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In this review, we present our recent results concerning accurate calculations of configu-
rational entropy in generalized lattice-gas models. The calculations are based on the use
of the thermodynamic integration method. Different applications (or systems) have been
considered. Namely, systems in presence of (i) anisotropy, (ii) energetic heterogeneity,
(iii) geometric heterogeneity, and (iv) multisite-occupancy adsorption. Total energy is
calculated by means of the Monte Carlo simulation. Then the entropy is obtained by
using thermodynamic integration starting at a known reference state. In case (iv), the
method relies upon the definition of an artificial Hamiltonian associated with the system
of interest for which the entropy of a reference state can be exactly known. Thermody-
namic integration is then applied to obtain the entropy in a given state of the system of
interest. A rich variety of behaviors is found and analyzed in the context of the lattice-gas
theory.
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1. Introduction

Configurational entropy has been continued to be a useful tool in some complex

areas of thermodynamics. Thus, computational and analytical accurate calculations

of configurational entropy S and free energy F are of major significance to develop

a complete picture of generalized lattice-gas thermodynamics of adsorbates. We

refer to a generalized lattice-gas as the one in which (1) lateral interactions are

asymmetric; (2) the substrate is heterogeneous; and (3) ad-particles are polyatomic,

having more than one constituting unit and, hence, occupying several lattice sites.

Recent molecular simulations1–4 and experimental results5,6 about the adsorp-

tion of different gases in low-dimensional systems have shown clear signals of

nonequivalence between particles and vacancies. In fact, adsorption isotherms for
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methane, ethane, and others adsorbed on AlPO4-5 and SAPO2-5 are clearly un-

symmetrical around half coverage. These phenomena are also visible in the isosteric

heat of adsorption. In spite of the obvious significance of these experiments, most

developments in adsorption theory preserve a fundamental statistical property, the

well-known symmetry particle vacancy.

The main routes to break the symmetry particle vacancy are as follows: (i) to

consider three-particle interactions and (ii) to consider pairwise lateral interactions

depending on the orientation of the bond. Point (i) has been widely discussed

in Ref. 7. This review will restrict attention to lattice systems where the ad–ad

interactions are included as in point (ii).

Concerning the substrate, real surfaces generally present inhomogeneities due to

irregular arrangement of surface and bulk atoms or the presence of various chemical

species, which can significantly affect the main thermodynamics functions. In this

sense, adsorption on heterogeneous solid surfaces8–10 is a widely studied field due

to its many applications in science and engineering. Surface heterogeneity is usually

separated in energetic and geometric heterogeneity,8,9 and usually most real solids

surfaces present a combination of the two types. However, studying them separately

is useful to understand their effects on adsorption of interacting particles. Energetic

heterogeneity is manifested through the variation of adsorption energy from one site

to another, while geometric heterogeneity is associated with the existence of irreg-

ularities in the lattice of adsorbing sites (like variable distance among neighboring

sites or variable connectivity), whose effects on adsorption are manifested through

adsorbate–adsorbate interactions.

So far energetic heterogeneity has been the most studied in the literature and

only marginal attention has been paid to geometric heterogeneity.8,11,12 However,

the latter is perhaps the most relevant one for a wide variety of solids, namely

amorphous solids.13 Amorphous solids are the prototype of systems with quenched

geometrical disorder and have been the object of many studies in the field of mag-

netism, where, on the basis of simple “site-diluted” or “bond-diluted” models like

Ising, Heisenberg, and Potts models, interesting questions like the survival of phase

transitions and their universality under partial disorder have been discussed and

are still posing open problems.14–17 As it is well-known, adsorption of monomers on

a lattice of sites is isomorphic to the Ising model for magnetism in two dimensions.

However, while the mentioned studies in magnetism have been developed in absence

of an external field, this external field cannot be neglected in adsorption since it

is related to the chemical potential of the adsorbate. This fact, in addition to the

potential applications, makes the study of adsorption of monomers on lattices with

quenched geometric disorder even more appealing.

In the case of adsorption of molecules with multisite occupancy, where ad-

particles occupy several k contiguous lattice sites (k-mers), the knowledge of the

configurational entropy is a difficult matter.8,18–30 The difficulty in the analysis

of the multisite statistics is mainly associated with three factors, which differen-

tiate the k-mers statistics from the usual single-particle statistics. They are as
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follows: (i) no statistical equivalence exists between particles and vacancies; (ii) the

occupation of a given lattice site ensures that at least one of its nearest-neighbor

(NN) sites is also occupied; and (iii) an isolated vacancy cannot serve to determine

whether that site can ever become occupied.

For these reasons, it has been difficult to formulate, in an analytical way, the

statistics (and kinetics) of occupation for correlated particles. In particular, the

lattice-gas properties of k-mers (dimers, trimers, and longer species) are not well-

known because of the difficulties arising in the calculation of their thermodynamic

functions. Although adsorption of polyatomic species (or the isomorphous problem

of binary solution of a polymer phase and a monoatomic solvent) has been ad-

dressed long ago in ideal systems, the correct density dependence of configurational

entropy of a simple system such as noninteracting dimers on a two-dimensional

regular lattice is still unknown. Then, it is necessary to shift to precise numeri-

cal calculations in order to obtain free energy and entropy, in discrete systems of

interacting particles, for which no exact values of S or F are known.

Following this line of work, accurate computational calculations of configura-

tional entropy in lattice-gas models have been performed in our group.31–35 The cal-

culations were based on the use of the thermodynamic integration method.34–39,42

In this paper, we review these recent advances with emphasis in the role and ef-

fect of anisotropy, surface heterogeneity, and particle size on the configurational

entropy of the adlayer; an aspect that almost none of the thermodynamic adsorp-

tion description has ever taken properly and comprehensively into account. The

organization of this paper is as follows. The basis of the model and the simulation

scheme are presented in Sec. 2. In this framework, four applications are discussed

in Sec. 3. Finally, conclusions are drawn in Sec. 4.

2. Basic Definitions

2.1. The model

In this section, we describe a generalized lattice-gas model for the adsorption of

particles in the monolayer regime. The surface is represented as an regular array

of M sites and m = zM/2 bonds (being z the connectivity of the lattice), with

periodic boundary conditions. A site represents an adsorptive potential minimum,

where particles from a gas phase will be allocated upon adsorption, while a bond

represents the adsorbate–adsorbate interaction between two particles adsorbed at

the connected sites. If a number m′ of bonds are eliminated at random from the

lattice, a degree of disorder or geometric heterogeneity, 0 ≤ ρ ≤ 1, can be defined as

ρ = m′/m, so that the lattice has a mean connectivity given by zmean = z(1−ρ). On

the other hand, energetic heterogeneity is introduced by considering adsorption sites

with a discrete energy distribution of W different energies ε1, ε2, . . . , εW . Thus, the

surface is modeled as a collection of these sites arranged in different topographies.

We address the general case of adsorbates assumed to be linear particles con-

taining k identical units (k-mers), with each one occupying a lattice site. Small
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adsorbates with spherical symmetry would correspond to the monomer limit

(k = 1). The distance between k-mer units is assumed to be equal to the lattice

constant; hence, exactly k sites are occupied by a k-mer when adsorbed. In order

to describe a system of N k-mers adsorbed on M sites at a given temperature T ,

let us introduce the occupation variable ci, which can take the values ci = 0 or 1,

if the site i is empty or occupied by a k-mer unit, respectively. The k-mer retains,

its structure upon adsorption, desorption, and diffusion. The Hamiltonian of the

system is given by

H = w
∑

〈i,j〉

cicjbij − N(k − 1)w +

M
∑

i=1

εici , (1)

where w is the NN interaction (we use the convention w > 0 for repulsive and

w < 0 for attractive interactions), 〈i, j〉 represents pairs of NN sites; bij ’s are bond-

occupation numbers (= 0 if the bond connecting sites i and j are missing, = 1 if it is

present), and εi is the adsorption energy at site i. The term N(k−1)w is subtracted

in Eq. (1) since the summation over all the pairs of NN sites overestimates the total

energy by including N(k − 1) bonds belonging to the N adsorbed k-mers.

