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a b s t r a c t

Fluid dynamic gauging (FDG) was developed to measure, in situ and in real time, the thickness of a soft

deposit layer immersed in a liquid without contacting the surface of the layer. An analysis based on the

lubrication assumption for the flow patterns in the space between the nozzle and the surface being

gauged yielded analytical expressions for the relationships between the main flow variables and system

parameters. Nozzle shapes for particular pressure, pressure gradient and shear stress profiles could

then be identified. The effect of flow rate, nozzle geometry and nozzle position on the pressure beneath

the nozzle and shear stress on the gauged surface showed very good agreement with computational

fluid dynamics (CFD) simulations. Case studies presented include nozzle shapes for uniform pressure

and shear stress profiles, which are useful for measuring the strength of soft deposit layers.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The deposition of films on process surfaces from a flowing
liquid occurs in many industrial manufacturing processes. Some
of these films are desired (e.g. chocolate coatings on biscuits) and
some are unwanted (e.g. fouling layers in heat exchangers).
In both cases, it is often important to measure the thickness and
strength of these films. In the biotechnology and food sectors,
these films are frequently soft and/or fragile and their state is
strongly dependent on the presence of liquid, so that measure-
ments of thickness and strength should be determined in situ and
in real time particularly where the deposit is evolving. Portable,
rapid, non-contact and precise techniques are needed.

Fluid dynamic gauging (FDG) is a relatively novel technique
that was developed by Tuladhar et al. (2000) to estimate in situ

and in real time the thickness of a soft deposit layer immersed in
liquid without touching the surface of this layer. The concept
consists of a nozzle that withdraws liquid from the region near
the deposit surface, as shown in Fig. 1. For a certain range of
clearances between the nozzle and the surface (h), the flow rate
( _m) through the nozzle is usefully sensitive to h (Fig. 1(b)). The
ll rights reserved.

x: þ44 1233 334796.
thickness of the deposit, d, can be calculated from the difference
in clearance between the nozzle and the deposit layer, h (inferred
from the flow rate), and the position of the nozzle relative to the
substrate, hinit (established either by calibration or independent
sensing). The technique provides high accuracy thickness mea-
surement with a resolution of 75 mm with a sensing time of
r5 s (Gordon et al., 2010).

Studies such as that by Chew et al. (2004a) have shown that FDG
could also be used to quantify the strength of soft deposits. The gauge
employs flows in the laminar regime, allowing computational fluid
dynamics (CFD) to be used to give reliable estimates of the flow field
and stress distribution in the flow. Chew et al. quantified the strength
of different tomato paste layers by measuring the deformation of the
film following gauging at a known shear stress exerted by the gauge
on the film. Thickness measurements were made at high clearance
(low shear stress) and following exposure of the film to higher shear
stresses induced by moving the nozzle closer to the film.

The stresses induced on the film by the gauging flow are
determined by the liquid flow rate, clearance and also the external
geometry of the nozzle. Peralta et al. (submitted for publication)
demonstrated how the external shape of the nozzle could affect, very
noticeably, the shear stress (tw) and pressure (p) profiles on a gauged
surface. They identified geometries that produced interesting tw and
p profiles such as linear, peaked or bimodal distributions. These types
of profiles are attractive to FDG operation as they offer the opportu-
nity to manipulate the forces exerted on a film by simply changing

www.elsevier.com/locate/ces
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Fig. 1. Fluid dynamic gauging principles. (a) Schematic of nozzle, with inset showing key dimensions and (b) calibration curves showing relationship between mass flow
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the nozzle. For example, an approximately constant erosion of the
film can be produced under the nozzle rim when an even shear stress
profile is used. Alternately, another shape could yield high sensitivity
to clearance (measurement precision) while minimising fluid shear.

