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SUMMARY

A novel unified approach to two-degrees-of-freedom control is devised and applied to a classical chemical
reactor model. The scheme is constructed from the optimal control point of view and along the lines of
the Hamiltonian formalism for nonlinear processes. The proposed scheme optimizes both the feedforward
and the feedback components of the control variable with respect to the same cost objective. The original
Hamiltonian function governs the feedforward dynamics, and its derivatives are part of the gain for the
feedback component. The optimal state trajectory is generated online, and is tracked by a combination of
deterministic and stochastic optimal tools. The relevant numerical data to manipulate all stages come from
a unique off-line calculation, which provides design information for a whole family of related control
problems. This is possible because a new set of PDEs (the variational equations) allow to recover the
initial value of the costate variable, and the Hamilton equations can then be solved as an initial-value
problem. Perturbations from the optimal trajectory are abated through an optimal state estimator and
a deterministic regulator with a generalized Riccati gain. Both gains are updated online, starting with
initial values extracted from the solution to the variational equations. The control strategy is particularly
useful in driving nonlinear processes from an equilibrium point to an arbitrary target in a finite-horizon
optimization context. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nonlinearities in chemical reactor dynamics pose challenging control problems, especially when
multiple criteria of optimization are present. The phase-plots of steady-states for nonlinear dynamics
adopt different patterns, sometimes leading to bifurcations, limit cycles, or strange attractors in
high dimensions [1, 2]. These patterns may change, even structurally, when parameters of the
dynamics vary (equilibrium control values may be regarded as parameters, especially when each
manipulated variable is proportional to some physical variable like temperature or flow rate [3]).
Consequently, changing operation from one steady-state to another as in chemical reactors, or
attempting to reach a desired final state in some optimal sense as in batch operations, or regulation
when strong deviations are present, may imply working near periodic orbits or bifurcation points,
where model information and accurate control are essential. Moreover, for some chemical reactors,
the graph of equilibrium control values contains closed curves in phase space, situation described
as ‘system with input multiplicities’ in the literature. Therefore, changes in set-point not always
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Figure 1. Two-degrees-of-freedom control design.

involve changes in the final equilibrium value of the manipulated variable (a parameter whose value
may have been optimized a priori). These types of behavior present severe operation problems and
demonstrate the need for feedback control, particularly when the process is open-loop unstable or
when it exhibits nonlinear oscillations [4]. Other common process characteristics that cause control
difficulty for nonlinear systems are multivariable interaction between manipulated and controlled
variables, unmeasured states and frequent disturbances in the input–output signals [5].

Chemical reactors are usual classical examples in the nonlinear control literature ([2, 6–8], and
their references). Several nonlinear advanced techniques have been developed (and these can be
consulted in an extensive survey done by Bequette [5]), where the resulting controls were either
linear or nonlinear. It is clear that nonlinear control in CSTR becomes more important if set-point
changes are made, since significant departures from equilibrium are most probable to occur. Other
(not necessarily equilibrium) points may be desirable to achieve, as it happens in batch processes.
In such situations, both the nominal trajectory and its tracking must be optimized until a stop
condition is reached in a finite time.

Apart from heuristic methods, there is a range of model-based approaches such as Model
Predictive Control (MPC), which is becoming the most widely quoted in the recent literature. This
method is essentially numerical, usually implemented online, but it requires significant computer
capacity and speed. Most successful industrial applications of MPC reported so far are in refining
and petrochemical plants, where processes are run near optimal steady-states and model lineariza-
tions are reliable approximations. Only a few of the available commercial software packages are
cautiously suggested for truly nonlinear or batch processes [9], although recent applications of
nonlinear MPC have been reported (see for instance [10–12]).

In this paper, the scheme shown in Figure 1 is adapted to the optimal control framework. This
scheme integrates feedforward and feedback characteristics in a technique called ‘two-degrees-of-
freedom (2DOF) design’, which is preferred when both the construction of a reference trajectory,
and its tracking or disturbance attenuation are required (see [13, 14]). The resulting structure
succeeds in obtaining: (i) optimal reference trajectory generation by means of a feedforward control
and (ii) robustness toward disturbances by means of a feedback control. The 2DOF structure has
been adapted to various frameworks and applied to CSTR reactors. In [15], steady-state and local
asymptotic stability of a closed-loop system are obtained. However, the methodology is analyzed
on the basis of new variables resulting from the global linearization of the nonlinear system, and
as a consequence part of the physical interpretation is missed.

The main features of the approach presented here are: (i) the nominal trajectory is optimal and
generated online, and (ii) the compensation stage is designed under the same optimization criteria
used from the beginning. Instead of an arbitrary reference curve, the state trajectory is a solution
of the Hamiltonian canonical equations (HCEs), which handle all nonlinearities of the process.
This integration is possible due to recently discovered partial differential equations (PDEs) relating
boundary conditions of the HCE to design parameters T , S (T : time horizon, S: final penalty
matrix, see [16, 17] and the appendix for details). An optimal filter is used to generate the feedback
compensation based on the error x̂ = x −xd, where xd is the desired state (in this paper, xd will
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352 V. COSTANZA AND P. S. RIVADENEIRA

be the optimal state trajectory x∗). In particular, the optimal estimate of the deviations x̂ (in the
least-squares sense) is the solution to the Kalman–Bucy differential equation (see [19] for details).