2.2. TIM in canonical ensemble

The advantages of using Monte Carlo (MC) simulation to calculate thermal averages

of thermodynamic observables are well-known.36 The estimation of certain quanti-

ties, such as total energy, energy fluctuations, correlation functions, etc., is rather

straightforward from averaging over a large enough number of instantaneous config-

urations (states) of a thermodynamic system. However, free energy and entropy, in

general, cannot be directly computed. In order to calculate free energy and entropy,

various methods have been developed, namely, TIM,34–42 Ma’s method of coinci-

dence counting of states along the trajectory in phase space,43 “stochastic models”

method of Alexandrowicz,44 “local states” method of Meirovitch,45 “multistage

sampling” and “umbrella sampling” of Valleau et al.,46–49 method of Salsburg,50

method of Yip et al.
51 (which is an optimized combination of coupling parameter

and adiabatic switching formalisms), etc.

Among the methods mentioned in the previous paragraph, the TIM is one of the

most widely used and practically applicable. In the following, we briefly describe

this method.

Given a lattice gas of N interacting particles on a regular lattice with M sites

at temperature T , from the basic relationship

(∂S/∂T )N,M =
1

T
(∂U/∂T )N,M , (2)

it follows

S(N, M, T ) = S(N, M, To) +

∫ T

To

dU

T
, (3)

where U is the mean total energy of the system.
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S(N, M, T ) is readily calculated if S(N, M, To) (reference state) is known, given

that the integral in the second term can be accurately estimated by MC simulation.

In practice, the calculation of S in a reference state can be rigorously accomplished

by analytical methods only in a very few cases. Although the entropy of some par-

ticular states is trivially known (for example, SN→0 → 0), this is often computa-

tionally inconvenient since it would require the simulation of a thermodynamically

open system to get the entropy of a state at finite density. Alternatively, integra-

tion can be carried out through a thermodynamic path of a closed (mechanically

isolated) system along a constant density path, if a proper reference state is defined

for which S(N, M, T0) can be directly computed.

In the case of monomers (k = 1), the determination of the entropy in the

reference state is trivial. In fact, for a monoatomic lattice gas

S(N, M, To = ∞) = kB ln

(

M

N

)

, (4)

where kB is the Boltzmann constant. The last equation holds for any finite value

of the lateral interactions between the ad-particles. Thus, Eq. (4) will be used to

calculate the reference state in the cases discussed in Secs. 3.1, 3.2 and 3.3.

Since S(N, M,∞) cannot be exactly calculated for k-mer adsorption (k ≥ 2) by

analytical means, in the following we present a general numerical methodology to

obtain the entropy of generalized lattice gas in a reference state.

If an artificial lattice gas is defined from the system of interest (henceforth

referred to as the original system) such that it fulfills the condition

SA(N, M,∞) = S(N, M,∞) , (5)

SA(N, M, 0) = 0 . (6)

Then, the integral in Eq. (3) can be separated into two terms. Thus,

S(N, M, T ) = SA(N, M,∞) +

∫ T

∞

dU/T

= SA(N, M, 0) +

∫ ∞

0

dUA/T +

∫ T

∞

dU/T

=

∫ ∞

0

dUA/T +

∫ T

∞

dU/T , (7)

where UA and U are the mean total energy of the artificial and original system,

respectively (both integrals can be evaluated by MC in the canonical ensemble).

The general definition of the artificial reference system follows.

Let us assume the original system to be a discrete system of N particles on M

sites with Hamiltonian H(N, M, i) = U(N, M, i) i ∈ γ, where U(N, M, i) = finite

∀i ∈ γ is the potential energy in the ith configuration among the set of accessible

configurations γ. The original system can only have access to those configurations
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within γ, the total amount of configurations in γ is GT (N, M) (in a lattice gas of N

monomers with single-site occupancy of M sites, GT (N, M) = M !/[N !(M −N)!)]).

The Hamiltonian for the artificial system, HA, follows from:

Definition 1. HA is defined as HA(N, M, j) = UA(N, M, j) = finite ∀j ∈ γA,

where UA and γA = γ have analogous meanings to those given above for U and

γ, respectively. The equalities ensure that the set of accessible configurations for

the original system and the artificial system is equal (although γA = γ, the energy

of the configurations in the artificial system may be, in general, different from the

ones in the original system).

Definition 2. The potential energy of the accessible configurations (j ∈ γA) for

the artificial system takes the following values:

UA(N, M, jo) = 0 , jo ∈ γA ,

UA(N, M, j) > 0 , j 6= jo , j ∈ γA .
(8)

Definition 2 means that a given configuration (the j0th) is selected arbitrarily

from γA and defined as the nondegenerate ground state of the artificial lattice gas;

hence, SA(N, M, 0) = 0. In practice, the configuration j0 can be easily defined.

An example for adsorbed dimers follows in order to make this point clear. Let

us consider adsorbed dimers on an homogeneous square lattice with bij = 1 ∀〈i, j〉
and interaction between NN dimer’s heads as shown in Fig. 1 (original system).

For this system, there is no rigorous expression of s(N, M,∞) for N > 0 in the

thermodynamic limit (N → ∞, N/M → constant).

NN

Fig. 1. Dimers (N = 10) adsorbed on a square lattice of M = 64 sites. Typical nearest-neighbor
(NN) units are labeled. This represents the system of interest (original).
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To build up an artificial system fulfilling Definitions 1 and 2, we follow the steps:

(i) The number of particles, size, and geometry of the lattice are kept as in the

original system.

(ii) The interaction energy between NN units is set to zero.

(iii) An adsorption energy is introduced for the lattice sites (representing, for each

site, the interaction between the lattice and the unit of the dimer adsorbed on

it in the artificial system), in such a way that two types of sites are defined,

(b)

(a)

Fig. 2. (a) Square lattice of M = 64 sites representing the lattice of the artificial system; strong

and weak sites are symbolized by circles and squares, respectively. (b) Configuration of N = 10
dimers in the lowest energy state (ground state) according to the artificial Hamiltonian of Eq. (9).
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strong and weak, with energies εS and εW , respectively, being εS < εW . For

N adsorbed dimers, we choose 2N strong sites conveniently on the lattice.

For instance, in Fig. 2(a) a possible distribution of strong and weak sites is

depicted, where circles and squares are sites of energy εS and εW , respectively.

(iv) It is assumed that dimers in a particular direction are energetically favored.

This is formally handled by introducing a virtual external field such that the

interaction energy between the dimers and the field is wn = −1 if the nth dimer

is vertically aligned and wn = 0 otherwise (this choice is obviously arbitrary).

Care must be taken if periodic boundary conditions are applied to ensure that

the state of minimum energy is unique. Then, the Hamiltonian of the artificial

system for this example is given by

HA =

M
∑

i=1

εici +

N
∑

n=1

wn , (9)

where εi = εS = −1 if the site is strong and εi = εW = 0 if the site is weak.

Thus, the ground state of the artificial system is the one shown in Fig. 2(b),

which is nondegenerate, giving sA(N, M, 0) = 0.

2.3. MC simulation

The calculation of s(N, M, T ) through Eq. (7) is straightforward and computation-

ally simple, since the temperature dependence of uA(T ) and u(T ) is evaluated at

constant coverage for various values of T following the standard procedure of MC

simulation in the canonical ensemble (based on the Metropolis scheme52).

