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In this work, we analyze the spatial and time variation of the fine structure constant (α) upon the
theoretical framework developed by Bekenstein (Phys. Rev. D 66, 123514 (2002)). We have computed the
field ψ related to α at first order of the weak-field approximation and have also improved the estimation of
the nuclear magnetic energy and, therefore, their contributions to the source term in the equation of motion
of ψ . We obtained that the results are similar to the ones published in L. Kraiselburd and H. Vucetich, Int. J.
Mod. Phys. E 20, 101 (2011) which were computed using the zero order of the approximation, showing that
one can neglect the first order contribution to the variation of the fine structure constant. Through the
comparison between our theoretical results and the observational data of the Eötvös-type experiments or
the time variation of α over the cosmological time scale, we set constraints on the free parameter of the
Bekenstein model, namely the Bekenstein length.
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I. INTRODUCTION

Both theories that have been developed to try to unify the
fundamental interactions (see, for example, [1–6]) asDirac’s
large numbers hypothesis (LNH) [7] predict that the
fundamental constants might vary in spacetime. Given these
theoretical motivations, there have been many attempts to
look for observational and/or experimental data to corrobo-
rate such variations (see Refs. [8–11] and references therein)
but almost all of them are until now consistent with a null
variation. On the other hand, the analysis of the data
performed in Refs. [12–16] suggests that the fundamental
constants might have a different value than the present ones.
A space variation of fundamental constants would produce a
violation of the weak equivalence principle (WEP) [17]
which can beverified thanks to the energy conservation [18].
TheEötvös-type experiments are themost sensitivemethods
to verify the WEP since they are capable to detect the

difference between the acceleration of bodies with different
composition or structure [19–24]. For details on the varia-
tion of the fundamental constants see [25].
Bekenstein proposed a theory to study the fine structure

constant variability based on first principles [26] and later, he
claimed that no violations of WEP are perceived whereas a
possible time variation of α can not be discarded with the exi-
sted observable bounds [27]. Kraiselburd and Vucetich [28]
modified Bekenstein’s original theory by replacing the
classical model of charged particles by a quantum model
of many bodies at the nonrelativistic limit, but with classical
fields and neglecting the contributions of the self-generated
fields. They found that even considering the cancellation pro-
posed by Bekenstein, between the electric field and the mass
source term, quantum density fluctuations produce fluctuat-
ing electric currents which generate magnetic fields. These
fields, are responsible for the appearance of an anomalous
term in the accelerationof a systemof particles that produces a
violation of the WEP in Eötvös-type experiments. Later,
Barrow and Magueijo [29,30] questioned Kraiselburd and
Vucetich’s interpretation of approaching the coupling of field
ψ in the expressions D ¼ ϵE ¼ e−2ψE and H ¼ μ−1B ¼
e−2ψB with the weak-field approximation (e−2ψ ≈ 1).
The purpose of this work is twofold:
(1) to show that nonlinear corrections to the zero order

in Bekenstein’s equations are negligible in the weak-
field regime, typical for experimental setups;
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(2) to analyze the prediction for the time variation of α
due to the magnetic contributions in the semiclass-
ical model and compare it with modern observa-
tional data.

This work is organized as follows. In Sec. II, we briefly
review the formalism of Bekenstein model and Kraiselburd
and Vucetich approach. In Sec. III, we introduce the
improvements to the semiclassical model in order to study
the spatial dependence, as well as the time variation of the
fine structure constant in an expanding Universe. The
observational available data on the variation of the α are
shown in Sec. IV. In Sec. V, we present the obtained bounds
on the model parameters through the comparison between
the observational data and the theoretical predictions.
Finally, in Sec. VI, we draw the conclusions.

II. A REVIEW ON BEKENSTEIN’S FORMALISM
AND THE SEMICLASSICAL APPROXIMATION

In this section, we summarize the main aspects of the
Bekenstein model [26,27] and its semiclassical version
presented in [28].

A. Bekenstein model

Bekenstein modifies Maxwell’s electromagnetic theory
to introduce a scalar field ψ that couples to charges
generating a variation in α [26,27]. The model holds under
the following hypothesis
(1) Maxwell’s theory must be recovered when α is

constant;
(2) the dynamic field ψ is responsible for changes in α;
(3) the dynamics of the electromagnetic and the ψ fields

can be obtained from a variational principle;
(4) the theory must be gauge and time-reversal invariant,

and also preserve causality;
(5) it is not possible to have a length smaller than the

Planck length lP.
1

From these hypotheses, the only possible action is
given by

S ¼ Sem þ Sψ þ Smat þ SG; ð1Þ

where the expressions for the modified Maxwell and ψ
field actions are

Sem ¼ −
1

16π

Z
e−2ψfμνfμν

ffiffiffiffiffiffi
−g

p
d4x; ð2aÞ

Sψ ¼ −ℏc
2l2

B

Z
ð∂μψÞ2

ffiffiffiffiffiffi
−g

p
d4x; ð2bÞ

Smat ¼
X
i

Z
1

γ

�
−mc2 þ e

uμ

c
Aμ

�
δ3½xi − xiðτÞ�d4x; ð2cÞ

SG ¼ c4

16πGN

Z ffiffiffiffiffiffiffiffiffiffi
ð−gÞ

p
Rd4x; ð2dÞ

where Fμν is the usual electromagnetic tensor, fμν ¼
eψFμν. g is the metric while ℏ and c are the Planck
constant and the speed of light respectively. lB is the
Bekenstein’s fundamental length scale, a constant length
introduced by the model. The Lorentz factor is represented
by γ, m is the particle mass, e and uμ are its electric charge
and 4th velocity respectively. Finally, GN is the gravita-
tional constant, R the Ricci scalar, and xiðτÞ stands for the
particle trajectory of the particle in presence of the fields
Aμ and ψ .
Following the previous statements, an elementary elec-

tric charge and the fine structure constant α are locally
defined as

eðxμÞ ¼ e0eψðx
μÞ; αðxμÞ ¼ e2ψðxμÞα0; ð3Þ

where e0, α0 are the current values of the electron charge
and the fine structure constant.
The equations that describe the dynamics of the electro-

magnetic and ψ fields are

ðe−ψFμνÞ;ν ¼ 4πjμ; ð4aÞ

□ψ ¼ l2
B

ℏc

�∂σ
∂ψ −

FμνFμν

8π

�
: ð4bÞ

In the previous equation jμ ¼ e0uμδ3½xi − xiðτÞ�×
ðcγ ffiffiffiffiffiffi−gp Þ−1/2, σ is the energy density of matter [26], and
□ stands for the covariant flat d’Alambertian.
Bekenstein [26] has analyzed the spatial ð∇2ψÞ and the

temporal ð 1c2 ∂
2ψ
∂2t Þ terms of Eq. (4b). The cosmological

equation of motion for ψ is related to the time variation
of α. In an isotropic and homogeneous Universe, with a
Robertson-Walker metric, the time variation of α (after
calling ϵ ¼ eψ and 2j̇ϵ/ϵj ¼ j ̇α/α0j) is given by

