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General Expression for the Voigt Function that is of Special
Interest for Applied Spectroscopy
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The purpose of this work is twofold. First we obtain a series ex-
pansion for the Voigt function that is valid for all values of the
dimensionless parameter a (a measure of the ratio between the Lor-
entzian and Gaussian widths). Furthermore, the resulting coef� -
cients are independent of the generalized coordinate b (the wave-
length measured in units of the Gaussian width). In the second
place, we � t an experimental ‘‘shaped bell’’ curve to a Voigt pro� le
using certain theoretical restrictions that relate the maximum
height and the full width at half-maximum.

Index Headings: Spectroscopy; Pro� le; Voigt function.

INTRODUCTION

Line shapes provide fundamental information in ap-
plied spectroscopy, since transition probabilities, electron
and ion temperatures, and electron densities are related
to them in different ways. The Voigt pro� le, V(x), de� ned
as the convolution between a Gaussian and a Lorentzian
function [denoted G(x) and L(x), respectively], is useful
in the physics of stellar atmospheres and in optical spec-
troscopy, where a thermal distribution of velocities (a
Gaussian) must be folded with the function describing
the broadening of spectral lines by electron collisions (a
Lorentzian). The Voigt pro� le has been treated from the
graphical and numerical point of view. Calculations and
graphs were given, for example, by van de Hulst and
Reesnick.1 An approximation to the standardized Voigt
function was made by Kielkopf2 and a computational
procedure was published by Drayson.3 Classic papers on
the subject are contained in these last two references.
Recent publications summarizing diverse types of ap-
proximations are due to Thompson4 and Brablec et al.5

Many works were made by astrophysicists; their main
interest involves the case where the Gaussian width is
more important than the Lorentzian one. This relation is
taken into account with respect to the so-called a param-
eter, the ratio between Lorentzian and Gaussian widths
(see Eq. 10 below), which, for this case, is ,1. Several
series and asymptotic expansions can be found in the
above-cited papers and in the classic books by Unsold6

and Mihalas.7 On the other hand, when a . 1, the only
known expression is due to Traving8 and is restricted to
the case a . 1.4.

The present work consists of two main parts: (1) The
development of a new expression for the Voigt function
that is valid for all values of the parameter a. This ex-
pression is of particular interest when a . 1 because of
its applicability in the spectroscopy of cold and dense
plasmas. (2) The � tting of experimental points to a Voigt
pro� le, based on theoretical properties (or restrictions) of
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the operations height times width and height divided by
width. To this end, we propose a criterion based on the
peak value of the pro� le and on its full width at half-
maximum (FWHM). This feature is important because,
in this region, around the peak, the signal-to-noise ratio
is better than in the wings.

In terms of applications, we consider some important
uses of the Voigt function in the practical analysis of the
experimental pro� les: (1 ) the discrimination of the
bound–bound transition with respect to the continuum,
and (2) the estimation of the total line intensities, de� ned
as I 5 Il dl where, in practice, the line wings are cut`

2`

off relatively close to the line center at distances only a
few times the half-width. Both questions are, of course,
closely related. Furthermore, in spectroscopy of cold
dense plasmas (when the electron density Ne ø 1016–1018

cm23, the electron temperature Te reaches some eV, and
Te $ T i, the ion temperature), the basic problem is the
determination of the plasma broadening width and the ion
temperature, knowing that both the ion contribution to
the broadening and the instrumental function can be treat-
ed as Gaussian functions. This factor is useful for appli-
cations where transition probabilities must be obtained
and also for studies of the physics of electric discharges
and laser-produced plasmas (LPPs). All these applica-
tions are of direct interest for laser-induced breakdown
spectroscopy (LIBS).9 In fact, when the plasma source
can be regarded as thin, line intensities are proportional
to the transition probabilities, and electron temperature
and densities are needed in the calculation of Saha and
Boltzmann distributions.