The thermodynamic equilibrium is reached by the following Kawasaki’s dynam-

ics, generalized to deal with polyatomic molecules. The algorithm to carry out an

elementary MC step (MCS) is as follows:

Given a square lattice of M equivalent adsorption sites:

(i) Set the value of the temperature T .

(ii) Set the value of the coverage, θ = kN/M , by adsorbing N = M/2k linear

molecules onto the lattice, each molecule occupying k adsorption sites.

(iii) A k-mer and a linear k-uple of empty sites are randomly selected, and their po-

sitions are established. Then, an attempt is made to interchange its occupancy

state with probability given by the Metropolis rule52:

P = min{1, exp(−∆H/kBT )} (10)

where ∆H = Hf − Hi is the difference between the Hamiltonians of the final

and initial states.

(iv) A k-mer is randomly selected. Then, a displacement to NN positions is at-

tempted (following the Metropolis scheme), by either jumps along the k-mer

axis or reptation by rotation around a unity of the k-mer. This procedure

(diffusional relaxation) must be allowed in order to reach equilibrium in a

reasonable time.
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Fig. 3. Mean total energy per site (in units of the interaction energy w) for dimers on a square
lattice with nearest-neighbor interaction energy w at fixed coverage θ = 0.5. (a) Open circles
and top x-axis correspond to attractive dimers. (b) Full circles and bottom x-axis correspond to
repulsive dimers. Simulations were carried out in the canonical ensemble and symbols represent
averages over typically m = 106 MC configurations, after m′ = 105–106 equilibration steps.

(v) Repeat steps (iii)–(iv) M times.

The first m′ MCS of each run are discarded to allow for equilibrium and the

next m MCS are used to compute averages. Then, uA(T ) and u(T ) are obtained as

simple averages, spline-fitted and numerically integrated. It should be mentioned

that uA(T ) and u(T ) are calculated by using the Hamiltonians of Eqs. (9) and

(1), respectively, in the transition probabilities of the MC procedure. Two typical

curves of 1/kBT versus u are shown in Fig. 3, for attractive and repulsive dimers

on a square lattice.

The strategy described above is applicable to a wide class of lattice gas systems.

However, an efficient exchange MC or simulated tempering method can also be used

in order to make the relaxation faster.53–55 In the following section, we analyze the

advantages and accuracy of this methodology in calculating adsorption entropy of

generalized lattice gas in one-, two-, and three-dimensional regular lattices.

3. Results and Discussion

We consider here a few applications of the methodology presented in previous

sections, namely, analysis of systems in presence of (i) anisotropy, (ii) energetic het-

erogeneity, (iii) geometric heterogeneity, and (iv) multisite-occupancy adsorption.

In the first case (Sec. 3.1), we study interacting monomers adsorbed on one-
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dimensional channels arranged in a triangular cross-sectional structure. The cou-

plings are taken to be different in the different lattice directions.31 In the second case

(Sec. 3.2), we address a simple model consisting of a triangular lattice where a frac-

tion of bonds (interactions) is suppressed at random.32 In the third case (Sec. 3.3),

we consider a gas of monomers adsorbed on bivariate heterogeneous surfaces with

a characteristic correlation length, l. The bivariate surfaces are composed by two

kinds of sites, say weak and strong sites with adsorptive energies ε1 and ε2, respec-

tively, arranged in patches of size l with a chessboard structure.33 Finally, in the

fourth case (Sec. 3.4), we study a system of interacting linear molecules (k-mers)

absorbed on regular lattices.34,35

3.1. Configurational entropy of interacting particles adsorbed on

one-dimensional channels arranged in a triangular

cross-sectional structure

Single-component fluids confined in bundles of carbon nanotubes exhibit a rich va-

riety of phase behaviors.56–63 Most of these transitions are artifacts because true

thermodynamic transitions cannot exist in one dimension for short-ranged inter-

actions. However, a competition between interactions along a single channel (wL)

and a transversal coupling between sites in neighboring channels (wT ) allow one to

evolve to a three-dimensional adsorbed layer and lead to genuine thermodynamic

phase transitions.64–69 The principal objective of a theory of phase transitions in

confined fluids should be to understand basic physical phenomena. For this purpose,

it is necessary to characterize the structures occurring in the adsorbate at critical

regime and to determine how these structures are affected by the system geometry,

as well as by the interactions (wL and wT ). Such a description of phase transfor-

mations is additionally important from a practical point of view, because porous

adsorbents are widely used in a number of relevant technologies (e.g., catalysis, gas

separation, and storage).

Numerous experimental and theoretical studies of gas adsorption on carbon

nanotube bundles predict the existence of close parallel channels of adatoms when

the adsorption takes place (1) inside the nanotubes, (2) in interstitial channels, or

(3) in the grooves sites on bundle surfaces.67,68,70–74 In this context, we present a

simplified lattice gas model, where each channel or unit cell has been represented by

a one-dimensional line of L adsorptive sites, with periodical boundary conditions. In

order to include transverse interactions between parallel neighbor lines, these chains

were arranged in a triangular structure of size R × R and periodical boundary

conditions. Under these conditions, all lattice sites are equivalent; hence, border

effects will not enter our derivation. The energies involved in the adsorption process

are as follows:

(1) ε0, interaction energy between a particle and a lattice site.

(2) wL, interaction energy between adjacent occupied axial sites.

(3) wT , interaction energy between particles adsorbed on NN transverse sites.
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Fig. 4. Schematic representation of the studied system. Black and white circles correspond to
occupied and empty sites, respectively.

Thus, the resulting substrate was an anisotropic three-dimensional array of M =

L×R×R adsorption sites, where each site was surrounded by two “axial” sites along

the chain’s axis and six “transverse” sites belonging to NN unit cells (see Fig. 4).

Then, the Hamiltonian of the system is given by Eq. (1) with k = 1, bij = 1 ∀〈i, j〉,
εi = ε0 = 0 ∀i (homogeneous surface), and wij = wL(wT ) for axial(transverse)

〈i, j〉 pairs.

In MC simulations, the system is represented by a unit cell of sites that is

repeated periodically. As it was demonstrated by different authors studying ad-

sorption in a porous medium,64,68 a small cell size is enough to simulate the one-

dimensional channels. Then, we choose L = 96 in the direction along the axis of

the nanotubes. On the other hand, the choice of appropriate sizes in the transversal

direction has to be done in such a way that the ordered structures developing at

criticality are not disturbed. In our case, lattices with R = 60 sites were used. With

this lattice size, we verified that finite-size effects, which affect the thermodynamical

properties in the case of repulsive interactions at much smaller sizes, are negligible.

We focus on the case of repulsive transversal interaction energy among adsorbed

particles (wT > 0). This is far more interesting since, as we shall see, a rich variety

of ordered phases are observed in the transversal planes. In addition, repulsive and

attractive axial lateral interactions were considered. As it can be easily demon-
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Fig. 5. Configurational entropy per site (in units of kB) versus the surface coverage for interacting
particles adsorbed in one-dimensional channels arranged in a triangular structure with wT = 1
and wL = 0. The curves from top to bottom correspond to values of kBT ranging from ∞ to 0.1.

strated, the behavior of the system is completely determined by two parameters:

wL/wT and wT /kBT . In our calculations, we can consider wT = 1, in such a way

that the system is characterized by two nondimensional parameters wL and kBT .

The entropy is obtained from Eqs. (2)–(4). In what follows, the configurational

entropy per site s will be used. In order to understand the basic phenomenology,

we firstly consider null axial interactions. In this case, successive transversal planes

are uncorrelated and the system is equivalent to the well-known triangular lattice.