∂
∂t
�
a3

1

ϵ

∂ϵ
dt

�
¼ −a3lB

2

ℏc

�
ϵ
∂σ
∂ϵ þ

ðE2 − B2Þ
4π

�
; ð5Þ

where a represents the Universe scale factor. As one can
see, the only source term is the one that comes from matter,
since the electromagnetic radiation of the Universe does not
contribute. Considering that magnetic term can be
neglected such that the contribution of the Coulombic
energy density is much higher in ordinary matter and
ϵð∂σ∂ϵÞ ∼ 2mEMc2,

1In string theories or in a low-energy limit of some TOEs
(theory of everything), this statement should not be taken into
account since, for these kind of theories, there are length scales
that are smaller than the Planck scale. In these cases, this
hypothesis should be revised.
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∂
∂t
�
a3

1

ϵ

∂ϵ
dt

�
¼ −a3lB

2

cℏ
ζCρmc2; ð6Þ

where ρm is the total rest-mass density of electromagnetic
interacting matter ðmEMÞ and ζC is the fractional contri-
bution of the Coulomb energy to the rest mass. Mosquera
et al. [31] have analyzed the solution of the above equation
for two different regimes of the Universe: when matter and
radiation dominate, and when matter and cosmological
constant do, matching both solutions with the appropriate
boundary conditions. They have performed a statistical
analysis to test the solutions using observational data from
the early Universe and other bounds from the late Universe
arriving at the conclusion that Bekenstein’s hypothesis
lB > lP should be relaxed.
In Ref. [26], Bekenstein states that the mass dependent

term of Eq. (4b) is almost cancelled with the term of the
electric field, therefore ∂σ

∂ψ þ e−2ψE2

4π ≈ 0. He justifies this
statement with the fact that field ψ can be written as a
function of the coulombic potential ϕC, and working on this
relationship, he derives that there exists an asymptotically a
null value of ψ [27]2 Hence, an electrically charged particle
(or a set of point charges) satisfies□ψ ≈ 0, meanwhile for a

static system of magnetic dipoles, ∇2ψ ≈ −l2B
ℏc e−2ψ B2

4π and
∂
∂t ða3 1

ϵ
∂ϵ
∂tÞ ¼ a3lB2

cℏ jζmjρmc2. The factor ζm is the fractional
contribution of the magnetic energy to the rest mass. For
this latter system, Bekenstein claims that no WEP violation
can be detected in laboratory experiments.

B. The semiclassical approach

In Bekenstein’s theory, particles are treated classically.
This assumption is not accurate, especially in those cases
where quantum effects become relevant, such as white
dwarfs or condensed matter physics, or at high-energy
scales (a small distance scales) since fermions have their
own “natural length scale”. For these reasons, Kraiselburd
and Vucetich [28] have proposed a semiclassical model
where particles are quantized and fields remain classic.
Once matter is quantized, the main subject is to understand
matter distributions movements inside a scalar field ψ , and
the contributions of the electric and magnetic field of this
interaction.
The full action and Lagrangian of a body (or an ensemble

of point charges) have been analyzed in the non-relativistic
limit for the charges, with the full expression for the
electromagnetic field. If only the external ψ and gravita-
tional fields are taken into account, meaning that the self-
generated fields are neglected, the equation of motion for
the scalar field ψ is

□ψ ¼ 4πκ2
�∂ðΨ̄∂mΨÞ

∂ψ þ FμνFμν

8π

�
; ð7Þ

being κ2 ¼ l2B
4πℏc. Ψ represents the charged particle

field, while the particle mass has been renormalized as
m ¼ m0 þ ∂m with m0 independent of ψ . The expres-
sion ∂m can only be computed through the quantum
electrodynamics renormalization since it arises from
the quantum fluctuations of the electromagnetic field,
∂m ≈ 3

4π e
2ψα0m0 logðΛ2

m2
0

Þ, with Λ the ultraviolet cut-off

frequency imposed by quantum electrodynamics. Under
this scheme, it is not possible to determine if Bekenstein’s

cancellation statement (in this case, ∂ðΨ̄∂mΨÞ
∂ψ þ e−2ψ E2

4π ≈ 0)
is valid or not since it is necessary to quantify the fields [32].
Even taking Bekenstein’s statement as valid, in a

quantum model of matter, quantum fluctuations of protons
and neutrons oscillating in anti-phase create a dipole
moment which produces a variable current and magnetic
field. Haugan and Will [33,34] have made estimations of
these contributions to the magnetic energy from a minimal
nuclear shell model roughly obtaining

Em ≃
3

20π

Ê
RðAÞℏc

Z
σdE ¼ 0.24

π

Ê
RðAÞℏc ; ð8Þ

where RðAÞ ¼ 1.2A1/3 fm and Ê ∼ 25 MeV are the nuclear
radius and the giant dipole mean absorption energy
respectively, and A is the atomic number. The integrated
strength function

R
σdE satisfies the Thomas-Reiche-Kuhn

sum rule but for light nuclei, this approximation is no
longer suitable. Consequently, in this article we use other
estimates for nitrogen, hydrogen and beryllium (see the
Appendix).
The magnetic energy density em, which is concentrated

near atomic nucleus, can be written in terms of the
fractional contribution of the magnetic energy to the rest

mass of nuclear specie b ðMbÞ, ζbm ¼ Eb
m

Mbc2
as,

emðxÞ ¼
X
a

Ea
mδðx − xaÞ ≃

X
b

Eb
mnbðxÞ

≃
P

bζ
b
mρbðxÞ
ρðxÞ ρðxÞc2 ¼ ζ̄mðxÞρðxÞc2; ð9Þ

where ζ̄mðxÞ ¼
P

b
ζbmρbðxÞ
ρðxÞ is the local mass-weighted aver-

age of ζm and nbðxÞ is the particle density of the nuclear
specie b. Finally, ρbðxÞ stands for the mass density of the
nuclear specie b, and ρðxÞ is the local mass density.
Reference [28] is based specifically on the analysis of the

magnetic contributions in the spatial part of a semiclassical
Bekenstein model. Taking the spatial part of Eq. (7) and
rewriting it using expression of Eq. (9) it becomes