In the next section, we present a concise revision of
the notations and de� nitions and, in the following section,
an exact expression for the Voigt function. The fourth
section is devoted to the description and test of an al-
gorithm proposed for deconvolution of a Voigt pro� le
into its Gaussian and Lorentzian components. Finally, the
main conclusions of this work are summarized.

THE VOIGT PROFILE

There is a wide and confusing variety of notations for
the Voigt pro� le. Therefore, in this section, we present a
brief discussion of this point. To this end, the normalized
expressions for the distributions (those making the area
under the curves equal to unity), G(x) and L(x), will be
used. The argument x may denote frequency or wave-
length. The corresponding FWHMs (GG and GL) will be
introduced to de� ne the operations ‘‘height times width’’
and ‘‘height divided by width’’ for both types of curves,
since they are very useful when experimental points are
to be � tted to a Voigt pro� le. The following notation will
be used: v for the parameters giving the simplest nor-
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malized expression, G for the FWHM, and g for the half-
width at half-maximum (HWHM); lower indexes G, L,
and V indicates Gauss, Lorentz, and Voigt, respectively.

Gaussian Pro� le. In this case, G(x) is written as

G(x) 5 G0exp[2(x/vG)2] (1)

where vG, the Gaussian parameter, is related to the Gauss-
ian HWHM (gG) through

g 1Gv 5 and G 5 (2)G 0Ïln 2 ÏpvG

For this normalized curve the product of the maximum
height times the FWHM is

G0 3 GG 5 2Ïln 2/p ø 0.93944 (3)

whereas the ‘‘svelteness’’, the ratio between the maxi-
mum height and the FWHM, is

2Ïln 2 /pG 0.939440 5 ø (4)
2 2G G GG G G

Lorentzian Pro� le. Analogous to the previous case,
2vLL (x) 5 L (5)0 2 2(x 1 v )L

where vL is the Lorentz parameter related to the Lorentz
HWHM through vL 5 gL and

1
L 5 (6)0 pvL

Now

L0 3 GL 5 2/p ø 0.63662 (7)

and

L 2 0.636620 5 ø (8)
2 2G pG GL L L

The Voigt Pro� le. From Eqs. 1 and 5, the convolution
between both functions is given by

2` 2(x9/v )G(v /v ) eL GV (x) 5 dx9 (9)E3 /2 2 2p (x 2 x9) 1 vL2`

with the normalization condition
`

V (x) dx 5 1E
2`

De� ning the dimensionless parameters

y 5 x9/vG; b 5 x/vG; a 5 vL/vG [ Ïln 2GL/GG (10)

the integral in Eq. 9 can be written as
2` 2ya e dy

V (b) 5 (11)a E3/2 2 2p v (y 2 b) 1 aG 2`

which is the expression for the dimensionless function
commonly appearing in the literature6,7. An equivalent
result is obtained after making u 5 (y 2 b)/a; then

2` 2(au1b)1 e du
V (b) 5 (12)a E3/2 2p v u 1 1G 2`

In Eqs. 11 and 12, the value of the integral is

` 1
V (b) db 5E a vG2`

Therefore, in the following paragraphs, it will be useful
to consider the Voigt dimension-less function Ua(b) nor-
malized to unity:

Ua(b) [ vGVa(b) (13)

Taking into account that 1/(u2 1 1) is the Laplace
transform of cos(ux), we can write for Ua(b) the equiv-
alent expression

`1 22 x 2 (x /2a)U (b) 5 e e cos(bx /a) dx (14)a Epa 0

The peak intensity (when b 5 0) is given in terms of the
complementary error function (1 2 erf(a)):

2ae (1 2 erf (a))
V (0) 5 (15)a ÏpvG

or, equivalently,
2aae (1 2 erf (a))

V (0) 5 (16)a ÏpvL

Series and asymptotic expansions for (1 2 erf(a)) can be
found for both a # 1 and a . 1 in manuals on special
functions.10