An application of the optimal 2DOF control scheme is presented for the nonlinear reactor model
[4]. The equations correspond to an irreversible chemical reaction taking place in a perfectly mixed
container. There are clearly two variables in the example that may be controlled, and just one
variable (a flow rate) available for manipulation. No I/O pairing is possible since both states must
be optimized. States are predicted through the solution to the HCEs, which are run in parallel.

The paper has the following structure: in Section 2, the main problem is introduced and a brief
description of the 2-dimensional chemical process model and its dynamics are presented. Section 3
develops the PDEs equations to find the missing boundary conditions in the Hamiltonian problem.
In Section 4, white input/output noises are included. The whole control strategy to eliminate such
noises is posed. Finally, the complete approach is reviewed and condensed in the conclusions. An
appendix is added to substantiate the new first-order PDEs used to calculate: (i) the missing initial
costate needed to generate the optimal trajectory, and (ii) the initial condition for the Riccati matrix
included in the compensator gain and the filter coefficients.

2. A CONTINUOUS STIRRED-TANK REACTOR (CSTR)
WITH AN EXOTHERMIC REACTION

The case-study is an exothermic irreversible first-order reaction (A→ B), modeled through a set of
two nonlinear ordinary differential equations obtained from dynamic material and energy balances
(with the assumptions of constant volume, perfect mixing, negligible cooling jacket dynamics, and
constant physical parameters) [4]. The dimensionless equations in composition (x1) and temperature
(x2) are

ẋ1 = −�x1 exp

(
x2

1+x2/�

)
+(q0 +u)(x1 f −x1),

ẋ2 = ��x1 exp

(
x2

1+x2/�

)
−�x2 +(q0 +u)(x2 f −x2).

(1)

Typical values for the parameters are: �=0.135, �=20.0, x1 f =1.0, �=11.0, x2 f =0.0, and
�=1.5. The independent variable is �= t/tc, where t is the physical time and tc a characteristic
time of the reactor. For the parameter values used here, tc is in the order of 1 min (see [4, 19]).
Each numerical simulation has consumed computer time in the order of 1 s, which indicates that
online calculations can readily be implemented. It has been assumed that the external cooling
dynamics is much slower than the reaction rate, and that the dimensionless feed flow rate q is
the only variable to be manipulated. When the cooling jacket dynamics became relevant, then the
reactor model becomes a multiple-input and multiple-output (MIMO) system, with the cooling
rate as the second control variable. Such a case will not be treated here. Usually it is chosen to
conduct operation around a fixed value q0 of the flow-rate, and then an appropriate definition for
the control variable would be u =q −q0.

In Figure 2, the phase plane plot corresponding to system (1) for q0 =3 shows the qualitative
behavior associated with multiple equilibria for a fixed value of the parameter q0. Since q0 is the
dimensionless flow rate, an operational problem arises when trying to change the (state) set-point
without changing the final value of q (possibly dictated by the steady-state functioning of the
rest of the plant). This is because the state trajectory must navigate through potentially adverse
conditions as the structure of the flow changes.

There are three equilibria, shown in Figure 2:

xa =
(

0.9316

0.5014

)
, xb =

(
0.4979

3.68153

)
, xc =

(
0.1776

6.0306

)
,

where xa and xc are stable steady-state points and xb is unstable.
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Figure 2. Phase plane for q0 =3.

Figure 3. Input–output relationship for the exothermic CSTR.

This reactor exhibits both input and output multiplicities as shown in Figure 3. The input
multiplicity can be seen on both the lower steady-state curve and in the isola (a closed, isolated
loop of solutions from the steady-state input–output curve at a well-defined bifurcation point). The
presence of ‘isola’ behavior in the classic two-state CSTR model is well-documented ([20] and
the references therein). In Figure 3, the dashed line shows how the steady-state process gain has
a different sign on the lower operating curve and at the top and bottom of the isola. The process
is open-loop stable along the lower operating curve (or along the stable branch).

The presence of input multiplicities (multiple inputs for a given output) and isolas in a system
severely degrades the performance of feedback controllers. For example, at the ‘peak’ of the
steady-state curve the input–output gain is zero; hence, the system is inherently uncontrollable
[4]. Output multiplicities (like in this reactor) require a sophisticated analysis when designing
the control strategy, because the flow of the system is qualitatively more complex than those for
classical linear systems. An example of this consideration is the following: if the initial condition
is near xb (in Figure 2), then there is no certainty on whether the equilibrium control ū =0 would
drive the system toward xa or xc. Consequently, an alternative control strategy needs to be devised
by taking into account the desired final state.
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3. EQUATIONS FOR REGULAR OPTIMAL CONTROL PROBLEMS
IN THE NONLINEAR CONTEXT

3.1. The Hamiltonian formalism for nonlinear systems and general costs

In this section, only initialized autonomous control systems of the nonlinear form

ẋ = f (x,u), x(0)= x0 (2)

will be considered. The state x moves into some region O of Rn , and the admissible control
strategies are the real, piecewise continuous functions of the time-domain T into some open subset
U of Rm . The right-hand-side f :O×U→Rn is assumed to be smooth enough so as to guarantee
existence and uniqueness of solutions to the dynamics equation (2) in the range of interest. The
(finite-horizon) quadratic final penalty optimization context will imply that a cost functional like