Figure 5 shows canonical MC simulations of the entropy per site versus the

surface coverage for wL = 0. As a consequence of the equivalence particle vacancy,

the curves are symmetrical around θ = 0.5. For high temperatures, the overall

behavior can be summarized as follows: in the limits θ → 0 and θ → 1 the entropy

tends to zero. For very low coverage s(θ)/kB is an increasing function of θ, reaches

a maximum at θ = 0.5, then decreases monotonically to zero for θ > 0.5.

As the temperature is diminished, the entropy decreases for all coverage and

develops two local minima at θ = 1/3 and θ = 2/3. In the ground state, s(θ =

1/3, T = 0)/kB = s(θ = 2/3, T = 0)/kB = 0 (see Fig. 6). These singularities

provide valuable information about the phase behavior of the system. Precisely,

they indicate the formation of ordered structures in the adlayer [(
√

3×
√

3) structure

at θ = 1/3 and (
√

3×
√

3)∗ structure at θ = 2/3]. In addition, they are boundaries

between three different adsorption regimes: (i) for 0 < θ < 1/3, the lattice sites are

filled until the (
√

3×
√

3) ordered phase is formed on them; (ii) for 1/3 < θ < 2/3,

this process continues up to the (
√

3 ×
√

3)∗ structure is completed; and (iii) for

2/3 < θ < 1, the full coverage of the lattice is reached. The results in Figs. 5 and
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Fig. 6. Configurational entropy per site (in units of kB) versus the surface coverage for repulsive
interacting particles adsorbed in a triangular lattice in the ground state (wT = 1, wL = 0, and
kBT → 0).

6 match previous studies for triangular lattices (see for instance Refs. 75–77) and

validate the MC scheme.

We now discuss the case corresponding to attractive axial interactions and dif-

ferent values of kBT . For the sake of clarity, the analysis will be carried out in two

parts. On the one hand, for constant wL (wL = 0;−0.5;−1.00) and variable val-

ues of kBT (kBT = ∞; 0.95; 0.63; 0.47; 0.32; 0.19; 0.10), each set of curves presents

two minima in the entropy as kBT decreases (see Fig. 7). Same as in Fig. 5, the
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Fig. 7. Configurational entropy per site (in units of kB) versus the surface coverage for wT = 1
and attractive values of wL (wL = 0;−0.50;−1.00). For constant wL, the curves from top to
bottom correspond to the following: kBT = ∞, 0.95, 0.63, 0.47, 0.32, 0.19, and 0.1, respectively.
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(a)

(b)

Fig. 8. Snapshots of the adsorbate at (a) θ = 1/3 and (b) θ = 2/3 for interacting particles
adsorbed in one-dimensional channels arranged in a triangular structure with wT = 1, wL < 0
and kBT → 0.

existence of these minima is associated with the formation of ordered structures in

the adlayer. In this case, attractive axial interactions favor the formation of pairs

of NN adsorbed particles along the nanotubes. Consequently, the (
√

3 ×
√

3) and

(
√

3×
√

3)∗ phases “propagate” along the channels and emerge the structures shown

in Fig. 8.

On the other hand, for constant kBT and variable values of wL, entropy dimin-

ishes over the whole range of coverage as |wL| is increased. This situation can be

clearly visualized in Fig. 9, where a typical case of constant kBT (kBT = 0.32)

and variable wL (wL = 0;−0.25;−0.5;−0.75;−1.00) is plotted. The position of the

total maximum, at θ = 0.5, is independent of wL, while the position of the local

maximum at low (high) coverage tends to θ = 0.2 (θ = 0.8) from the left (right) as

wL tends to −1.

We now turn to repulsive axial interactions, which present an interesting be-

havior as shown in Fig. 10. Thus, for constant wL (wL = 0; 0.5; 1.00) and variable
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Fig. 9. Configurational entropy per site (in units of kB) versus the surface coverage for wT = 1,
kBT = 0.32 and attractive values of wL as indicated.
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Fig. 10. Same as Fig. 7 for repulsive values of wL (wL = 0; 0.50; 1.00).

values of kBT (kBT = ∞; 0.95; 0.63; 0.47; 0.32; 0.19; 0.10), three minima appear in

the entropy as T decreases. This can be rationalized as follows: at θ = 1/3 [2/3],

a (
√

3 ×
√

3) [(
√

3 ×
√

3)∗] ordered structure is formed in the transversal planes

below the critical temperature. In addition, given that wL > 0, particles avoiding

configurations with NN axial interactions develop a structure of alternating par-

ticles along the channels. Snapshots in Figs. 11(a) and 11(b) correspond to two

possible configurations of the phase appearing at critical regime for θ = 1/3 and

θ = 2/3, respectively. The degeneracy of such structures is 3.2(L−1), and, conse-

quently, s(θ = 1/3, T = 0)/kB = s(θ = 2/3, T = 0)/kB = 0.
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(a)

(b)

Fig. 11. Snapshots of the adsorbate at (a) θ = 1/3 and (b) θ = 2/3 for interacting particles
adsorbed in one-dimensional channels arranged in a triangular structure with wT = 1, wL > 0,
and kBT → 0.

At θ = 1/2 the situation is more complex. In this case, the planes are filled

up to θ = 0.5 with mean energy per site equal to wT /2 (each adsorbed particle

is surrounded by two occupied NNs in the plane). Then, successive planes are

occupied avoiding the formation of monomer–monomer pairs along the nanotubes.

In this manner, each transversal plane is surrounded by two complementary planesa

and the occupation of the channels consists of alternating particles separated by

empty sites. Then, the main contribution to the entropy per site comes from the

number of different ways, Ω, to arrange the particles on the planes at half coverage

with mean energy per site equal to wT /2. This quantity can be obtained from

calculations of entropy per site for triangular lattices at θ = 0.5. In these conditions,

ln Ω = aR2, being a = 0.32099 (see Fig. 6). In addition, a factor 2 must be added

aA complementary plane is obtained under the simultaneous inversion of all occupation variables
(ci = 0 → ci = 1 and ci = 1 → ci = 0).
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Fig. 12. Same as Fig. 9 for wT = 1, kBT = 0.1 and repulsive values of wL (wL =
0; 0.25; 0.50; 0.75; 1.00).

in order to include the effect of the complementarity along the channels. Then, in

the thermodynamic limit (L = R → ∞), s0(1/2) ∝ const R2/(LR2) = 0.

On the other hand, Fig. 12 shows the behavior of the configurational entropy

as a function of coverage for constant kBT (= 0.1) and variable values of wL

(wL = 0; 0.25; 0.5; 0.75; 1.00). Entropy diminishes over the whole range of coverage

as wL is increased.

The calculations of configurational entropy of the adlayer allowed us to iden-

tify a wide variety of structural orderings occurring at θ = 1/3, 1/2, and 2/3. A

similar behavior was recently reported in Ref. 78 for other properties of adsorption

(isotherm and differential heat of adsorption).

Table 1. Critical temperatures cor-
responding to the critical coverage
θ = 1/3, 2/3, and 1/2.

kBTc/wT

wL/wT θ = 1/3, 2/3 θ = 1/2

−1.00 0.76 —
−0.75 0.67 —
−0.50 0.60 —
−0.25 0.48 —

0.00 0.33 —
0.25 0.42 0.41
0.50 0.49 0.53
0.75 0.54 0.63
1.00 0.59 0.71

In all cases wT = 1.
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Finally, the configurational entropy can be used to estimate the critical temper-

atures corresponding to the critical concentrations θ = 1/3, 1/2, and 2/3. For this

purpose, the dependence of s/kB (and its derivative) on temperature was plotted.