2If this statement is valid the restrictions found in Ref. [31]
cease to make sense since ∂

∂t ða3 1
ϵ
∂ϵ
∂tÞ ¼ 0 considering only the

Coulomb contribution.
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∇2ψ ¼ −8πκ2c2e−2ψ ζ̄mρ: ð10Þ

A solution for an arbitrary distribution of sources with
spherical symmetry of the scalar field ψ under the weak-
field approximation (e−2ψ ∼ 1) can be found as,

ψðrÞ ¼ 8πκ2c2
Z

Rs

0

x2

r>
ζ̄mðxÞρðxÞdx; ð11Þ

being Rs the distribution radius and

r> ¼
�
r if r > x

x if x > r

Then, using the Newtonian potential, ϕNðrÞ ¼ GNM/r, the
field outside the distribution (r > x) can be written as

ψðrÞ≍ 8πc2κ2

GNM
ϕNðrÞ

Z
Rs

0

x2ζ̄mðxÞρðxÞdx

¼ 2

�
lB

lP

�
2

ζ̃m
ϕNðrÞ
c2

: ð12Þ

In the last expression, ζ̃m is the mass-averaged value of
ζ̄m. The Lagrangian of the theory, according to Ref. [28], is

L ¼ −Mtot

�
c2 −

V2
CM

2
− ϕNðRCMÞ

�
þ 2ψðRCMÞEm þ � � � ;

ð13Þ

where Mtot is the body mass, VCM is the velocity of the
center of mass and RCM is the center of mass position.
Recalling the assumption of the cancellation between the
electrostatic contribution and mass dependence on ψ , one
can write the acceleration that suffers a body immersed in
an external gravitational ðgÞ and ψ fields as

R̈CM ¼ a ¼ gþ 2
Em

Mtot
∇ψ jCM; ð14Þ

with ∇ϕNðrÞ ¼ g. The neglected terms in the last expres-
sion are of either tidal order, negligible in laboratory tests of
WEP, or of higher order in ψ . The last term on the right-
hand side of the above equation is an anomalous accel-
eration generated by the scalar field ψ . Consequently, the
validity of the theory can then be tested with Eötvös-type
experiments that measure the correlation between inertial
mass and gravitational mass. From expressions of Eqs. (12)
and (14) it is possible to compute the Eötvös parameter
which associated with the differential acceleration of two
bodies (A and B) of different composition

ηðA;BÞ ¼ aA − aB
g

¼ 4

�
lB

lP

�
2

ζSmðζAm − ζBmÞ; ð15Þ

where ζSm, ζAm and ζBm are the magnetic energy fractions of
the source and bodies A and B respectively.
The bounds on ðlBlPÞ

2 obtained in Ref. [28] using the data
of the most accurate versions of the Eötvös experiment
presented in Table I, are

�
lB

lP

�
2

¼ 0.0003� 0.0006;
lB

lP
< 0.05; ð16Þ

where the last equation correspond to the upper bound at
3σ level.
From these results it is clear that even when the electric

field does not contribute to the scalar field ψ , the quantum
fluctuations contribute (through currents) in such a way that
the upper limit found for the lB/lP parameter discards the
theory.

III. HIGHER ORDERS IN THE WEAK-FIELD
APPROXIMATION UNDER THE
SEMICLASSICAL APPROACH

In this section, we present the computation of the field ψ
by taking into account the following order in the series
expansion in the equation of motion under the scheme
proposed by Kraiselburd and Vucetich [28].
In order to carry out this calculation, we proceed to solve

Eq. (10) with an iterative method inspired in the Picard
method of solution for differential equations. Considering a
weak field, e−2ψ ≈ 1–2ψ þOðψ2Þ, we begin by introduc-
ing this approximation of the exponential in the equation of
motion [see Eq. (10)]. Then, we replace the scalar field ψ
on its right-hand side (source term) with the solution given
by Eq. (12), that is the zero order approximation ψ0ðrÞ, to
find the next order solution ψ1ðrÞ,

∇2ψ1 ¼ −8πκ2c2ζ̄mρð1 − 2ψ0Þ;

¼ −8πκ2c2ζ̄mρ
�
1 − 4

�
lB

lP

�
2

ζ̃m
ϕNðrÞ
c2

�
; ð17Þ

The solution is then

TABLE I. Eötvös-type experiments data.

Body A Body B Source 1011ηðA; BÞ References

Al Au Sun 1.0� 1.5 [19]
Al Pt Sun 0.03� 0.045 [20]
Cu W Sun 0.0� 2.0 [21]
Be Al Earth −0.02� 0.23 [22]
Be Cu Earth −0.19� 0.25 [22]
Be Al Sun 0.40� 0.98 [22]
Be Cu Sun −0.51� 0.61 [22]
Si/Al Cu Sun 0.51� 0.67 [22]
EC MM Sun 0.001� 0.032 [23]
Be Ti Earth 0.004� 0.018 [24]
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ψ1ðrÞ ¼ 8πκ2c2
1

r

Z
R

0

x2ζ̄mðxÞ

×

�
1 − 4

�
lB

lP

�
2

ζ̃m
ϕNðxÞ
c2

�
ρðxÞdx;

¼ ψ0ðrÞ −
32πκ2

GNM
ϕNðrÞ

�
lB

lP

�
2

ζ̃m

×
Z

R

0

x2ζ̄mðxÞϕNðxÞρðxÞdx; ð18Þ

where R is the radius andM is the mass, both of the source
body. The previous integral can be computed as

Z
R

0

x2ζ̄mðxÞϕNðxÞρðxÞdx ¼ 3

2
ϕNðRÞζ̃mM; ð19Þ

where, once again, ζ̃m stands for the mass average of ζ̄m.
Therefore, the asymptotic behaviour of the field turns out to
be

ψ1ðrÞ ¼
�
1 − 6

�
lB

lP

�
2

ζ̃m
ϕNðRÞ
c2

�
ψoðrÞ: ð20Þ

For Eötvös-type experiments in which generally the

source is the Earth or Sun, the factor 6ζ̃m
ϕNðRÞ
c2 of the

second term inside the bracket is of the order ∼2.37 ×
10−10 and ∼5.27 × 10−14 respectively. Therefore, the con-
tribution of this term would be negligible.