The FWHM of the Voigt Function and the Cal-
culation of a from the Experimental Data. In the pub-
lished literature we have not found a simple character-
ization of the Voigt FWHM from a neat theoretical anal-
ysis. Kielkopf 2 cites the graphs given by van de Hulst
and Reesnik in order to arrive at an approximate solu-
tion of the problem, whereas Allen11 gives an estimation
for GV without indicating the source. The Voigt FWHM
depends on the parameters a and b de� ned in Eq. 10.
For each a value, we call b1/2(a) the value of b such that
Va(b1/2)/vG 5 Va(0)/2vG. This value of b is the HWHM
in units of vG 5 GG /2Ïln 2. From Eq. 10 it holds that

G GV Vb (a) 5 a 5 Ïln 2 (17)1/2 G GL G

This equation determines GL once b1/2(a), a, and GV are
available. Then, GG can be calculated. Moreover, from
Eqs. 15, 16, and 17

2a2b (a)e (1 2 erf (a))1/2V (0) 3 G 5 (18)a V Ïp

Equation 18 is exact, even when b1/2(a) is obtained nu-
merically and with very good accuracy (r2 5 1) from

2b (a) 5 a 1 Ïln 2 exp[20.6055a 1 0.0718a1/2

3 42 0.0049a 1 0.000136a ] (19)

For a 1; GV ø GG, whereas for a 1, GV ø GL. This
is a very important result since it allows us, once Va(0)
and GV are known from the experimental data, to � nd the
value of the parameter a and, therefore, GL and GG, thus
leading to the deconvolution of the Voigt pro� le.

AN EXPANSION VALID FOR ALL VALUES OF a

Because much previous work was done by astrophys-
icists, all known expressions are for the case a 1 where
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the Gaussian term is dominant. We present here a general
result that is valid for all values of the parameter a, thus
also including the case a . 1, which is of special interest
for the spectroscopy of cold and dense plasmas and LIBS
applications.

From Eq. 14, using the representation

2n` nbx (21) b
2ncos 5 xO1 2 1 2a (2n)! an50

we can write

2n` n1 (21) b
U (b) 5 I (20)Oa n1 2pa (2n)! an50

with
`

22 x 2(x /2a) 2nI 5 e e x dx (21)n E
0

From Ref. 10 and with the introduction of the parabolic
cylinder functions Dp(z)

22 22(n11)/2 a /2I 5 (1/2a ) G(2n 1 1)e D (Ï2a) (22)n 2 (2n11)

related to the con� uent hypergeometric functions
2a x a(a 1 1) x

M (a, g; x) 5 1 1 1 1 · · · (23)
g 1! g(g 1 1) 2!

through

D (Ï2a)2(2n11)

ì Ïp 2n 1 1 1
2ï M , ; a22 (2n11) /2 2a /2 1 25 2 e G(n 1 1) 2 2í

ï
î

ü2Ïpa 3
2 ï2 M n 1 1, ; a

(24)1 22 ý2n 1 1
G ï1 22 þ

such that
`1

nU (b) 5 (21)Oa
n50Ïp

ì
1 2n 1 1 1

2ï M , ; a1 23 G(n 1 1) 2 2í
ï
î

ü
2a 3

2 ï2 M n 1 1, ; a
(25)2n1 2 b2 ý2n 1 1

G ï1 22 þ

which, taking into account Eqs. 13 and 17, results in

2nb b1/2 1/2n 2nV (x) 5 (21) v x (26)Oa n1 2gÏpg VV

vn being the expression in brackets in Eq. 25.
It is very remarkable that the coef� cients do not de-

pend on b. This is not so for the case a , 1 presented

in the literature,6,7 where all coef� cients depend on both
the summation index n and the ordinate b. This evalua-
tion is simpli� ed by the existence of recursion relations
concerning the M functions.10

For a 5 0, M(a, g; a2) 5 1, and we get the expansion
for G(x). For a ® `, using the asymptotic expansion for
M(a, g; x)

G(g)
2aM (a, g; z) ; (2z) G (a, a 2 g 1 1; 2z)

G(g 2 a)

G(g)
z a2g1 e (z) G (g 2 a, 1 2 a; z) (27)

G(a)

vn is
2(n11)(21) Ïp

v 5n

2n 1 1 1 2 2n
2n11G G a1 2 1 22 2

and taking into account that
n1 (21)

5
p2n 1 1 1 2 2n

G G1 2 1 22 2

and b/a 5 x/vL, we have

2n`v xG nU (b) 5 (21)Oa® ` 1 2pv vn50L L

such that, from Eq. 13

2n`1 x
nV (x) 5 (21)Oa® ` 1 2pv vn50L L

which is the expansion of L(x).