Some typical cases are shown in Figs. 13 and 14. The inflection point of s(T )/kB

(peak in its derivative) determines the critical temperature. In the studied cases,

the calculated values are shown in Table 1. For wL = 0, the critical temperature

obtained comes very close to the expected value of kBTc/wT = 0.3354(1) corre-

sponding to the triangular lattice,55 which indicates the degree of accuracy of the

procedure used here.

3.2. Configurational entropy of interacting particles adsorbed on

two-dimensional heterogeneous surfaces

Increasing interest and efforts have been devoted over decades to developing a

deeper understanding of the surface heterogeneity.8–10 Most of the papers dealing
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Fig. 13. Configurational entropy per site (in units of kB) as a function of temperature at the

critical coverage. In the inset, we have plotted the corresponding derivative showing a peak in the
critical temperatures. (a) wT = 1, wL = 0, and θ = 1/3. (b) wT = 1, wL = −0.5, and θ = 1/3.
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Fig. 14. Configurational entropy per site (in units of kB) as a function of temperature at the
critical coverage. In the inset, we have plotted the corresponding derivative showing a peak in the
critical temperatures. (a) wT = 1, wL = 0.5, and θ = 1/3. (b) wT = 1, wL = 1, and θ = 1/2.

with molecular processes on heterogeneous surfaces have been dedicated to the anal-

ysis of phenomena such as diffusion,79 percolation,80 growth,81 adsorption isotherms

and heats of adsorption,82,83 multisite occupancy,84 etc. As it was discussed above,

the entropy is much more difficult to evaluate and, in the best knowledge of the

authors, there is still a lack of systematic studies on the behavior of the adsorbate’s

entropy in presence of surface heterogeneity. For these reason, it is of interest and

of value to inquire how a specific lattice structure (heterogeneous surface with in-

termediate correlation) influences the entropy of the adlayer.

In this context, the main objective of the present section is to determine the

effects of the surface heterogeneity on the behavior of the configurational entropy

of adsorbed interacting particles. We assume that the substrate is represented by

a two-dimensional square lattice of M = L × L adsorption sites, with periodic

boundary conditions. Each adsorption site can be either a “weak” site, with ad-

sorptive energy ε1, or a “strong” site, with adsorptive energy ε2 (ε1 ≤ 0, ε2 ≤ 0

and |ε1| < |ε2|). Weak and strong sites form square patches of size l(l = 1, 2, 3, . . .),
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Fig. 15. Schematic representation of a square heterogeneous bivariate surface with chessboard
topography. Black (white) symbols represent sites with energy ε1 (ε2). The patch size in this figure
is l = 4.

which are spatially distributed in a deterministic alternate way (chessboard topog-

raphy), Fig. 15. Then, the Hamiltonian of the system is given by Eq. (1) with k = 1,

bij = 1 ∀〈i, j〉 and εi = ε1 (or ε2). A special class of this kind of surface has been

observed recently to occur in a natural system,85 although it was already intensively

used in modeling adsorption and surface diffusion phenomena.81–84

The computational simulations have been developed for square lattices with

L = 144 (in such a way that it is a multiple of l) and periodic boundary conditions.

With this size of the lattice, we verified that finite-size effects are negligible. We

focus on the case of repulsive interaction energy among adsorbed particles (w > 0).

As we shall see, order–disorder transitions can take place in the adsorbate, even

if the order can be partially disturbed by heterogeneity. The difference between

the energies of the patches has been chosen to be ∆ε = ε1 − ε2 = 12 (ε1 = 0,

ε2 = −12). A high value of ∆ε has been considered in order to emphasize the effect

of the surface heterogeneity as the temperature is diminished.

We consider in first place a chessboard topography with l = 12 (size of each

homogeneous patch), and different values of the temperature. Figures 16(a) and

16(b) shows the behavior of the configurational entropy per site, s, versus θ for

w = 1 (w = 2). As a consequence of the equivalence particle vacancy, the curves

are symmetrical around θ = 0.5.

For high temperatures, the behavior of s was discussed in Fig. 5 (note that,

for T → ∞, the curve of s versus θ does not depend on the lattice geometry). As

the temperature is diminished, the entropy decreases for all coverage and develops

three local minima at θ = 1/4, 1/2, and 3/4. In the ground state, s(θ = 1/4, T =

0)/kB = s(θ = 1/2, T = 0)/kB = s(θ = 3/4, T = 0)/kB = 0. These marked
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Fig. 16. Configurational entropy per site (in units of kB) versus the surface coverage for inter-
acting particles adsorbed in chessboard substrates with l = 12 and ∆ε = 12. The curves from top
to bottom correspond to different temperatures: full circles, kBT = ∞; open circles, kBT = 4.90;
full squares, kBT = 2.48; open squares, kBT = 1.66; full triangles, kBT = 0.67; open triangles,
kBT = 0.40, and full diamonds, kBT = 0.20. (a) w = 1 and (b) w = 2.

singularities are separating four different adsorption processes: (i) for 0 < θ < 1/4,

the strong site patches are filled until the c(2×2)-ordered phase is formed on them;

(ii) for 1/4 < θ < 1/2, the filling of the strong site patches is completed; (iii) for

1/2 < θ < 3/4, the weak site patches are filled until the c(2 × 2)-ordered phase

is formed on them; (iv) for 3/4 < θ < 1, the filling of the weak site patches is

completed. The appearance of c(2 × 2) structures in the patches is related to the

well-known order–disorder phase transition occurring in a repulsive lattice gas at

low temperatures.86

We now analyze the case corresponding to w = 4 [Fig. 17(a)] and w = 5

[Fig. 17(b)]. As shown in Fig. 16, three minima appear in the entropy as T de-

creases. Nevertheless, the cause of these minima in Figs. 17(a) and 17(b) is differ-

ent. In fact, the filling of the lattice proceeds according to the following processes:

(i) for 0 < θ < 1/4, the strong site patches are filled until the c(2×2)-ordered phase

is formed on them; (ii) for 1/4 < θ < 1/2, the weak site patches are filled until the

c(2 × 2)-ordered phase is formed on them; (iii) for 1/2 < θ < 3/4, the filling of the

strong site patches is completed; (iv) for 3/4 < θ < 1, the filling of the weak site

patches is completed.
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Fig. 17. Configurational entropy per site (in units of kB) versus the surface coverage for inter-
acting particles adsorbed in chessboard substrates with l = 12 and ∆ε = 12. The curves from top
to bottom correspond to different temperatures: full circles, kBT = ∞; open circles, kBT = 4.90;
full squares, kBT = 2.48; open squares, kBT = 1.66; full triangles, kBT = 1.00; open triangles,
kBT = 0.67, and full diamonds, kBT = 0.20. (a) w = 4 and (b) w = 5.

As it can be easily understood, as long as the condition w/∆ε < 1/4 is satisfied,

the adsorption process is similar to the one described in Fig. 16, i.e., strong site

patches are filled first and weak site patches are filled after. We call this feature

Regime I (RI). On the other hand, as w/∆ε > 1/3 the adsorption process is shown

in Fig. 17, which we call Regime II (RII). In this case, both patches are filled

sequentially.

In the next figure, we show RI and RII from a new perspective. For this pur-

pose, Fig. 18(a) [Fig. 18(b)] presents a typical low-temperature adsorption isotherm

(coverage versus chemical potential, µ) in RI (RII). As can be observed, the partial

densities, θ1 and θ2, which are associated with sites with energy ε1 and ε2, show

competition between easily visualized by following the behavior of θ1 and θ2.

It should be noted that Regimes I and II are disconnected. In between,

i.e., 1/4 ≤ w/∆ε ≤ 1/3, the system behaves in a mixed transition regime changing

continuously from one to another.