A. Magnetic contributions to the acceleration

In this section, we compute and discuss the acceleration
changes due to the addition of the new computed field ψ1.
According to Eq. (20)

∇ψ1jCM ¼ 2

�
lB

lP

�
2

ζm
∇ϕNðrÞ

c2

− 12

�
lB

lP

�
4

ζ2m
ϕNðRÞ∇ϕNðrÞ

c4
: ð21Þ

Consequently, the acceleration that a body j in presence of
a with the Newtonian gravitational and a scalar fields
becomes [see Eq. (14)]

aj ¼ gþ 4ζjmζSm

�
lB

lP

�
2

g − 24ζjmζSm
2

�
lB

lP

�
4 ϕNðRÞ

c2
g:

ð22Þ

One can observe again an anomaly, which is composed
of two terms. The first of them agrees with the one
described in the previous section [see Eq. (15)], while
the second one is the result of the next order of the field ψ
expansion described in this work.

B. Magnetic contributions to the time variation
of α in an expanding Universe

In this section, we analyze the time variation of the fine
structure constant using the development carried out in
Ref. [31] for an expanding Universe. This calculation is
performed by taking into account the magnetic contribution
of the baryon matter.
From Eq. (5), considering valid Bekenstein’s cancella-

tion in the semiclassical approach, we obtain

1

ϵ

∂ϵ
∂t ¼

3

4π

�
lB

lP

�
2

ζmΩb

�
a0
aðtÞ

�
3

H2
0ðt − tcÞ; ð23Þ

where we have used ρm ¼ ΩbρC
a3ðtÞ, ρC ¼ 3/ð8πGNÞH2

0 and

lP ¼ ðGNℏ/c3Þ1/2, H0 is the Hubble constant, Ωb is the
Universe baryon matter density and tc is an integration
constant that can be null. One can assume that the field
variation is only generated by the magnetic energy of the
cosmological baryon matter. If one consider that the
primordial Universe is composed only of Hydrogen and
Helium-4, the fractional contribution of the magnetic
energy to the rest baryon mass is given by

ζm ¼ 0.75EH
m þ 0.25E

4He
m

0.75MHc2 þ 0.25M4Hec
2
≈ 1.097 × 10−5; ð24Þ

where EH
m and E

4He
m are the magnetic energy of H and 4He

respectively and MH ðM4HeÞ is the H (4He) mass. These
magnetic energies in particular are estimated differently
from the others (an explanation is given in the Appendix).
The scale factor has different expressions depending on

the stage of the Universe evolution. In a flat Friedmann-
Robertson-Walker metric (FRW) and assuming the scalar
field contribution null, the equation that describes the
Universe scale factor time evolution can be written as�
1

a
∂a
∂t
�

2

¼H2
0

�
Ωm

�
a0
aðtÞ

�
3

þΩr

�
a0
aðtÞ

�
4

þΩΛ

�
; ð25Þ

where the initial conditions are að0Þ ¼ 0 and aðt0Þ ¼ 1,
being t0 the age of the Universe, Ωm is the matter
contribution to the density, Ωr is the radiation density
and ΩΛ stands for the contribution of the cosmological
constant to the density. In Ref. [31], the authors have
performed a piece-wise approximate solution by solving
the FRW equation for two different cases: (a) radiation and
matter (early Universe) that can be applied to nucleosyn-
thesis and recombination of primordial hydrogen; and (b)
matter and cosmological constant (middle-age and present
Universe) which is used for quasar absorption systems,
geophysical data, and atomic clocks. Then, they have
matched both solutions in the time that the regime changes
(t1) and considered that the scale factor is a smooth and
continuous function of time. They have obtained
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(i) early Universe, dominated by radiation and matter ðt < t1Þ

aRMðξÞ ¼
Ωmξ

2

4
þ

ffiffiffiffiffiffi
Ωr

p
ξ; ð26aÞ

H0tðξÞ ¼
Ωmξ

3

12
þ

ffiffiffiffiffiffi
Ωr

p
ξ2

2
: ð26bÞ

(ii) middle-age Universe, dominated by matter and cosmological constant ðt > t1Þ

aMC ¼
ffiffiffi
3

p Ωm

ΩΛ

"
sinh

 
3

2

ffiffiffiffiffiffiffi
ΩΛ

p
H0ðt − t0Þ þ arc sinh

 ffiffiffiffiffiffiffi
ΩΛ

Ωm

s !!#2
3

: ð27Þ

Thereafter, we obtain the time variation of α (being ln ϵðtÞ
ϵðt0Þ ≃

1
2
Δα
α0
) for each stage of the Universe by replacing the scale

factor in Eq. (23);
(1) early Universe dominated by radiation and matter ðt < t1Þ

Δα
α0

¼ −1
π

ζm
Ωb

Ωm

�
lB

lP

�
2
�
ln

�
λðξ1Þ
λðξÞ

�
þ 2

ffiffiffiffiffiffi
Ωr

p
λðξÞ −

2
ffiffiffiffiffiffi
Ωr

p
λðξ1Þ

−
1

8
ln

�
Ωr

ΩΛ

��

þ 3

4π
ζm

�
lB

lP

�
2Ωb

Ωr
H0tc

�
1

ξ
−

1

ξ1
þ Ωm

λðξÞ −
Ωm

λðξ1Þ
þ Ωm

2
ffiffiffiffiffiffi
Ωr

p ln

�
ξλðξ1Þ
ξ1λðξÞ

��

−
1

2π
ζm

Ωb

Ωm

�
lB

lP

�
2 ffiffiffiffiffiffiffi

ΩΛ
p "

τ1 −H0tc
tanh ðarc sinhððΩrΩΛ

Ω4
m
Þ38ÞÞ

−
τ0 −H0tc

tanh ðarc sinhð
ffiffiffiffiffi
ΩΛ
Ωm

q
ÞÞ

#
; ð28aÞ

λðξÞ ¼ ξΩm þ 4
ffiffiffiffiffiffi
Ωr

p
; ð28bÞ

τi ¼ H0ti: ð28cÞ
(2) middle-age Universe dominated by matter and cosmological constant ðt > t1Þ