J(T,0, x0,u(·))=
∫ T

0
L(x(�),u(�))d�+x ′(T )Sx(T ) (3)

has to be minimized on the set of admissible control trajectories, where T= [0,T ],T <∞, L is a
nonnegative smooth arbitrary function called the Lagrangian of the problem, and S is called the
final penalty coefficient. The value function V can always be defined for such a problem, namely

V(t, x)� inf
u(·)

J(T, t, x,u(·)), t ∈ [0,T ], (4)

and if the problem has a unique solution, then it is called the optimal control strategy u∗,

u∗(·)�arg inf
u(·)

J(T, t, x,u(·)), (5)

which in turn will generate the optimal state trajectory

x∗(·)�solution to (2) with u(·)=u∗(·). (6)

The Hamiltonian H of such a problem is defined as

H(x,�,u)�L(x,u)+�′ f (x,u), (7)

where � is called the costate, �∈Rn , (x,�) ranging in 2n-dimensional phase-space. If H is assumed
regular, then there exists a unique H -optimal control u0, namely

u0(x,�)�argmin
u

H(x,�,u), (8)

and the derivative of H with respect to u vanishes at (x, �, u0(x,�)).
Explicitly regular Hamiltonian means that the function u0(x,�) is known (not only its existence

but also its explicit form) and that it is sufficiently smooth on its variables. The control-Hamiltonian,

H0(x,�)�H(x,�,u0(x,�)), (9)

gives rise to the HCEs (see [21] for general problems; [22, p. 406], for the free final state case)

ẋ =
(

�H0

��

)′
�F(x,�), x(0)= x0, (10)

�̇ = −
(

�H0

�x

)′
�−G(x,�), �(T )=2Sx(T ), (11)

which is a 2n-dimensional ODE with a (Hamiltonian) vector field X, explicitly(
ẋ

�̇

)
�v̇=

(
F(x,�)

−G(x,�)

)
�X(x,�)=X(v). (12)
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Solutions to Equations (10, 11) result, under the hypotheses made, the optimal state and costate
trajectories (denoted by x∗(t) and �∗(t), respectively), which are also related through the value-
function by (see [22])

�∗(t)=
(

�V
�x

(t, x∗(t))

)′
. (13)

The optimal control of Equation (8) is then explicitly constructed through

u∗(t)=u0(x∗(t),�∗(t)). (14)

It is also useful to remind that the control-Hamiltonian is constant along the optimal trajectories,
since

d

dt
H0(x∗(t),�∗(t))=

(
�H0

�x

)′
·F+

(
�H0

��

)′
·[−G]=0. (15)

This property may be used to stabilize numerical calculations performed online (Equations (10,
11)), as is illustrated in [14], and when the optimal control law has no explicit form despite the
problem being regular [23].

3.2. The first-order quasilinear PDEs for missing boundary conditions

Hamiltonian equations (10–11) pose a mixed-boundary-conditions problem, which has received
much attention in applied mathematics and numerical analysis, leading to a variety of methods
developed to approximate their solution. Invariant imbedding, one of the findings of Richard
Bellman, attempts to include the missing final value of the state as a new variable and the time
interval under consideration as a new parameter, into the flow of the original ODE (transition
function for control systems), and take advantage of the smooth dependence of the flow on these
variables and parameters whenever possible. Since the flow associated with a Cauchy problem
with a Cn vector field is roughly Cn(n�1) in state variables, initial conditions, and parameters (see
for instance [22, 24, 25]), then Bellman and Kalaba [26] extrapolated this result to the boundary-
conditions situation and worked with the partial derivatives of the flow to obtain dynamic equations
involving the boundary values and the optimization parameters. Here the missing initial values of
the costates are added into the variables, and the final penalty coefficient into the parameters. In
the Appendix (as an illustration), the arising PDEs relating the augmented set of variables and
parameters for a linear system and quadratic criterion are presented (see [27] for more details).
For a proof in the nonlinear general case, [16, 17] can be consulted. Some numerical aspects and
applications of the 1-dimensional nonlinear case have been worked out in [14, 23].

Let us call �(T, S)�x∗(T ) the optimal final value of the state x , and 	(T, S)��∗(0) the optimal
initial value of the costate �, both corresponding to a given (T, S)-optimal control problem. Let us
also define

F(�, S)�F(�,2S(�− x̄)), G(�, S)�G(�,2S(�− x̄)), (16)

and (

(T, S)

�(T, S)

)
�U (T, S)

(
I

2S

)
(17)

where U is the inverse of the derivative of the flow associated with the Hamiltonian vector field
([17], see also Equations (A3–A4) in the Appendix). Exploiting the properties of the flow associated
with the HCEs, then the following matrix equations arise for auxiliary n×n matrices 
, � :(


T

�T

)
=
(


SM(�, S)−
N(�, S)

�SM(�, S)−�N(�, S)

)
, (18)
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where (
T ,�T ) and (
S,�S) are the partial derivatives of (
,�) with respect to the time horizon
(T ) and the final penalization coefficient (S), respectively. This notation will be used to define the
partial derivatives of functions in order to simplify the equations. The matrices M(�, S),N(�, S)
take the form

M� 1
2 (2A′

1S−A′
3)+S(2A′

2S−A′
4), (19)

N� 2A′
2S−A′

4 ⇒M= 1
2 (2A′

1S−A′
3)+SN. (20)