An interesting case occurs for w = 3 (Fig. 19). For this value of the lateral

interaction, the adsorption process is as follows: (i) the strong site patches are filled

until the c(2 × 2)-ordered phase is formed on them; (ii) for 0.25 < θ < 0.75, the

particles can be adsorbed on strong patches (with energy ε2 + 4w = 0) or on weak
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Fig. 18. Total and partial adsorption isotherms (coverage versus chemical potential µ) for a typi-
cal case in Regime I (top) and Regime II (bottom). Solid, dashed, and dotted lines represent total
coverage θ, partial coverage of strong sites θ1, and partial coverage of weak sites θ2, respectively.
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Fig. 19. Configurational entropy per site (in units of kB) versus the surface coverage for inter-
acting particles adsorbed in chessboard substrates with l = 12, ∆ε = 12, and w = 3. The curves
from top to bottom correspond to different temperatures: full circles, kBT = ∞; open circles,
kBT = 4.90; full squares, kBT = 2.48; open squares, kBT = 1.66; full triangles, kBT = 1.00; open
triangles, kBT = 0.67, and full diamonds, kBT = 0.20.
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sites (with energy ε1 = 0). For this reason, the entropy varies smoothly between

0.25 < θ < 0.75, and the minimum at θ = 0.5 disappears. The process (ii) concludes

when the weak site patches are filled until the c(2× 2)-ordered phase is formed on

them; and finally, (iii) the filling of the weak site patches is completed.

In the following, we will analyze what happens when the topography is changed.

For this purpose, we fix the energies (lateral interaction and difference between the

energies of the patches) and the temperature, and vary the size l of the patches.

The result of this analysis is shown in Figs. 20 and 21 for RI and RII, respectively.

It can be seen that all curves vary between two limit ones: the one corresponding
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Fig. 20. Configurational entropy per site (in units of kB) versus coverage for square chessboard
topographies with different l’s, ∆ε = 12, w = 2, and kBT = 1 (Regime I). The different values of
l are displayed in the figure.
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Fig. 21. Same as Fig. 20 for w = 4 and kBT = 1 (Regime II).
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to 1 × 1 patches and the one corresponding to bp (two big patches). The fact

that the entropy for different topographies, characterized by a length scale l, varies

between two extreme curves (see Figs. 20 and 21) suggests that we should search

for some appropriate quantity to measure deviation among these curves and study

the behavior of such quantity as the length scale is varied. The quantity we found

most suitable is

χs =
∑

i

[s(θi) − sbp(θi)]
2 , (11)

where sbp(θi) is the reference entropy and the sum runs over all values of coverage

(between 0 and 1). The results for χs are shown in Fig. 22, where we can see that χs

behaves as a power law in l with two different values of the exponent, αs, depending

on the ratio w/∆ε. These results confirm the existence of two adsorption regimes

at low temperatures. A similar behavior was recently observed in Refs. 82 and 83

for other properties of adsorption (isotherms and differential heat of adsorption),

which reinforce the robustness of the results presented here.

3.3. Configurational entropy of interacting particles adsorbed on

diluted-bond triangular lattices

Now, we address the case of surfaces with geometric heterogeneity. The object of

our study is the determination of the effects of geometric-quenched disorder of the

substrate on the thermodynamics of adsorption of monomers, when the disorder is

represented by a variable connectivity, as inspired by the problem of adsorption on

the surface of amorphous solids. Thus, we consider monomers (k = 1) adsorbed on

a diluted-bond triangular lattice (connectivity z = 6) with M = L × L sites and
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Fig. 22. Power law behavior of the quantity χS showing the data for chessboard topographies in
RI and RII.
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m = 3M bonds, with periodic boundary conditions. Particles interact through a

NN repulsive energy, w > 0. Then, the Hamiltonian of the system is given by Eq. (1)

with k = 1. In addition, in the case of an energetically homogeneous surface, as the

one to be considered here, all εi’s are the same and we can take them equal to zero

without loss of generality.

In general, we have used in our calculations M ≈ 104 (L ≈ 100). Care had to

be taken in order to select the precise size, which would allow the formation of the

ordered phases. The approach to thermal equilibrium is usually reached in m = 105

MCS, after that the mean value of U at a given temperature is calculated as a

simple average over m′ = 105 additional MCS. Then, the entropy is obtained from

Eqs. (2)–(4). As in previous sections, the entropy per site will be used. Given that

our system is disordered, it is important to stress that all the above calculations

are repeated over 100 replicas of the system for each fixed degree of disorder and

all thermodynamical quantities are finally averaged over them.

The case ρ = 0 corresponds to the completely ordered system (homogeneous

triangular lattice) and was discussed in Fig. 5. As some of the bonds are randomly

deleted in the lattice, this becomes disordered with ρ > 0 and zmean < z. Entropies

for different values of ρ and w/kBT are shown in Fig. 23. Curves from top to bottom

correspond to different interaction strengths: full circles, w/kBT = 1; open circles,

w/kBT = 2; full squares, w/kBT = 3; open squares, w/kBT = 4; full triangles,

w/kBT = 5; and open triangles, w/kBT = 6. It can be observed that for high values
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Fig. 23. Entropy per site for triangular lattices with different degrees of disorder and for different

interaction strengths: full circles, w/kBT = 1; open circles, w/kBT = 2; full squares, w/kBT = 3;
open squares, w/kBT = 4; full triangles, w/kBT = 5; and open triangles, w/kBT = 6.



September 16, 2009 15:16 WSPC/INSTRUCTION FILE S0217979209053308

Configurational Entropy in Generalized LGM 4615

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6  U = 0

 U = 0.05

 U = 0.08

 U = 0.16

 U = 1s
 /

 k
B

T
Fig. 24. Entropy per site for triangular lattices with different degrees of disorder (as indicated)
at a fixed interaction strength (w/kBT = 6).

of w/kBT the minima in the entropy are gradually smeared out as ρ increases. In

addition, the particle-vacancy symmetry is lost. This can be better appreciated in

Fig. 24, where the above thermodynamical quantities are represented for a fixed

high value of w/kBT (w/kBT = 6) and increasing values of the degree of disorder.

This symmetry breaking can be explained by taking into account the fact that, due

to repulsive interactions, sites attached to deleted bonds will be filled preferentially

as the coverage increases.

The above results suggest the existence of a critical degree of disorder ρc (critical

mean connectivity zc), below (above) which the order–disorder phase transition

observed for the ordered lattice will survive. In what follows, we explore in more

details this possibility and work out a way of estimating these critical values and

the extent to which the critical temperature is affected by the degree of disorder.

To estimate the variation of the critical temperature with the degree of disorder,

we analyze the behavior of the entropy as a function of kBT/w for different values

of ρ. This method, suggested in Ref. 87 and later validated by finite-size scaling

(FSS) analysis in Ref. 88, indicates that the position of the peak in ds/dT gives a

good approximation of the critical temperature. The variation of s and ds/dT with

temperature for different values of ρ is given in Figs. 25(a) and 25(b), respectively.

We find that kBTc/w starts from the value 0.34 (close to the exact value of 0.3354)

for ρ = 0 and then decreases appreciably as ρ increases (see Table 2).

The transition around θ = 2/3 turns out to be much more sensitive to the

degree of disorder. After performing the same studies as for θ = 1/3, see Fig. 26,

we find ρc = 0.003, or zc = 5.982, and that kBTc/w starts from the value 0.34
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Fig. 25. Entropy per site (a) and its derivative (b), as a function of the interaction strength
for lattices with different degrees of disorder (as indicated), at the low-coverage phase transition
θ = 1/3.