Δα
α0

¼ −1
2π

ζm
Ωb

Ωm

�
lB

lP

�
2 ffiffiffiffiffiffiffi

ΩΛ
p

×

"
τ −H0tc
tanh ðγðτÞÞ −

τ0 −H0tc

tanh ðarc sinhð
ffiffiffiffiffi
ΩΛ
Ωm

q
ÞÞ
−

2

3
ffiffiffiffiffiffiffi
ΩΛ

p ln

 ffiffiffiffiffiffiffi
Ωm

ΩΛ

s
sinh ðγðτÞÞ

�#
; ð29aÞ

γðτÞ ¼ 3

2

ffiffiffiffiffiffiffi
ΩΛ

p
ðτ − τ0Þ þ arc sinh

 ffiffiffiffiffiffiffi
ΩΛ

Ωm

s !
: ð29bÞ

(3) present Universe dominated by matter and cosmo-
logical constant ðt ¼ t0Þ

̇α
H0α0

¼ 3

4π
ζm

�
lB

lP

�
2

Ωbðτ0 − τcÞ: ð30Þ

IV. OBSERVATIONAL DATA ON THE TIME
VARIATION OF THE FINE STRUCTURE

CONSTANT

In this section, we present the observational data on the
time variation of the fine structure constant. To study this
model of the time variation of α, we take into account not

only the different stages in the Universe’s evolution but also
use three different sets of cosmological parameters [9,35].
Since the baryon density (Ωbh2) can be determined by two
independent analysis: (i) by the comparison between
theoretical calculation of primordial abundances and the
observable data; or (ii) by the study of the CMB data
(cosmic microwave background) [36–39], we used the
results of the analysis of the CMB data. That is
Ωbh2 ¼ 0.02212� 0.00028, Ωbh2 ¼ 0.0231� 0.0013
[35], Ωbh2 ¼ 0.0218� 0.0004 [9].

A. BBN constraints

During the first three minutes of the Universe the light
elements, such as deuterium, 4He, 3He, 7Li, were produced.
In order to include the fine structure constant time variation
upon the cosmological time scale, we have modified the
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numerical code developed by Kawano et al. [40,41] (for the
modifications to the code, see [31,42–45] and references
therein). As said before, the baryon density was fixed at
three different values.
The possible variation of α has been calculated through

the comparison of the observable data and the theoretical
results using a χ2-test. For the deuterium, we have
considered the observable data reported in Refs. [46–
54]. For 4He, we used the data of Refs. [55–63], and the
results of Refs. [64–70] for 7Li.
In order to check the consistency of the data, we have

followed the analysis of Patrignani et al. [71] and increased
the observational errors by a factorΘD ¼ 1.28,Θ4He ¼ 2.79
and Θ7Li ¼ 2.04. In Table II, we present the results. The
inclusion of the lithium data gives a rather poor fit for all the
models, meaning for the three values of Ωbh2. If the middle
value of the baryon density is used (model II), the fit is
excellent and the variation of α is consistent with a null-
variation at 1σ, if one excludes the 7Li data in the analysis.
The fits obtained with the largest (model III) or the smallest
(model I) value for ΩBh2 considered in this work, are good
fits, however, Δαα is consistent with zero at 2σ if the lithium
data are removed in the statistical test.

B. CMB constraints

The recombination process, when the first hydrogen
atoms formed and the Universe became transparent to
photons, occurred approximately 300 000 years after the
Big Bang. The photons released during this process are the
Cosmic Microwave Background radiation (CMB). This
radiation corresponds to a black body radiation at temper-
ature T0 ¼ 2.725 0K with small anisotropies of the order
of 10−6 0K.

The CMB formation is totally mediated by electromag-
netic processes. Thus, a variation in the coupling constant
of this interaction (that is α) involves modifications in the
interactions between photons and electrons as well as in the
recombination scenario and consequently in the spectrum
of CMB fluctuations [9,35,72]. In Table III, we show the
bounds obtained in Ref. [9,35] using WMAP7, WMAP9
and Planck satellites data.

C. Quasars absorption spectra

Spectroscopic observations of extragalactic objects such
as quasars can be used to study the time variation of the fine
structure constant. High redshift quasar spectra present
absorption resonant lines of alkaline ions whose splits are
proportional to α2. Therefore, studying the separation of the
doublets, one can obtained bounds for the variation of α.
This analysis (called AD) has been applied, in the literature,
to different doublet absorption line systems at different
redshifts [8,73,74]. The results are consistent with a null
variation of the constant.

TABLE II. Time variation of the fine structure constant for the different values of the baryon density and
considering all data in the sample or removing the 7Li data in the χ2-test.

Model Data Ωbh2 Δα
α � σ½10−2� χ2ν/ðN − 1Þ

Model I All data 0.0218� 0.0004 0.24þ0.30
−0.28 3.55

Without 7Li-data −0.32þ0.30
−0.32 1.24

Model II All data 0.02212� 0.00028 0.52þ0.33
−0.26 3.54

Without 7Li-data −0.05þ0.26
−0.35 1.01

Model III All data 0.0231� 0.0013 1.42þ0.22
−0.32 4.20

Without 7Li-data 0.65þ0.26
−0.35 1.25

TABLE III. Bounds on the time variation of α from CMB data.

Model Data source Δα
α0

� σ References

Model I WMAP7 −0.016� 0.005 [9]
Model II Planck −0.0036� 0.0037 [35]
Model III WMAP9 0.007� 0.020 [35]

TABLE IV. Bounds for the time variation of α from quasar
absorption systems.

Method/quasar Redshift Δα
α0

� σ½10−5� References

SIDAM 1.15 0.04� 0.15 [79]
SIDAM 1.15 024� 0.38 [79]
OH conjugated lines 025 0.5� 1.26 [80]
Molecular and radio lines 0.24 −0.10� 0.22 [81]
Molecular and radio lines 0.69 −0.08� 0.27 [81]
Molecular and radio lines 0.765 < 0.67 [82]
OH conjugated
and radio lines

0.865 < 0.67 [82]

3 sources 1.08 0.43� 0.34 [83]
HE0515 − 4414 1.15 −0.01� 0.18 [84]
HE0515 − 4414 1.15 0.05� 0.24 [85]
HE0001 − 2340 1.58 −0.15� 0.26 [86]
HE1104 − 1805A 1.66 −0.47� 0.53 [83]
HE2217 − 2818 1.69 0.13� 0.26 [86]
HS1946þ 7658 1.74 −0.79� 0.26 [83]
Q1101 − 264 1.84 0.57� 0.27 [83]
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The many multiplet method (MMM) which compares
transitions of different species with widely differing atomic
masses together with different transitions of the same species,
improves the sensitivity, but its systematic errors are gen-
erating great controversies.3 In Tables IV, V, and VI, we show
results obtained by different authors using different methods
and absorption lines of different chemical elements.

