitals, but also cation-p orbitals
and, cation-s orbitals, which in fact make the mayor contribution
to the formation of the top of the valence band; and a broad struc-
ture as the conduction band, mainly due to p-orbitals from both
the cation and the anion. As pressure rises, metallization occurs,
in agreement with a previous prediction for GeS [31]. Also, the four
structures in the densities of states for all four compounds stretch
downwards in energy becoming broader and with decreasing
amplitude of the peaks. The fermi surface is dominated by
cation-s electrons, p-orbitals from both elements, and a minor
though not neglectable contribution of anion-d orbitals.
3.3. Optical properties

Figs. 5–8 present our calculated real (e1) and imaginary (e2)
parts of the dielectric function, and the absorption coefficient (a)
for GeS, GeSe, a-SnS, and SnSe, respectively, for zero and higher
pressures, and for light polarized in the three main axes of the crys-
tal (x, y, and z, corresponding to the lattice parameters a, b, and c,
respectively).
-5 0 5

gy (eV)

GeS, GeSe, a-SnS, and SnSe.
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At zero pressure, the real and imaginary parts of the dielectric
function show the typical response of a semiconductor with some
fine structure up to �10 eV. All four systems present a bi- and tri-
axial anisotropy for different ranges of incident photon energy
(e.g., e2 for the x-axis of a-SnS is less intense and has two main
peaks, while the other two axes show a single sharp peak.

A thorough discussion of the location (in energy) and origin of
the main structures of the optical properties at zero pressure was
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presented in previous works [33–35]. The agreement with experi-
mental results is quite satisfactory, in particular for e1 of GeS, GeSe
and a-SnS. The underestimation of the gap for SnSe (discussed
above) is likely to be the reason of the less satisfactory comparison
of its optical properties with experiment.
As pressure increases, the static permitivity, e1(0), rises and the
main peak of e1 for all systems and axes becomes sharper, more in-
tense and shifted towards lower energies. This is consistent with
the broadening of the curves for e2 that also show an increment
of the main peaks amplitude.
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Correspondingly, the absorption edge of a also shifts left in en-
ergy. For energies higher than �5 eV, the optical properties show
almost no change upon pressure.

4. Conclusions

We have performed what to the best of our knowledge is the
first computational analysis of the band structure, densities of
states and optical properties of the orthorhombic IV–VI
compounds under high hydrostatic pressures, incorporating GW
corrections and the electron–hole interaction through the Bethe–
Salpeter equation. Our results show bi- and triaxial anisotropy
for different ranges of incident photon energy and a metallization
of the compounds GeS, GeSe, and SnSe upon increasing pressure. A
study of the monoclinic phase of SnS (c-SnS) should be of interest
for further studies, along with a thorough experimental assess-
ment of the phase transitions in these materials.
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