The submatrices A′
i are calculated from Equation (12) as

A(T, S)�DX(�,2S(�− x̄))=
(
A1(�(T, S), S) A2(�(T, S), S)

A3(�(T, S), S) A4(�(T, S), S)

)
, (21)

where DX=�X/�v, i.e. the derivative of the vector field X, for details see [17]. The main matrix
PDEs in Equation (18) are subject to the initial conditions


(0, S)= I, �(0, S)=2S. (22)

Another set of PDEs for (�,	) can be obtained [17]:

(
	T

0

)
=

⎛
⎜⎜⎜⎝

�S

(
SF + G

2
+�

)
−�(F −�T −�S)−	S


S

(
SF + G

2
+�

)
−
(F −�T −�S)

⎞
⎟⎟⎟⎠ , (23)

and these become solvable when coupled to the matrix PDEs in Equation (18) for 
, �, and subject
to initial conditions

�(0, S) = x0, (24)

	(0, S) = 2S(x0 − x̄). (25)

On the existence and uniqueness of solutions to the coupled system of Equations (18, 23), there
exist local results (see [25, p. 51]). The field of vector and matrix PDEs integration is in active
development (see for instance [28]). A Picard type of algorithm is under development. Solutions
�, 	 will cover a whole range of parameter values. The usefulness of imbedding an individual
problem into a (T, S)-family becomes evident from these solutions, because:

(i) the value � of the final state is revealed for each (T, S)-problem without the need to compute
its optimal state trajectory, indicating how near to the desired value x̄ the system will really
end up under each set of parameter values. This allows to assess or modify the values of
both T and S at the modeling/design level.

(ii) the initial value 	 of the costate is a measure of the marginal cost (�V/�x)(0, x0), where
V is the value function (or Bellman function) of the problem, defined in Equation (4).
Therefore, knowing 	(T, S) will allow to estimate the effect on the total cost of the
perturbations/uncertainties of the initial state for each parameter set, and hence helping in
the choice of appropriate (T, S) values.

4. CSTR OPTIMAL TRAJECTORY GENERATION

This section describes a change of set-point from a stable equilibrium to another, corresponding
to different flow rate values. The initial state

x0 =
(

0.8283

1.0

)
(26)
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has an equilibrium flow rate q0 =1.68812, which exhibits input–output multiplicity, see Figure 3.
The target is x̄ = xa = (0.9316 0.5014)′ corresponding to ūa =0 (or q0 =3 according to Figure 3).
All control values will be taken relative to this q0 =3. The cost function J adopted here is the
typical quadratic optimality criterion with finite time horizon T and final penalization matrix S,
namely

J(u)=
∫ T

0
[(x(t)− x̄)′Q(x(t)− x̄)+ Ru2(t)]dt +(x(T )− x̄)′S(x(T )− x̄), (27)

which embodies a compromise between ‘go as close as possible to the desired steady-state x̄’ and
‘use a control as close as possible to the corresponding equilibrium value ū’. In this formulation,
Q�0∈R2×2 penalizes state errors, R>0∈R penalizes the input effort and S�0∈R penalizes
terminal state deviations from the target. For calculations Q =30I2×2, R =4, and x̄ = xa . The
Hamiltonian H results

H(x,�,u) = 30(x1− x̄1)2 +30(x2 − x̄2)2 +4u2 +·· ·

+�1(−�x1 exp

(
x2

1+x2/�

)
+(q0 +u)(x1 f −x1))+·· ·

+�2(��x1 exp

(
x2

1+x2/�

)
−�x2 −(q0 +u)x2). (28)

The optimal control (Equation (8)), extracted from the condition (�H/�u)(x,�,u)=0, reads as

u∗(t)= 1
8 (�∗

1(x∗
1 −1)+�∗

2x∗
2 ). (29)

Equation (29) allows to calculate the optimal Hamiltonian H0(x∗,�∗), and to pose the Hamil-
tonian mixed-boundary-conditions problem equations (10–11), and to construct the corresponding
PDEs developed in Section 3.2.

In Figures 4 and 5, common solutions of PDEs (23) are shown for a time horizon T =2 and
final penalization S ranging in [0,10]. These figures illustrate how both, the final state and initial
costate, change for different pairs (T, S). It must be clarified that these changes are not temporal
evolutions from the differential equations (12) (see [16] for instance).

For most cases, to take large S-values will reduce the final error between the desired and the final
states coming from PDE’s solution, but this involve a greater total costs J in general. Additional

Figure 4. �2(T, S) final observed state for the change of set-point problem.
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Figure 5. 	2(T, S) initial costate for the change of set-point problem.

information can be extracted from the PDE’s solutions. For instance, a corrective control for small
deviations of the optimal trajectory will be constructed based on the auxiliary matrices 
, � coming
from the definition (17) (see Equation (A18) below and [17] for more details).

The pair (T, S)= (1.0,3.5) was chosen for numerical evaluations concerning the change-of-set-
point problem. The final states recovered from the PDE’s solution corresponding to T =1.0 and
s =3.5 were x1 =0.9275, x2 =0.504 that satisfactorily agree with the desired states xa . The initial
costates calculated numerically were �1 =2.05784 and �2 =5.19785. The PDEs were solved with
standard software (Mathematica and Matlab, separately).