Previous workers have employed computational fluid
dynamics (CFD) simulations to estimate how the operating vari-
ables affect the important flow variables such as the profiles of
shear stress and pressure exerted on the deposit (Chew et al.,
2004b; Gu et al., 2009, 2011; Lister et al., 2011). The definition of
the geometry and meshing is straightforward and simulations
take a few minutes to converge on modern PCs (Peralta et al.,
submitted for publication). Exploring nozzle geometries is time
consuming, however, as the mesh must be re-defined for each
simulation. This paper therefore explores the scope for analyti-
cally based approaches to investigate the impact of nozzle shape
on FDG performance, to be used to identify likely configurations
for fine tuning by simulation.

A key feature of FDG operation (Fig. 1(b)) is that the nozzle
must be close to the film surface during measurements,
i.e. h/dtr0.25. The width of the nozzle rim is much larger than
the gap between the nozzle and the film which, when combined
with the laminar nature of the flow, suggests that analyses based
on the lubrication approximation should yield useful results. This
approach was employed by Chew et al. (2005) and later by Gu
et al. (2009) to estimate the shear stress imposed on the surface.
In both cases shear stress distributions obtained from CFD
simulations showed good agreement with the analytical solution
for a radial flow between two parallel disks obtained by
Middleman (1998) using lubrication theory. This paper extends
the approach to consider the effect of nozzle geometry.
2. Theoretical approach

2.1. Equations of change

The physical domain of interest is the gap between the nozzle
and the gauged surface (Fig. 2). The equations of change, adapted to
include the lubrication approximation, are written in cylindrical
co-ordinates following the procedure presented by Denn (1980).
Only the principal steps of the analysis are presented. The following
assumptions are made: (i) steady state; (ii) Newtonian fluid;
(iii) the velocity component in the j direction is negligibly small;
(iv) axisymmetry in j; and (v) external forces are due to gravity
and act only in the z direction. These assumptions simplify the
continuity (Eq. (1)) and Navier-Stokes (Eqs. (2) and (3)) equations to
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Eqs. (1)–(3) can be made non-dimensional using the following
identities:

~r ¼
r

ro�ri
ð4Þ

~z ¼
z

ho
ð5Þ
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~vr ¼
vr

Uo
ð6Þ

~vz ¼
vz

V
ð7Þ

~p ¼
p�rgzz

P
ð8Þ

where ri and ro are the internal and external radius of the nozzle,
respectively; ho is the clearance between the nozzle and the
gauged surface at ro, Uo is the mean velocity at the external radius
calculated from the flow rate, and V and P are the characteristic
values for z-velocity and pressure that will be defined later. The
use of these dimensionless variables assists the order of magni-
tude analysis discussed below and allows the results to be
condensed into general equations and a small number of figures.

Introducing Eqs. (4)–(8) into Eqs. (1)–(3) yields
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Denn (1980) presented a dimensional analysis of Eq. (9), which
showed that the magnitude of the factor multiplying the deriva-
tive in the second term is O½Vðro�riÞ=ðUohoÞ�ffi1. Denoting
e¼ ho=ðro�riÞ, this gives O(V)¼O(eUo). This relation, based
on the continuity equation and a dimensional analysis of the
problem, shows a natural way to define V. Therefore, the defini-
tion of V used here will be V¼eUo. Eq. (7) can then be written as
~vz ¼ vz=ðeUoÞ. Eq. (10) becomes
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where the Reynolds number is defined as Re¼ rUoho=m
The operating mode of the gauge requires the nozzle to be very

close to the gauged surface such that e is small, i.e. e2
51. The

flow is in the laminar regime (discussed in Section 2.3), so that
Ree51, and Eq. (12) becomes:
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From the order of magnitude of the terms in Eq. (13) (Denn,
1980), the parameter P can be defined as P¼ mUo=ðhoeÞ. Rearran-
ging Eq. (11) gives
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Incorporating the relationships Ree51, e2
51 and e4

51, gives
the equations of change as
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These equations, which are the typical set of expressions
proposed for a lubrication flow in a fluid system (Denn, 1980),
will be used to describe the flow in the domain between the
nozzle and the gauged surface.
2.2. Useful expressions derived from the equations of change