Table 2. Variation of the
critical temperature for differ-
ent degrees of disorder at the
low- and high-coverage phase
transitions.

kBTc/wT

ρ θ = 1/3 θ = 2/3

0.00 0.34 0.34
0.01 — 0.31
0.02 0.31 0.29
0.05 0.24 —

(close to the exact value of 0.3354) for ρ = 0 and decreases rapidly as ρ increases

(see Table 2). It is therefore clear that critical parameters are different at the two

phase transitions located at θ = 1/3 and 2/3, the latter being more sensitive to the

degree of disorder, meaning that, at the same value of kBT/w, the higher coverage

transition disappears at a lower value of ρ and the critical temperature decreases

faster with ρ. The reason of this behavior can be traced down to the particularities

of the geometry of each ordered phase. At θ = 1/3 the ordered phase consists of
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Fig. 26. Same as Fig. 25 for θ = 2/3.

a configuration where any central filled site is surrounded by an hexagon with six

empty sites at the corners. If just one bond between a filled and an empty site is

eliminated, no new configurations arise with the same or lower energy. At θ = 2/3,

on the contrary, the ordered phase is characterized by the fact that any central

empty site is surrounded by an hexagon with six filled sites at the corners. If just

one bond between a filled and an empty site is eliminated (a radial bond in an

hexagon), there are several new configurations with lower energy, namely those

where the eliminated bond is transformed into one of the sides of an hexagon of

filled sites. The system will try to evolve toward one of the new configurations

passing through a huge number of intermediary partially disordered states.

The simple analysis performed here, although approximate, provides qualitative

evidence about the critical behavior of the system. A more detailed and accurate

study of this behavior, including the determination of the phase diagram and the

variation of critical exponents, is being undertaken through FSS analysis.

3.4. Configurational entropy for adsorbed linear species (k-mers)

The knowledge of thermodynamic properties and phase behavior of interacting

polyatomic lattice gases is still limited, and it is a developing field of research in

gas–solid interface science. An early seminal contribution to dimer statistics was

done by Fowler and Rushbrooke,89 while an isomorphous system, namely adsorption
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of binary liquid in two dimensions, was treated by Flory.18,19 The thermodynamics

of dimers was made for partially90–97 and full coverage lattice98–110 using exact

and approximate methods. More recently, general results on thermodynamics and

transport for noninteracting polymers in low-dimensional lattices were presented.24

On the other hand, mean-field and quasi-chemical approximations were used to

study the two-dimensional case.111

The structural ordering of interacting dimers has been analyzed by Phares

et al.
110 The authors calculated the entropy of dimer on semi-infinite M×N square

lattice (N → ∞) by means of transfer matrix techniques. They concluded that

there are a finite number of ordered structures. As it arose from simulation anal-

ysis,112 only two of the predicted structures survive at thermodynamic limit. In

fact, in Ref. 112, the analysis of the phase diagram for repulsive NN interactions on

a square lattice confirmed the presence of two well-defined structures: a c(4 × 2)-

ordered phase at θ = 1/2 and a “zig-zag” (ZZ) order at θ = 2/3, being θ the surface

coverage.

The thermodynamic implication of such a structural ordering was demonstrated

through the analysis of adsorption isotherms113 and the collective diffusion coeffi-

cient.114 Later, MC simulations and FSS techniques have been used to study the

critical behavior of repulsive linear k-mers in the low-coverage ordered structure

(at θ = 1/2).88,115 A (2k × 2)-ordered phase, characterized by alternating lines,

each one being a sequence of adsorbed k-mers separated by k adjacent empty sites,

was found. The critical temperature and critical exponents were calculated. The

results revealed that the system does not belong to the universality class of the

two-dimensional Ising model. The study was extended to triangular lattices.55 In

this case, the exponents obtained for k > 1 and θ = k/(2k + 1) are very close to

those characterizing the critical behavior of k-mers (k > 1) on square lattices at

θ = 1/2.

Here, we deal with attractive as well as repulsive k-mers adsorbed on regular

lattices of M = L×L adsorptive sites, where L is the linear size of the array. The k-

mers can only adsorb flat on the surface occupying k lattice sites. Only NN units of

different k-mers interact through an interaction energy w. Then, the Hamiltonian of

the system is given by Eq. (1) with bij = 1 ∀〈i, j〉 and εi = ε0 = 0 ∀i (homogeneous

surface).

The entropy per site was calculated by following the method of the artificial

Hamiltonian described in Sec. 2.2. The temperature dependence of uA(T ) and u(T )

was obtained by MC simulation in the canonical ensemble. A typical curve u(T ) is

depicted in Fig. 3 for repulsive dimers on a square lattice (full circles). Integration

through Eq. (7) was carried out by standard methods after spline-fitting uA and u

versus T , respectively.

Results of thermodynamic integration with an artificial reference system are

shown in Fig. 27 for attractive dimers in a one-dimensional lattice. The high ac-

curacy of this calculations can be asserted by comparison with exact analytical
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Fig. 27. Entropy per site (in units of kB) versus surface coverage for attractive dimers in one
dimension. Curves from top to bottom correspond to different values of w/kBT as indicated. Solid
lines represent data from Eq. (12). Calculations from thermodynamic integration with an artificial
Hamiltonian as described in this work are shown in full circles.

ones for s(θ, T ) recently presented in Ref. 116 (shown in full line). The formula for

entropy per site of interacting k-mers is116

s(θ, T )

kB
=

θ

k
ln

θ

k
+ (1 − a) ln(1 − a) − 2a lna −

[

θ

k
− a

]

ln

[

θ

k
− a

]

− (1− θ − a) ln(1 − θ − a) (12)

and

a =
2θ(1 − θ)

k

[

1 − (k − 1)

k
θ + b

] , b =

{

[

1 − (k − 1)

k
θ

]2

− 4

kA
(θ − θ2)

}1/2

, (13)

A = [1 − exp(−w/kBT )]−1 . (14)

A remarkable agreement is obtained as shown in Fig. 27. The behavior of repul-

sive dimers is reproduced throughout by the calculations of this work (as shown in

Fig. 28) for all the ratios w/kBT investigated. The local minimum of the entropy

at θ = 2/3 for strongly repulsive dimers is very well reproduced. This minimum

corresponds to the developing of an ordered structure of alternating dimers as

temperature decreases (see inset in Fig. 28). However, this minimum does not cor-

respond to a phase transition as expected for a one-dimensional lattice gas with

short-ranged interactions.

Equilibrium thermodynamics of k-mer lattice gases in two dimensions is a chal-

lenging theoretical problem with applications to adsorption of polyatomic molecules

on surfaces. In the simplest case of interacting dimers, a very limited knowledge
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Fig. 28. Entropy per site (in units of kB) versus surface coverage for repulsive dimers in one
dimension. Curves from top to bottom correspond to different values of w/kBT as indicated.
Same as Fig. 27 for lines and symbols.

about its phase behavior is currently available.110,112 By applying the method pre-

sented here, an accurate thermodynamic description of attractive and repulsive

dimers in two dimensions can be accomplished.

For calculations of dimers entropy in a square lattice, a lattice size M = 96×96

was used. A detailed analysis of finite-size effects (not shown here for the sake of

shortness) concluded that lattices of this typical size are appropriate to give results

representative of the thermodynamic limit within 1% of uncertainty. The results

shown and discussed below correspond to dimers (Fig. 29) and trimers (Fig. 30) on

a square lattice.