D. Oklo constraint

Oklo is a natural uranium-fusion nuclear reactor that
operated 1.8 × 109 years ago in Gabon, Africa. The oper-
ating conditions of the reactor can be recovered from the
analysis of nuclear and geochemical data to calculate the
thermal neutron capture cross sections of several nuclear
species including 149Sm, 151Eu, and 155Gd. From these cross
sections, it is possible to estimate the value of the resonance
energy of the fundamental level at the time of the reaction.
A variation of this energy (from the time of the reaction to
the present) would reflect a variation in time of α [10,88–
90]. The time variation of the fine structure constant
obtained with this natural reactor is [90]

Δα
α0

¼ ð45� 15Þ × 10−9: ð31Þ

E. Long-lived β decayers constraints

Thanks to laboratory measurements and/or by compari-
son with the age of meteorites, it is possible to determine
the half-life of long-lived β decayers. Sisterna and Vucetich

[91] have analyzed the dependence between the half-life of
these decayers and the fundamental constants α, ΛQCD, and
GF so, any shift in the half-life may be generated by a
variation in these constants at the age of the meteorites and
their value now. According to these authors, there is a linear
relationship between the shift in the half-life of the β
decayer of 187Re from the solar system formation up today
and the variation of α. The transition analyzed was
Re → Os and it is assumed that this event has occurred
4.6 × 109 years ago. According to Ref. [91], the time
variation of the fine structure constant is

Δα
α0

¼ ð−7.4� 7.4Þ × 10−7: ð32Þ

F. Atomic clocks constraints

The time variation of the fine structure constant can be
measured by comparing frequencies of atomic clocks with
different atomic numbers during time intervals that range
from one hundred days to two years. This is possible thanks
to the development of very stable frequency oscillators
based on hyperfine transitions. These hyperfine levels are
determined by the interaction of the nuclear magnetic
moment with the magnetic moment of a valence electron.

TABLE V. Bounds on the time variation of the fine structure
constant of three different absorption systems from Quasar
HS1549þ 1919 [87].

Telescope Redshift Δα
α0

� σstat � σsys½10−6�
Keck/HIRES 1.143 0.20� 13.63� 3.97
VLT/UVES 1.143 −8.80� 5.60� 4.36
Subaru/HDS 1.143 −9.04� 10.41� 4.34
Keck/HIRES 1.342 −2.77� 13.71� 3.16
VLT/UVES 1.342 0.02� 7.64� 1.85
Subaru/HDS 1.342 −1.29� 24.04� 6.04
Keck/HIRES 1.802 −3.92� 8.61� 4.69
VLT/UVES 1.802 −0.66� 14.65� 4.54
Subaru/HDS 1.802 −11.20� 7.83� 2.44

TABLE VI. Bounds on the time variation of the fine structure
constant from different quasars [78].

Quasar Redshift Telescope Δα
α0

� σstat � σsys½10−6�
J0058þ 0041 1.072 Keck −1.35� 6.71� 2.51
J0058þ 0041 1.072 VLT 17.07� 9.00� 2.41
PHL957 2.309 Keck −0.65� 6.46� 2.26
PHL957 2.309 VLT −0.20� 12.44� 3.51
J0108 − 0037 1.371 VLT −8.45� 5.69� 4.64
J0226 − 2857 1.023 VLT 3.54� 8.54� 2.38
J0841þ 0312 1.342 Keck 3.05� 3.30� 2.13
J0841þ 0312 1.342 VLT 5.67� 4.19� 2.16
J1029þ 1039 1.622 Keck −1.70� 9.80� 2.47
J1237þ 0106 1.305 Keck −4.54� 8.08� 3.13
Q1755þ 57 1.971 Keck 4.72� 4.18� 2.16
Q2206 − 1958 1.921 VLT −4.65� 6.01� 2.24

TABLE VII. Bounds on ̇α/α0 from different atomic clocks.

Frequencies ̇α
α0

[10−15 yr−1] References

Hgþ y H maser 0.0� 14.0 [92]
Cs y Rb 8.4� 13.8 [93]
Cs y Rb −0.2� 8.0 [94]
Hg y Cs 5.7� 11.2 [95]
Yb y Cs −1.6� 5.9 [11]
Cs 0.33� 0.3 [96]
Hg 0.053� 0.079 [96]
Hþ

g −0.016� 0.023 [97]

3From the combined observations of distant quasars using the
KECK/HIRES [12–15] and VLT/UVES [16] telescopes, there
seems to exist substantial evidence for a dipole-type spatial
variation of α. Pinho and Martins [75] have reached the same
conclusion from an independent analysis using the observed data
set and others independent observational results. However,
Whitmore and Murphy [76] have shown that long-range wave-
length distortions can be confused and appreciated as if they were
the reported dipolar variation of α [77]. Later, Murphy et al. [78]
studied certain transitions that do not suffer from long-range
distortions obtaining results consistent with the null variation.
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It is possible to restrict the variation of α by comparing the
frequencies of two different atoms because the relativistic
contribution to the splitting of the hyperfine levels Δ grows
with the atomic number as Δ ∝ ðZαÞ2. Table VII shows the
bounds for the time variation of the fine structure constant
presented in the literature.

V. RESULTS

In this section, we analyze and discuss the predictions
that emerge from the improved Bekenstein model in the
semiclassical regime and compare it with experimental and
observational data in order to verify the validity of the
theory. We analyze separately the spatial and temporal
aspects of the theory.

A. WEP experiments for testing
the spatial variation of α

As we have explained in Sec. II B, the Eötvös parameter
can be obtained from the difference of the acceleration of
two different bodies of different composition. In order to
determine and/or limit the validity of the theory, we use the
data from Eötös-type experiments presented in Table I.
Using Eq. (22), the theoretical prediction of the Eötvös

parameter for the semiclassical Bekenstein model is

ηðA;BÞ ¼ aA − aB
g

¼ 4

�
lB

lP

�
2

ζSmðζAm − ζBmÞ

− 24

�
lB

lP

�
4

ðζSmÞ2ðζAm − ζBmÞ
ϕNðRsÞ

c2

¼ Ã

�
lB

lP

�
2

þ B̃

�
lB

lP

�
4

; ð33Þ

where Ã and B̃ are constant that depend on the composition
of the bodies and do not depend on the theoretical
parameter of the model. Note that the Eq. (15) can be
written as η ¼ ÃðlBlPÞ

2. We perform a χ2-test to set con-
straints on the free parameter of the theory, namely lB/lP,
by the comparison of our theoretical results with the
observational data. In Table VIII, we show our results
and we also compared, in the same table, the results
obtained using the approximation of Ref. [28] or the
Eq. (15). The differences between this new limit and the
one presented in Eq. (16) are due to the improvement in
the estimation of the magnetic energy (see the Appendix).