Figure 7 shows the optimal evolution of the x2 state (x2 is naturally adopted as the output of
the system) resulting from the integration of HCEs with initial conditions. Clearly, x2 arrives very
near to its target.

Different control strategies (depicted in Figure 6) were applied to the system for comparison
against the optimal control u∗. The resulting state trajectories have been plotted in Figure 7, and
the cumulative and total costs corresponding to each case were plotted in Figure 8. The alternative
controls tested were

u1(�)=
{

0.5 for �∈ [0,0.7),

0.0 for �∈ [0.7,1),
u2(�)=0 ∀�,

and u3(�) was a ‘ladder type’ function with intermediate values between the initial and final values
of u∗(�). The relative offset error for the optimal state trajectories was of the order of 0.3%,
and higher for the others. The optimal control trajectory shows a classical behavior of finite-time
optimization [29], i.e. it takes relatively high values at the beginning and the end of the optimization
period. High initial values may be due to high penalization of state deviations in the trajectory
cost expression (being coefficient Q =30I ), and after the deviation decreases, u∗ decreases too
because the control cost becomes important (being its coefficient R =4). But the final penalization
makes the control rise again, more than 0.15 above the expected final equilibrium value ūa =0. In
the enlarged windows of Figure 8, the jump from trajectory cost to final cost at �=1, i.e. the final
penalization, is illustrated for the different strategies.

An attempt to treat the problem along the lines of ‘Model Predictive Control’ (MPC) was
done through the ‘Multi-Parametric toolbox’ (MPT) for Matlab. The resulting control strategy is
depicted in Figure 9, together with the evolution of the corresponding differential cost, compared
with the optimal obtained from the paper’s approach. As expected, the final MPC cost is bigger
than the optimal one, although it grows at a slower pace during an initial period. The objective cost
functional used in the comparison was the same (quadratic) for both techniques. The computational
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Figure 6. Some control trajectories used to compare against the optimal control.
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Figure 7. x2(�) state trajectories corresponding to control strategies in Figure 6.

efforts were compared as follows:

(i) For MPC, the reported calculation time for an average ‘prediction horizon’ equal to the
‘control horizon’ equal to 50 was 55 s. The online control effort cannot be adequately
measured. The generation of the state trajectory was fast, but compensation actions and/or
recalculations due to states’ mismatching are not available with this package.

(ii) For the PDE’s approach, the off-line calculation time was 9 s. The online complete trajectory
(including compensation as in Figures 10 and 11) was generated in 15 s, well below the
characteristic time tc =60s, which shows that the method can be successfully implemented
in-parallel with the given system.

5. ONLINE COMPENSATION OF PERTURBED OPTIMAL TRAJECTORIES

5.1. Hamiltonian linearization and feedback compensation

Optimal state solution x∗(·) coming from HCEs’ integration provides a desired or reference state-
trajectory generated by the open-loop optimal control u∗(·). But at any t time, the state x(t) of
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Figure 8. Cost trajectories and cumulative costs shown at �=1.0 corresponding
to control strategies in Figure 6.
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Figure 9. Comparison between the MPC and the optimal cost evolutions. The MPC control trajectory is
also depicted, with values in the left axis.

the real system may differ from x∗(t) due to perturbations in the signals. To annihilate the effect
of these perturbations, a deviation control û(·) may be added to the H-optimal control u∗(·)=u0

calculated from Equation (29). If perturbations are relatively small, then the ‘optimal’ deviation
variables

x̂(t)�x(t)−x∗(t), �̂(t)��(t)−�∗(t), t ∈ [0,T ] (30)

must approximately follow the dynamics, when the notation is simplified:

˙̂x(t) = ẋ(t)− ẋ∗(t)= f (x,u0(x,�))− f (x∗,u0(x∗,�∗))

≈ ( fx + fuu0
x )x̂(t)+ fuu0

��̂(t), (31)

˙̂�(t) = �̇(t)− �̇
∗
(t)=−

[
�H
�x

(x,u0(x,�))− �H
�x

(x∗,u0(x∗,�∗)

]′

≈ −[(Hxx +Hxuu0
x )x̂(t)+( fx −u0

�Huuu0
x )′�̂(t)]′, (32)

where u0
x =−H−1

uu Hux and u0
� =−H−1

uu f ′
u (calculated from the derivatives of the optimal condition

Hu(x,�,u0(x,�))=0 with respect to x and �, respectively), and where all partial derivatives of
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Figure 11. Control strategies for one-and two-degrees-of-freedom control.

H, f , u0 are evaluated along the nominal optimal trajectories (x∗(t),�∗(t)). In this case-study,
some of these expressions take the form:

fx =
[−(q0 +u∗)−�E −�x∗

1 E�2

��E −(q0 +�+u∗)+��x∗
1 E�2

]
, (33)

� � �

�+x∗
2
, E�exp(x∗

2�), u∗ =u0(x∗,�∗), (34)

fu =
[

1−x∗
1

x∗
2

]
, Huu =8=2R, Hux = [−�∗

1 −�∗
2]. (35)

And consequently the system expressed in (31–32) can be rewritten up to first-order system as
(see Equation (21) and [17] for instance)⎛

⎝ ˙̂x
˙̂�

⎞
⎠=H̃

(
x̂

�̂

)
, (36)
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where

H̃=A(t, S)= DX = �X
�v̂

(x∗(t),�∗(t))=
(

Ã − 1
2 W̃

−2Q̃ − Ã′

)
, (37)

with

Ã(t) � fx − fuH
−1
uu Hux, (38)