ALGORITHM FOR PROFILE DECONVOLUTION

As stated above, Eq. 18 allows us to � nd the Loren-
tzian and Gaussian widths of the Voigt pro� le in terms
of the parameter a, provided that the peak value [Va(0)]
and the experimental Voigt FWHM (GV) are known.
Moreover, from Eqs. 3 and 7 it is clear that if a set of
‘‘shaped bell’’ experimental points is expected to be well
� tted by a Voigt curve, then the product of the maximum
experimental height times the experimental FWHM must
be between 0.939 and 0.636, whereas the svelteness must
be between the values given by Eqs. 4 and 8. In the rest
of this section we describe how Va(0), GV, and also the
parameter a can be obtained from the experimental data,
which are usually affected by noise.

The algorithm goes through the following main steps:
(1) The absolute intensity maximum (IMAX) of the ex-

perimental points and its corresponding position, lMAX

and PMAX, in wavelength and pixels units, respectively,
are found. Due to the discrete nature of the data, IMAX

does not necessarily occur at the actual center wavelength
of the observed line. When noise is not very important
and the data points are suf� ciently spaced, a parabolic
interpolation can be used to introduce a correction to IMAX

to � nd the actual peak intensity Va(0). On the other hand,
when many data points are available, integration under
the pro� le can be used to this end.
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FIG. 1. Simulated data (scatter points) and their corresponding recon-
structed pro� les (solid lines) for two different values of the parameter
a and for different noise levels. FIG. 2. Experimental data points (scatter graph) corresponding to the

line 4844 AÊ of Xe(II) and the Voigt pro� le obtained after applying the
algorithm (solid line).

(2) As a � rst approach to obtaining FWHM, two pixels
are found (one to the left and one to the right of PMAX)
for which the difference between their corresponding in-
tensity values and Va(0)/2 is a minimum. An interpolation
is then used at both sides to � nd the points giving exactly
half the value of Va(0). The distance between these points
(in wavelength units) is the desired FWHM, GV.

(3) The product Va(0) 3 GV is evaluated and compared
to the right-hand term of Eq. 18. This is done by com-
puting this term for different values of the parameter a,
which is moved in small steps until a desired degree of
accordance is achieved. As seen from Eq. 18 and dis-
cussed in the preceding section, the limit a 5 0 represents
a pure Gaussian pro� le, while the limit a ® ` corre-
sponds to a pure Lorentzian curve. However, in practice,
the variation of the parameter a can be con� ned between
0 and 5, since for values of a greater than 5 the right-
hand term of Eq. 18 differs from its limit value 2/p in
less than 1% and the pro� le can be considered as pure
Lorentzian, as is shown below.

With this known value of a, the Lorentzian and Gauss-
ian FWHMs, GL, and GG, respectively, are evaluated, and
the entire pro� le can be reconstructed and compared with
the actual one in terms of a merit � gure such as x2.

Test of the Algorithm. To verify the above described
procedure for pro� le deconvolution, we numerically gen-
erated Voigt pro� les from the exact convolution integral
de� ned in Eq. 11 and for different values of a. In that
procedure, the Gauss FWHM (GG) was � xed at 1.5 and,
for the different values of a, the Lorentz FWHM was
obtained accordingly with Eq. 10. White noise was also
added to these pro� les to simulate laboratory conditions.
Figure 1 presents the results for Voigt pro� les constructed
with a 5 0.2 and a 5 2 (scatter graphs) together with
the corresponding reconstructed pro� les (solid lines).