2.2.1. Velocity distributions

The dimensionless velocity component in the r direction, ~vr , can
be determined from Eq. (16). Given that the pressure is a function of
r alone (Eq. (17), i.e. @ ~p=@~rffi f ð~rÞ), and imposing boundary condi-
tions such as ~vr ¼ 0 at ~z ¼ 0 (gauged surface) and ~vr ¼ 0 at
~z ¼ hð~rÞ=ho ¼

~hð~rÞ (nozzle surface), integration of Eq. (16) yields:
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Note that ~z= ~ho1 so ~vr is negative. In FDG operation the flow
rate through the nozzle is set and/or known. Therefore in order to
find the dimensionless pressure gradient in Eq. (18), the following
expression for the dimensionless flow rate will be used:
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where ~Q ¼Q=½2pðro�riÞhoUo� and ~vr

�� �� is the absolute value of ~vr .
Incorporating Eq. (18) into Eq. (19) and integrating gives the
dimensionless pressure gradient as
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Eq. (18) then becomes:
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The corresponding expression for the z component of velocity
is obtained by incorporating Eq. (21) into the dimensionless
continuity equation (Eq. (15)):
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An interesting relationship is obtained by dividing Eqs. (22)
and (21):

~vz ~r , ~zð Þ
~vr ~r , ~zð Þ
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Eq. (23) shows that there will be a non-zero component of
velocity in the z direction if the nozzle profile is not horizontal.
2.2.2. Shear stress on gauged surface

For a Newtonian fluid, the component of the shear stress
relevant to the stress on the gauged surface trz can be expressed
as (Bird et al., 2007):

trz ¼�m
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@z
þ
@vz

@r
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ð24Þ

Incorporating the above results, namely (i) V¼eUo and
(ii) e¼ ho=ðro�riÞ gives the dimensionless form:
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where ~trz ¼ trz=½mðUo=hoÞ�.
Applying the condition e2

51, Eqs. (21) and (22) in Eq. (25),
yields the expression for the dimensionless shear stress evaluated
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at the gauged surface (~z ¼ 0):
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It is helpful to introduce a new normalised radial co-ordinate
in order to simplify the above results. Defining

~r 0 ¼
~r
~ro
¼

r
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ð27Þ

scales the radial dimension of the domain from 0 to 1. Similarly,
the following expressions for the dimensionless shear stress and
pressure gradient are introduced so that the variables are only
dependent of the geometrical parameters:
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Eqs. (20) and (26) can now be expressed as
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Combining Eqs. (30) and (31) gives a useful expression for
calculating the wall shear stress:

~t�wffi ~h
d ~p�

d~r 0

� �
ð32Þ

Measuring local shear stresses is challenging but it is relatively
straightforward to measure local pressure values under the
nozzle and therefore the pressure gradient, as reported by Chew
et al. (2004a) and Peralta et al. (submitted for publication).

Eqs. (30)–(32) are important in considering nozzle geometry
because they relate the local shear stress and the pressure
gradient to ~h. By specifying the profile of one of ~h, ~t�w or
d ~p�=d~r 0, the expressions for the rest of the main parameters
(i.e. shear stress, pressure gradient, external nozzle geometry,
velocity components, etc.) can be determined.

2.3. Range of theoretical validity of the approach

An important consideration is the ability to verify the range of
validity of the solutions. Verification is based on checking
whether the main assumptions of the model are met. These
assumptions are
(i)
 Ree¼ rUoh2
o

mðro�riÞ
¼

_mho

2pmðro�riÞro
¼

dRedho

8ðro�riÞro
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where Red ¼ 4 _m=pmd and
(ii)
 e2 ¼
h2

o

ðro�riÞ
2
51 ð35Þ
It is noteworthy that the above statements represent a

sufficient set for checking, because these are less restrictive
conditions than those appearing in Eqs. (12) and (14), such as
those relating to Reem(m41) and en(n42).