As one can noticed, the results for both cases are the
same, since the contribution from the “next order” (first
order) in the series expansion of the field ψ is very small
and can be neglected. Consequently, it is valid the use of the
zero order approximation with the change on the estimation
of the magnetic energy.
Since, at 3σ level, the upper bound of the Bekenstein

length scale, for both cases, is lB < 0.05lP, it seems
natural to discard the theory.
In December 2017, the MICROSCOPE Collaboration

published an estimation of η ∼ 10−15 consistent with zero
[98]. If this result is used, the lB

lP
bounds would be even

smaller.

B. Constraints from the time variation of α

In Sec. III B, we have computed the theoretical pre-
dictions for the variation of the fine structure constant in
different stages of the Universe. Equations (28a), (29a), and
(30) can be written as

Δα
α

¼ Ă

�
lB

lP

�
2

þ B̆H0tc

�
lB

lP

�
2

; ð34aÞ

̇α
H0α

¼ C̆

�
lB

lP

�
2

þ C̆H0tc

�
lB

lP

�
2

; ð34bÞ

where the constants Ă, B̆; and C̆ depend only on the
cosmological parameters. The constraints on the free
parameters of the theory, that is ðlBlPÞ

2 and H0tcðlBlPÞ
2, are

obtained by a least squares linear regression using the
observational data described in Sec. IV. We have performed
a discrimination into different groups of the available data,
according to when the physical phenomena took place, that
is, (i) early Universe (CMB and BBN bounds), (ii) middle-
aged Universe (quasars, long-lived β decayers, and Oklo
reactor bounds); and (iii) present Universe (bounds from
atomic clocks). As we have mentioned before, we use three
different sets of cosmological parameters.
In Table IX, we present our results for the constraints on

the free parameter for the different models (or cosmological
parameters) described in Sec. IVA. The value for the
variation of the fine structure constant during BBN used
in the lineal regression correspond to the obtained in
Sec. IVA when the lithium data were discarded in the
statistical test. It can be noticed that in the three models, in
the cases where the data corresponding to the early
Universe are subtracted, the value of H0tcðlB

lP
Þ2 and its

uncertainty increase considerably. In addition, it can be
seen that at one standard deviation, Bekenstein length
parameter lB becomes imaginary for all the cases with the
exception of the analysis performed when the middle-aged
Universe data are excluded.
An important difference arises from the results for the

different groups of cosmological parameters. The estimates

TABLE VIII. Estimated value for the free parameter in two
different theoretical expressions. χ2ν stand for the normalized χ2.

Approximation ðlBlPÞ
2 � σ χ2ν

η ¼ ÃðlB
lP
Þ2 þ B̃ðlB

lP
Þ4 ð7.9� 70.7Þ × 10−5 0.329

η ¼ ÃðlB
lP
Þ2 ð7.9� 70.7Þ × 10−5 0.329

MAGNETIC CONTRIBUTIONS IN BEKENSTEIN TYPE MODELS PHYS. REV. D 97, 043526 (2018)

043526-9



for H0tcðlBlPÞ
2 are negative when we use the results of the

cosmological parameters of models I and II, whereas the
estimates using the parameters of model III are positive
(except the case where BBN and CMB data are excluded).
Since several authors consider the integration constant tc

null, we have also performed an estimation of parameter
ðlBlPÞ

2 for each group of cosmological parameters tc ¼ 0,

that is Δα
α0

¼ ĂðlBlPÞ
2 and ̇α

H0α0
¼ C̆ðlBlPÞ

2. The results pre-
sented in Table X are similar to the previous ones, however
the uncertainties are qualitatively greater. This generates
that only at 1σ level the model does not fulfil the hypothesis
imposed on lB, either because the estimates give imaginary
values or smaller values than the Planck length. On the
other hand, in the cases where the middle-aged Universe
data are eliminated, the model can not be discarded.

VI. SUMMARY AND CONCLUSIONS

In this work, we have analyzed the magnetic contribu-
tions in the semiclassical Bekenstein model for the varia-
tion of the fine structure constant and show that the
magnetic field produces an anomalous term in the accel-
eration. Based on previous works of Refs. [28,32], we have
solved the equation of motion the scalar field ψ to first
order (in the mentioned publications this calculation was
made at zero order). We have also improved the estimation
of nuclear magnetic energy, according to Refs. [99–101].
To set constraints on the Bekenstein’s theory parameter, lB,
we have analyzed not only the spatial contribution of the
equation of motion of the field related to the fine structure
constant, but also its time variation. To perform the last
computation we have considered the expansion rate of the
Universe in different evolutionary stages.
We have examined possible violations of the weak

equivalence principle due to the incorporation of the scalar
field. In order to constrain the Bekenstein length, we have
compared our theoretical results with the experimental data
from Eötvös-type experiments. We conclude that the first
term in the series of the weak-field approximation is the one
that contributes the most and the following ones can be
neglected. Our results are of the same order as those
obtained in Ref. [28], and the small differences between
them are due only to the change in the estimation of the
magnetic energy. Consequently, it can be deduced that the
semiclassical model for the spatial variation would be
discarded.
We have also analyzed the time variation of the fine

structure constant from the semiclassical model of
Bekenstein in an expanding Universe. To determine the
free parameters of the theory, ðlBlPÞ

2 and ðlBlPÞ
2H0tc, we have

made a comparison between the observational data for
different times with our theoretical predictions. At 3σ level,
we found

TABLE IX. Best fits of the free parameters of the model for the different values of the cosmological parameters
(see Tables II and III).