W̃ (t) � 2[ fuH
−1
uu f ′

u], (39)

Q̃(t) � 1
2 [Hxx −HxuH

−1
uu Hux], (40)

which is an ordinary linear time-variant differential equation. Following this line of reasoning, the
optimal control deviation û�u−u∗ may be approximated by

û ≈u0
x x̂ +u0

��̂≈−H−1
uu (Huxx̂ + f ′

u �̂). (41)

It is known that, for system (36) with

x̂(0)= x̂0

�̂(T )=2S̃ x̂(T )

boundary conditions, the costate deviation is

�̂=2P̃(t)x̂, (42)

with P̃(t) solution of the Riccati differential equation (DRE)

˙̃P(t)=−(P̃ Ã+ Ã′ P̃ + Q̃− P̃W̃ P̃), P̃(T )= S̃ = S, (43)

and the control law for the deviations of optimal trajectory can be expressed in feedback form

û =−H−1
uu (Hux +2 f ′

u P̃(t))x̂ . (44)

As a result, the total control reads

u(t)=u∗(t)+ û(t)=u0(x∗(t),�∗(t))−H−1
uu (Hux +2 f ′

u P̃(t))x̂ . (45)

The final condition in Equation (43) seems to preclude the control strategy to be evaluated online,
but considering the meaning of the auxiliary matrices (
,�) in Section 3.2 and their relationship
with the matrix U (T, S), which is the inverse to the fundamental solution of the system (36), then
the initial condition P̃(0) can be calculated as (see the Appendix)

P̃(0)= 1
2�(T, S)
−1(T, S). (46)

Therefore, for each (T, S) problem, the initial condition (46) allows to integrate the DRE online
together with the calculation of all objects in the strategy.

5.1.1. Noise in I/O signals. Suboptimal compensation. Disturbances will be reinterpreted as signal
noises in this subsection. In other words, the linear system given by (31) will model the deviation
system, but since x(t) is now a stochastic process, an estimation of x̂ will be needed. In short, the
dynamics of the deviation x̂ from output measurements y will be

˙̂x = Ã(t)x̂(t)− 1
2 W̃ (t)�̂(t)+r1, (47)

ŷ = Cx̂ +r2 = y−Cx∗, (48)

where, as usual, r1 and r2 are stochastic differentials of Brownian motions (i.e. the ri may be
considered as zero-mean Gaussian white noises) with covariance matrices 	1 and 	2, respectively.
For the CSTR example proposed in Section 2, C = (0 1).
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According to Equations (36–40, 42), the stochastic deviation process will be rewritten as

˙̂x = Â(t)x̂(t)+r1, (49)

with

Â(t)� Ã(t)−W̃ (t)P̃(t). (50)

In this context, a Kalman–Bucy filter for the approximated model is optimal, and can be
implemented through [19, 22, 30]

˙̂x(t)= Â(t)x̂(t)+G(t)[ŷ−Cx̂], x̂(0)=E(x0)= x0, (51)

where the notation x̂ is also used for the estimation of the stochastic deviation for simplicity, and
where G(t)��(t)C ′	−1

2 , and �(t) is the solution to another Riccati-type ODE, integrable as an
initial-value problem

�̇(t)= Â(t)�+� Â(t)′−�C ′C−1
2 C�+C1, �(0)=Cov(x0), (52)

where C1�	1	′
1, C2�	2

2.
Now, the optimal control strategy is complete (see the flow-sheet for 2DOF strategy in Figure 12

below). It was applied to an CSTR change of set-point problem similar to the one proposed in
Section 4, and the results are shown in Figures 10, 11. Also, for comparison purposes, another
control strategy called ‘the curve reference method’ in the literature (see [31] and the references
therein) was implemented to cope with perturbations. The implicit purpose of the curve reference
method is to isolate the dynamics of the manipulated variable from the main time-variable behavior
that characterizes the operation, by taking the time evolution of a previous run as a reference. This
attempts to cancel out most of the nonlinearities, capturing the dominant manipulated-variable
dynamics by using empirical tuning rules for integrating systems [32]. Following the recipe in
[31], a proportional positive gain was calculated (kc =10.38) and introduced in the reference curve
feedback control law ûc for the tracking component

ûc =−kc(y(t)− y∗(t))=−kc ŷ(t). (53)

Figure 10 shows several x2 trajectories due to the application of the whole strategy proposed
so far (considering noises and perturbations) to a change of set-point problem with the following
parameters: ū0 =1.3119, ūa =0, Q = I , R =4, S =3I , x̄ = xa , and

x0 =
(

0.8283

1.0

)
.

The solid line is the deterministic trajectory to track. The filtered x2 trajectory is depicted with
‘+’ mark and turns to be almost indistinguishable from the optimal trajectory. The line marked
with ‘◦’ describes the best estimation of perturbed state x̂ = x −x∗ and the comparative trajectory
x2 controlled by the reference curve method is shown with the marked ‘∗’.

Figure 11 shows the total control trajectories. The performance of the comparative scheme is not
good. The control action ûc is oscillating in the range −5�u�5, which in a real application could
create saturation levels for the actuator. Moreover, in many cases ûc produces unfeasible controls
u (since u cannot take smaller values than −3 because it physically represents a deviation from
a fixed flow rate q0 =3, for the change of set-point problem considered), but this was expected
due to the fact that the method was not conceived for dealing with this sort of perturbations. This
clearly shows the need to add the filtered stage.