For noninteracting as well as attractive dimers, s(θ, T ) has a maximum at θ >

0.5. The overall effect of interactions is to decrease the entropy for all coverage. All

these characteristics match the behavior of dimers in one dimension.116 For repulsive

dimers, s(θ, T ) develops two local minima at θ = 1/2 and 2/3 as T decreases. In the

ground state, s(1/2, 0) = s(2/3, 0) = 0. These values correspond to a (4 × 2) (see

left inset in Fig. 29) and ZZ (see right inset in Fig. 29) ordered phases of dimers,

respectively. The critical temperatures corresponding to the critical densities θ =

1/2 and 2/3 were estimated to be Tc(1/2) ≈ 0.33w/kB and Tc(2/3) ≈ 0.20w/kB, in

very good agreement with the values reported in Ref. 112 from finite-size analysis

of order parameter cumulants. Our results confirm that only two out of the multiple

minima arising from transfer matrix approximation for s(θ, T ) of Phares et al.
110

are relevant.

Linear trimers exhibit an intriguing behavior (see Fig. 30 where s(θ, T ) for

noninteracting and repulsive straight and bended trimers are shown). From the

comparison between noninteracting dimers and straight trimers in Figs. 29 and 30,

it arises that the maximum of s(θ, T ) slightly approaches θ = 1/2 from above as

the k-mer size increases. For repulsive straight trimers, two minima appear. Other
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Fig. 29. Entropy per site (in units of kB) versus surface coverage for repulsive dimers in two
dimensions. Curves from top to bottom correspond to w/kBT = 0; w/kBT = 2.94; w/kBT = 3.13;
and w/kBT = ∞, respectively. In this figure, lines connecting symbols are included for better
visualization; however, they do not correspond to theoretical results as they do in Figs. 27 and 28.
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Fig. 30. Entropy per site (in units of kB) versus surface coverage for bended (L-shape) and

straight repulsive trimers in two dimensions. Curves with full circles from top to bottom correspond
to straight trimers with different values of w/kBT as indicated. Open circles correspond to bended
trimers with w/kBT = 0. Same as Fig. 29 for lines and symbols.

than the one at θ = 1/2 with s(1/2, 0) = 0 corresponding to an (6 × 2)-ordered

phase, it appears a very degenerate state with s(3/4, 0) = finite at θ = 3/4. This

degeneracy remains as the ratio w/kBT → ∞ owing to the fact that trimers at this

coverage can locally rearrange without any energy cost. This rearrangement is not

possible for dimers in the ZZ phase at θ = 2/3 and it makes a qualitative difference

between the two cases. Whether this minimum trace to an order–disorder phase

transition is still unknown.



September 16, 2009 15:16 WSPC/INSTRUCTION FILE S0217979209053308

4622 A. J. Ramirez-Pastor, F. J. Romá & J. L. Riccardo

The fact that trimers can have a bended configuration make a significant in-

fluence on its configurational entropy. As displayed in Fig. 30 for a pure phase of

noninteracting bended trimers, s(θ, T ) increases up to 20% at intermediate cov-

erage with respect to a pure phase of straight trimers. The maximum also shifts

appreciably to a higher coverage. Further analysis on the phase behavior, nature of

phase transitions, and critical parameters is necessary in this case.

4. Conclusion

In summary, an interesting computational methodology has been presented for

the calculation of the configurational entropy in generalized lattice gas models.

The technique is based on the well-known TIM, along with a general definition of

artificial Hamiltonians for discrete systems. Comparisons with rigorous analytical

results demonstrate the method accuracy. This level of detail and accuracy cannot

be ascertained by analytical approximations at the present. The methodology is a

reliable strategy to gain insight into the critical properties and phase behavior of a

wide variety of systems. In this sense, four applications have been discussed in this

review.

In the first case, we have calculated the configurational entropy of an adlayer of

interacting particles adsorbed in one-dimensional channels arranged in a triangu-

lar structure. Two kinds of lateral interaction energies have been considered: wL,

interaction energy between NN particles adsorbed along a single channel; and wT ,

interaction energy between particles adsorbed across NN channels. We focused on

the case of repulsive transversal interactions among adsorbed particles (wT = 1),

in such a way that the system was characterized by two nondimensional parame-

ters wL and kBT . On this basis, different behaviors were observed: (i) for wL = 0,

successive transversal planes are uncorrelated and the system is equivalent to the

well-known triangular lattice in two dimensions; consequently, two well-defined or-

dered structures are found at θ = 1/3 and θ = 2/3; (ii) for wL > 0, the adlayer

behaves as a three-dimensional fluid and a new structure is observed at θ = 0.5;

and (iii) for wL < 0, two minima are observed in the configurational entropy. This

is due to the fact that the ordered phases at θ = 1/3 and 2/3 are reinforced and

extend along the channels.

In addition, an approximate estimation of the critical temperatures, correspond-

ing to the critical concentrations θ = 1/3, 1/2, 2/3, was obtained from the curves

of configurational entropy as a function of the temperature.

In the second case, we have used the bivariate trap model in order to study how

the surface topography affects the configurational entropy of repulsively interacting

particles. In the framework of this model, it is assumed that the surface is formed

by a collection of homogeneous patches. Every adsorptive site within a given patch

has the same adsorptive energy. However, different patches have different adsorp-

tive energies. We have considered only two kinds of square patches with different
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energies, i.e., strong and weak patches, which are arranged in a chessboard-like

ordered structure.

In order to analyze the effects of the topography on the configurational entropy

of the adsorbate, three quantities have been chosen as the control parameters: (i) the

relationship between the lateral interaction and the difference between the energies

of the patches (w/∆ε); (ii) the temperature, and (iii) the size of the patches, l,

which is associated with the correlation length. On this basis, different cases have

been observed: (1) for high temperatures, the thermal energy governs the adsorp-

tion process and the entropy tends to the Langmuir case; (2) as the temperature

decreases, the configurational entropy develops three minima at coverage θ = 1/4,

1/2, and 3/4, which tend to zero in the ground state (T = 0). Depending on the

value of w/∆ε, two different regimes are observed. For w/∆ε < 1/4 (Regime I),

the strong sites patches are filled first and weak site patches are filled after. On the

other hand, for w/∆ε > 1/3 (Regime II), both patches are filled sequentially up

to 50%, and then, the filling of the patches is completed up to full coverage; and

(3) for fixed energies and T , the configurational entropy appears as a very sensi-

tive quantity to the correlation length, confirming the importance of the energetic

correlation length as a controlling parameter in the adsorption process. This effect

has been discussed in previous studies involving different process taking place on

strong correlated surfaces.81–84

In the third case, we have studied the configurational entropy of repulsively

interacting monomers adsorbed on disordered triangular lattices. Disorder is intro-

duced by randomly deleting a fraction of bonds, representing interactions between

particles adsorbed at NN sites, leading to lattices with variable connectivity, as in-

spired by the problem of adsorption on amorphous solids. Two order–disorder phase

transitions exist for the ordered lattice at θ = 1/3 and 2/3 when the temperature

is below the critical value given by kBTc/w = 0.3354 and all thermodynamic quan-

tities show a particle-vacancy symmetry around θ = 1/2. As the degree of disorder

increases this particle-vacancy symmetry is broken but the phase transitions survive

up to a critical disorder value, which is higher for the low-coverage region than for

the high-coverage one. Critical temperatures at the two transitions decrease with

the degree of disorder, this decreasing being faster for the high-coverage region. The

present results, based on an approximate critical analysis, open the perspective of

more accurate studies to be undertaken on the basis of FSS in order to determine

accurately the phase diagram of the system and the behavior of critical exponents.

Finally, novel features shown for dimer and trimer entropy are in favor of a very

rich phase behavior of larger adsorbed particles. Similar calculations of free energy

(coverage and temperature dependence) would allow a complete thermodynamic

description of adsorption systems in presence of multisite occupancy.

Further applications to more complex problems in statistical physics, as frac-

tional statistics lattice gases and generalized statistics, would in principle be

feasible.
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