The algorithm was then applied to a set of experimental
data corresponding to the line of 4844 AÊ of Xe(II) to test
its performance under real laboratory conditions. Spectral
lines were measured from an LPP excited by focusing a
400 mJ Nd:YAG laser delivering 7 ns pulses at 1.06 mm
onto a cell containing Xe at 300 mTorr. The scanning of
the observed lines was carried out by a shot-by-shot tech-
nique, rotating in small steps (0.05 AÊ min21) the grating

of a monochromator with a resolving power of 300 000
and using a photomultiplier (PM) as detector. The signal
from the PM was processed by a boxcar averager and
recorded as a sequential � le after proper digitalization.
Each recorded data point was the result of an average over
(typically) 30 laser shots to improve the signal-to-noise
ratio. The number of recorded data can be varied, 60
points being a good compromise between resolution and
scanning time. Figure 2 shows both the experimental data
points (scatter graph) and the Voigt pro� le (solid line) ob-
tained after applying the algorithm. For this pro� le, the
algorithm gives GG 5 0.059 AÊ and GL 5 0.113 AÊ .

The obtained Gaussian width is itself the convolution
of two Gaussian contributions—namely, the Doppler
broadening of the line, directly related to the ion tem-
perature of the plasma, and the monochromator slit.
Moreover, the instrumental function of a monochromator
when both the entrance and exit slit are equal is theoret-
ically a triangle function [T(x)], which in certain cases
can be very well approximated by a Gaussian pro� le.
Indeed, numerical calculations presented in the book by
Zaidel et al.12 indicate the similarity between the convo-
lutions L(x) * G(x) and L(x) * T(x) for such slits.

The convolution of two Gaussians is also a Gaussian
of total width following the equation G 5 G 12 2

G Doppler

G . Taking into account that the spatial resolution while2
slit

registering the experimental line was set to 1 AÊ /mm and
that both the entrance and exit monochromator slits were
� xed at 30 mm (thus corresponding to a width of 0.03
AÊ ), the resulting Gaussian width due to the Doppler effect
is

GDoppler 5 ÏG 2 G 5 0.05 AÊ ,2 2
Doppler Slit

giving an ion temperature of 2.4 eV.13

Miscellaneous. We present here some numerical re-
sults which can be useful to � x orders of magnitude for
the intervals of interest for the parameter a while running
the code which implements the algorithm described
above.

The expression

(1 2 erf(a))2aae
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has a limit value (for a ® `) of 1/Ïp. On the other hand,
as can be seen from Eq. 19, for a . 1, b1/2(a) tends
rapidly to a. Thus as a becomes greater, the numerator
of Eq. 18 can be replaced by its limit value with an error
that is negligible for a 5 5 and up. In fact, if a 5 4.5,
the expression

2aae (1 2 erf (a))

Ïp

comes to 0.31632. Thus, the entire expression can be re-
placed by its limiting value, 1/p 5 0.31831, representing
an error of less than 1%.

In practice this means that if the noise present in the
experimental data is greater than 1% (a value which is
very easy to attain), a value of a $ 4.5 makes the dif-
ference between L(x) and V(x) nonsense, and they can be
considered indistinguishable.

If the noise is 10% or greater, the same arguments
apply for a $ 2.

These conclusions were taken into account when lim-
iting the range of a to a maximum value of 5 in the
program code of the algorithm described above.

CONCLUSION

We obtained a series expansion for the Voigt function
V(x) that is valid for all values of the parameter a (Eqs.
25 and 26). A concise relation between the peak value
of the Voigt function and its FWHM was also derived
(Eq. 18). This approach allows for an easy � tting of ex-

perimental points to a Voigt pro� le, using these analytic
properties.

Additionally, a simple algorithm for pro� le deconvo-
lution was developed and tested with the use of both
simulated and actual experimental points. Results show
very good agreement, as can be seen in Figs. 1 and 2,
respectively. We emphasize the use of the peak value and
the FWHM, because in this region the signal-to-noise ra-
tio is better than in the wings.
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