5.1.2. ‘2DOF’ flow-sheet. The flow-sheet shows the entire strategy devised in this paper and
condensed in a 2DOF form. In a nonlinear setting, 2DOF control design uncouples the trajectory
generation and asymptotic tracking problems. The first problem was solved through the HCEs.
The resulting reference trajectory x∗(t) is the optimal state solution over a finite horizon T and
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Figure 12. Flow-sheet for 2DOF strategy.

corresponding to a final matrix penalization S (see Section 3, [16], and their references). The
deviation system (represented by Equation (36)) is then written as a linear time-varying control
system (Section 5.1) in terms of its output ỹ = y−Cx∗. However, this output deviation is corrupted
by systemic and measurement perturbations, and needs additional control (the second degree of
freedom). This is equivalent to attempt to track the reference optimal trajectory. The asymptotic
tracking problem requires two blocks: the Kalman–Bucy filter, which is responsible for providing
the best estimation of x −x∗ (Section 5.1.1), and the generation of the Riccati gain P̃(t). With P̃
and x̂ , the optimal stochastic feedback law results Equation (44).

6. CONCLUSIONS

A 2DOF methodology has been developed for the control of nonlinear processes and is illustrated
through the treatment of classical problems arising in CSTRs. The main steps in applying the
scheme are as follows:

(i) Off-line calculation of missing boundary conditions and auxiliary matrices for a (T, S)
family of optimal control problems posed for the nonlinear dynamics. This amounts to solve
a set of first-order quasilinear PDEs (Equations 18–23), which actually may be reduced
to solve an initial-value problem for a related set of ODEs. These initial calculations can
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be considered as the ‘controller design’ stage, and the results are stored to treat individual
situations once the values of T and S are chosen from inspection of �(T, S).

(ii) The nominal optimal trajectory is generated by online integration of Hamiltonian equations of
the optimal control problem (10, 11). This can be done thanks to the initial value of the costate
�, i.e. �(0)=	(T, S), provided by the (i)-stage results. The integration of the Hamiltonian
ODEs is equivalent to running a dynamic model of the system, and the resulting values
(x∗(t),�∗(t)) are necessary to generate the ‘first-degree-of-freedom’ component of the control
strategy, i.e. u∗(t)=u0(x∗(t),�∗(t)). The optimal state x∗(t) is then taken as an approximation
to the real values x(t) of the physical state variables, which in general are unknown or difficult
to measure. The differences x̂(t)∼=x(t)−x∗(t) are assumed to be produced by systemic noise,
i.e. by random interaction between the plant and the environment.

(iii) Since only output values y(t) are available, usually corrupted by measurement noise, an
estimation of the perturbation x̂(t) is constructed through a Kalman–Bucy filter (Equations
51–52). The setup is justified by the concept of ‘perturbation’, i.e. the differences x̂(t) are
assumed to obey a linear time varying dynamics (Equation 36) with coefficients generated
online (the nominal optimal trajectory acts as a ‘reference curve’ to be tracked).

(iv) The perturbation x̂(t) is abated by the action of ‘second degree-of-freedom’ component û(t)=
−k(t)x̂(t) or compensator (44). The gain includes a generalized Riccati matrix P̃(t) (Equation
46), which is obtained from the (i)-stage results. This is possible because P̃(0) depends
only on matrices 
, �, which by definition take care of the derivative of the Hamiltonian
flow, i.e. of the linearization of the system along optimal trajectories (x∗(t),�∗(t)). Notice
that the availability of P̂(0) avoids the usual off-line integration of DRE that would have
to be performed for each linear time-varying system with a finite optimization horizon
T and a final penalty coefficient S. It should be remarked that the time-variant gain of
the compensator (in Equation (44)) includes a term H−1

uu Hux not visible in the usual
LQR approach (compare with Equation (A21)). This is due to the fact that the unifying
Hamiltonian approach is always referring to the original optimal control problem, which
is nonlinear and with a non-necessarily quadratic Lagrangian. For a linear quadratic case,
Hux =0. fu = B, Huu =2R.

(v) The 2DOF control is then u(t)=u∗(t)+ û(t). The application of this strategy results in
a practically complete adherence to the nominal trajectory x∗(t). A comparison against
classical application of the ‘reference curve’ plus PI control is worked out for illustration.

As a whole, the scheme shows a very satisfactory behavior and combines the features of optimal
approaches to both the deterministic nonlinear control of the model and the stochastic linear control
of the perturbations.

APPENDIX A: PDES FOR MISSING BOUNDARY CONDITIONS AND CONTROL
GAINS IN THE TIME-CONSTANT LQR CONTEXT

The Hamiltonian form of the LQR problem (with linear dynamics f = Ax + Bu and quadratic
Lagrangian L = x ′Qx +u′ Ru) reads

v̇=
(

ẋ

�̇

)
=
(

A − 1
2 W

−2Q −A′

)(
x

�

)
=Hv, (A1)

where

W�B R−1 B ′ and H=
(

A − 1
2 W

−2Q −A′

)
.