Model Data ðlB
lP
Þ2 � σ H0tcðlB

lP
Þ2 � σ χ2ν

Model I All data −2.54� 0.84 ð−1.82� 1.76Þ × 10−6 0.75
Without early Universe −2.54� 0.84 0.053� 1.025 0.56

Without middle-aged Universe −1.05� 2.68 ð−1.82� 1.76Þ × 10−6 1.29
Without present Universe −2.70� 0.88 ð−1.82� 1.76Þ × 10−6 0.85

Model II All data −3.55� 1.22 ð−2.58� 15.50Þ × 10−7 0.57
Without early Universe −3.55� 1.22 0.072� 1.373 0.57

Without middle-aged Universe −1.10� 2.76 ð−2.55� 15.50Þ × 10−7 0.36
Without present Universe −4.14� 1.35 ð−2.57� 15.51Þ × 10−7 0.61

Model III All data −4.20� 1.54 ð3.66� 1.72Þ × 10−6 0.57
Without early Universe −4.20� 1.54 0.084� 1.864 0.60

Without middle-aged Universe −1.11� 2.72 ð3.66� 1.72Þ × 10−6 0.30
Without present Universe −5.69� 1.87 ð3.66� 1.72Þ × 10−6 0.60

TABLE X. Best fits of the free parameters of the model for the
different values of the cosmological parameters and tc ¼ 0 (see
Tables II and III).

Model Data ðlB
lP
Þ2 � σ χ2ν

Model I All data −2.54� 2.22 0.76
Without early Universe −2.54� 2.19 0.55

Without middle-aged Universe −1.05� 4.95 1.27
Without present Universe −2.69� 2.03 0.86

Model II All data −2.99� 2.71 0.56
Without early Universe −2.99� 2.67 0.56

Without middle-aged Universe −1.10� 5.09 0.33
Without present Universe −2.99� 2.19 0.61

Model III All data −2.99� 3.05 0.67
Without early Universe −2.99� 3.01 0.60

Without middle-aged Universe −1.10� 5.02 0.66
Without present Universe −2.99� 2.42 0.74
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�
lB

lP

�
2

< −0.02;
�
lB

lP

�
2

< 0.11;

�
lB

lP

�
2

< 0.42;

ð35aÞ
lB

lP
< 0.14̇{;

lB

lP
< 0.33;

lB

lP
< 0.65; ð35bÞ

for the different cosmological parameters used, that is, the
first constraint corresponding to model I, the second to
model II, and the last one to model III. Note that, for the
first expression, Bekenstein length turns out to be a non-
real number. These results rule out the theory.
The removal or not of the early Universe data (that is, BBN

and CMB constraints on the variation of the fine structure
constant) does not affect the results. The same constraints are
obtained if the data removed are those from the present
Universe (that is bound obtained from atomic clocks).
However, in the case where the data of the middle-aged
Universe are not taken into account in the fit, the3σ level upper
bound does not allow to discard the theory since lB ∼ lP.
The 3σ level upper bound results for the parameter

ðlBlPÞ
2H0tc are (in the same order as before)�

lB

lP

�
2

H0tc < 3 × 10−6;�
lB

lP

�
2

H0tc < 4 × 10−6;�
lB

lP

�
2

H0tc < 8 × 10−6: ð36Þ

We obtained the same results when we excluded data
from the middle-aged Universe and/or the present
Universe. On the contrary, when the early Universe data
are not taken into account the bounds are much less
restrictive, that is,

�
lB

lP

�
2

H0tc <3;

�
lB

lP

�
2

H0tc <4;

�
lB

lP

�
2

H0tc <6:

ð37Þ

Comparing our results with those obtained in Ref. [31]
where possible time variations of α due to the Coulomb
contributions are analyzed, it is observed that, for the
parameter ðlBlPÞ

2H0tc, both set of bounds are of the same

order, while for the parameter ðlBlPÞ
2, their bounds are more

tight (around an order of magnitude or 2 smaller).
Finally, the results for the Bekenstein length when tc ¼ 0

indicates that only at one standard deviation can the theory
be discarded in all cases for the three models except when
the data from the middle-aged Universe are not considered
in the statistical analysis. Contrasting these results with
those obtained from the analyses of the planet’s thermal
flow (data from the late Universe) [32,102], their 3 − σ

upper bounds are of an order of magnitude more strict than
ours using data of the whole evolution of the Universe.
It is important to note that almost all the mean values

obtained for the parameters ðlBlPÞ
2 and ðlBlPÞ

2H0tc from the
analysis of the time variation of α are negative, producing
an incongruity in the semiclassical model since the
Bekenstein length must be real, positive, and greater than
Planck length. This fact gives us a hint of the serious
problems that the theory faces despite the given bulging
uncertainties.
In conclusion, it has been shown that even taking as valid

Bekenstein’s statement (about the cancellation in the source
term between the contributions of electric field and the
mass) in a semiclassical model, the magnetic contributions
produce observable anomalous accelerations and time
variations of the fine structure constant which are not
compatible with the observable data.
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APPENDIX THE INTEGRATED
STRENGTH FUNCTION IN THE NUCLEAR

MAGNETIC ENERGY

As mentioned in Sec. II B, magnetic energy density is
mainly located close to the atomic nuclei, which is the
reason for studying its contributions. Another possible
source of magnetic field are the quantum fluctuations of
the “number of particles.” The main contribution to the
magnetic energy under the semiclassical scheme comes
from the dipolar nuclear oscillations with T ¼ 1 (isospin).
The protons and neutrons oscillate in antiphase, generating
a variable dipole moment and, therefore, a variable current.
For a detailed description of the computation of magnetic
energy by relating the current to the dipole transition matrix
elements with the Thomas-Reiche-Kuhn sum rule, see
Ref. [28]. This sum rule is saturated (approximately) by
the giant dipole resonance.
In this work, we have a special interest in improving the

computation of the integrated strength function, that is,R
σðEÞdE of Eq. (8) for different nuclei. For most cases, the

rule of Thomas-Reiche-Kuhn [99] gives a good estimate,

σT ¼
Z

σðEÞdE ¼ ð1þ xÞ 2π
2e2ℏ
mc

NZ
A

≃ 60
NZ
A

MeVmb;

ðA1Þ
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where x ∼ 0.2 takes into account the interchange and rate of
dependence of nuclear interactions, and N, Z, and A are the
neutron, proton, and mass numbers (A ¼ N þ Z) of the
element with mass m. However, for light nuclei such as
hydrogen (N ¼ 0), helium (N ¼ 2), or beryllium (N ¼ 5

for 9Be), this estimation fails. For this reason, we apply, in
these particular cases, the results obtained in Ref. [100],

where the effective section of 4He was measured
(σT ≈ 7.94 MeVmb) and, in Ref. [101], where the proton
resonances were analyzed with the result σT ≈ 46 MeVmb.
On the other hand, from the photodisintegration of 9Be
through the 1/2þ state near the neutron threshold analysis
[103], the best estimate obtained is σT ≈ 13.3 MeVmb.
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