Therefore, in this case the HCEs become a linear, time-constant dynamical system with a vector
field X(v)=Hv, whose flow verifies

�T(v)=eHTv, (A2)
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and consequently

V = D�T =�T =eHT, (A3)

U = V −1 =e−HT. (A4)

The Hamiltonian system being linear implies that solutions depend smoothly on parameters and
initial conditions, and then derivatives of Equation (17) with respect to (T, S) can be taken as

(

T

�T

)
= −HU

(
I

2S

)
, (A5)

(

S

�S

)
= U

(
0

2I

)
. (A6)

Now, by partitioning in the obvious way

U =
(

U1 U2

U3 U4

)
(A7)

allows Equation (A6) to read

1
2
S =U2,

1
2�S =U4, (A8)

which combined with Equation (17) gives

U1 =
−S
S, U3 =�−S�S, (A9)

and then, by inserting these results in Equation (A5), the following (main) relations are obtained:


T −
SM(S)=−
N(S) , (A10)

�T −�SM(S)=−�N(S) , (A11)

where M(S)�A′S+S A+ Q−SW S, N(S)�A−W S.
Boundary conditions for a process of zero horizon are imposed, i.e.


(0, S)= I, �(0, S)=2S. (A12)

Therefore, Equations (18) for 
,� can be integrated alone, since they do not depend on �, 	.
Actually, from (

x0

	

)
=e−HT

(
�

2S�

)
=U

(
I

2S

)
�=

(



�

)
�, (A13)

it follows that no further equations are needed for �, 	. Since 
 is always invertible (see [22],
p.371), then the missing boundary conditions result

� = 
−1x0, (A14)

	 = ��. (A15)
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Illustrations can be found in [27]. From Equation (13) for the LQR case, the initial costate has
here the form

	=�∗(0)=
(

�V
�x

(0, x∗(0))

)′
=2P(0)x0, (A16)

where P is in turn the numerical solution of the DRE, i.e. of the final-value matrix ODE

�̇=�W�−�A− A′�− Q, �(T )= S. (A17)

Therefore, from Equations (A14–A16), for each (T, S)-problem the Riccati matrix P(t) should
also verify

P(0)= 1
2�(T, S)[
(T, S)]−1. (A18)

The method based on PDEs for missing boundary conditions avoids solving the DRE (A17) for
each particular (T, S)-problem, and storing, necessarily as an approximation, the Riccati matrix
P(t) for the values of t ∈ [0,T ] chosen by the numerical integrator, possibly different from the
time instants for which the control u(t) is constructed. Instead, the HCEs (A1) can be integrated
with initial conditions

x(0)= x0, �(0)=	(T, S), (A19)

and the optimal trajectories x∗(t),�∗(t) obtained for 0�t�T , which allows to generate the optimal
control at each time

u∗(t)=u0(x∗(t),�∗(t))=− 1
2 R−1 B ′�∗(t), (A20)

or, in this case, the feedback form, which becomes directly available due to the linear dependence
of Equations (A14, A15) on initial conditions,

u∗(t)=− 1
2 R−1 B ′�(T − t, S)[
(T − t, S)]−1x . (A21)
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Argentina 2008; 49:43–56.

18. Costanza V. Parametric uncertainty and disturbance attenuation in the suboptimal control of a nonlinear
electrochemical process. Optimal Control Applications and Methods 2007; 28:209–228.

19. Costanza V, Neuman CE. Optimal control of non-linear chemical reactors via an initial-value Hamiltonian
problem. Optimal Control Applications and Methods 2005; 27:2041–2053.

20. Uppal A, Ray WH, Poore AB. On the dynamic behavior of continuous stirred tank reactors. Chemical Engineering
Science 1974; 29:967–985.

21. Pontryagin LS et al. The Mathematical Theory of Optimal Processes. Wiley: New York, 1962.
22. Sontag ED. Mathematical Control Theory (2nd edn). Springer: New York, 1998.
23. Costanza V, Rivadeneira PS. Minimal-power control of electrochemical hydrogen reactions. Optimal Control

Applications and Methods 2010; 31:105–115.
24. Abraham R, Marsden JE. Foundations of Mechanics (2nd edn). Benjamin/Cummings: MA, 1978.
25. Folland GB. Introduction to Partial Differential Equations (2nd edn). Princeton University Press: Princeton, NJ,

1995.
26. Bellman R, Kalaba R. A note on Hamilton’s equations and invariant imbedding. Quarterly of Applied Mathematics

1963; XXI:166–168.
27. Costanza V, Neuman CE. Partial differential equations for missing boundary conditions in the linear–quadratic

optimal control problem. Latin American Applied Research 2009; 39:207–212.
28. Zenchuk AI, Santini PM. Dressing method based on homogeneous Fredholm equation: quasilinear PDEs in

multidimensions, 2007. Available from: http://arxiv.org/pdf/nlin/0701031.
29. Bryson A Jr, Ho Y. Applied Optimal Control, revised printing. Wiley: New York, 1975.
30. Fleming WH, Rishel RW. Deterministic and Stochastic Optimal Control. Springer: New York, 1975.
31. Marchetti JL. Referential process–reaction-curve for batch operations. AIChE Journal 2004; 50:3160–3168.
32. Ziegler JG, Nichols NB. Optimum settings for automatic controllers. Transactions of the ASME 1942; 64:759.

Copyright � 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:350–368
DOI: 10.1002/oca