A typical set of parameters from FDG measurements using water
as the gauging fluid reported by Chew et al. (2004a) are used as an
illustration of the approach. The dimensions are ho¼0.25 mm,
ro¼12.5 mm, ri¼2.5 mm, d¼0.02 m, flow rate r5 g s�1, giving
Red5 200 and e2

¼0.000625. These conditions guarantee that for
low flow rates, the approach presented in this work can be used to
describe the FDG system.
3. Materials and methods

3.1. Case studies

The methodology was tested by proposing simple expressions
for one of ~t�w, d ~p�=d~r 0 or ~h and calculating the solution for the
remaining two parameters. The expressions thus obtained were
compared with numerical results obtained using CFD simulations.
A general type of expression was assigned for each parameter
specified:

~f ð~r 0Þ ¼
f ð~r 0Þ

f ð1Þ
ð36Þ

where f ð~r 0Þ is a generic expression for either ~t�w, d ~p�=d~r 0 or ~h, and
f(1) is f ð~r 0Þ evaluated at ~r 0 ¼ ~r 0o ¼ 1 (outer radius).
3.2. CFD simulations

Some of the case study scenarios were evaluated using a
commercial CFD code, in a similar manner to previous studies
reported by Peralta et al. (submitted for publication). Briefly, a
2D-axisymmetric computational domain based on that employed
by Chew et al. (2004a) for modelling quasi-static FDG systems
was used. Fig. 3 shows a representative computational domain
employing cylindrical co-ordinates and the associated boundary
conditions.

The simulations were performed using different values of Red.
Unless otherwise specified all simulations employed a clearance
(closest point between the nozzle and the gauged surface) set at
h/dt¼0.05, which lies within the incremental or working zone
depicted in Fig. 1(b).

The flow at the exit of the domain was assumed to be laminar
and fully developed owing to the range of Red values used. The
governing equations were the Navier-Stokes and continuity
equations. The fluid properties were taken as those of water at
20 1C.

The domain was discretised using a triangular mesh. In zones
where it was important to estimate the velocity gradients
accurately (e.g. the gap between the nozzle and the gauged
surface) a higher density mesh was used (Fig. 3(b)). The
commercial finite-element-based software COMSOL Multiphysics
3.5a and 4 (COMSOL Ltd., Hatfield, United Kingdom) was used to
perform the CFD simulations on a 2.4 GHz desktop PC equipped
with 5 processors and 4 GB of RAM. Each simulation took about
5 min to converge.

The CFD simulations were validated in the previous study
(Peralta et al., submitted for publication). In brief, the validation
consisted of a test of the independency of the studied variables on
the mesh configuration and agreement between predicted values
with experimental observations. The mesh independency test was
carried out using different mesh densities over the entire domain.
Monotonic convergence was observed for meshes with 43000
elements. The second step was carried out using: (i) experimental
values of pressure on the gauged surface, and (ii) theoretical
values of shear stress for selected operating conditions based on
the assumption that the flow can be approximated as radial
between two parallel disks.



Table 1

Expressions for ~h , d ~p�=d~r 0 and ~t�w using a general expression of the type ~f ð~r 0Þ

(within each row of the table) for either ~h , d ~p�=d~r 0 or ~t�w.
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Fig. 3. Simulation geometry (a) showing boundary conditions and domain dimensions, and (b) mesh used (a high mesh density is employed under the nozzle rim, in the

throat and along the base).
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4. Results and discussion

Table 1 summarises the expressions for the external nozzle
geometry, pressure gradient under the nozzle and shear stress on
the gauged surface, based on the use of an arbitrary function ~f ð~r 0Þ

for one of these variables. The relationships are easy to manip-
ulate. These expressions will be used in the following sections to
show some examples for specified nozzle geometry, pressure
gradient and shear stress.
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r 0 ~f pg ð~r

0
Þ

3

q ~f pg ð~r
0
Þ ~f pg ð~r
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Þ

h i3
r

~f sð~r
0
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4.1. Specified nozzle geometry

4.1.1. Linear nozzle profile

A linear profile is one of the simplest external nozzle geome-
tries to manufacture and analyse. The nozzle shape can be either
normal (i.e. parallel to the gauged surface), convergent or diver-
gent. For this case, the dimensionless nozzle profile is given by

~f hð~r
0
Þ ¼ ~h ¼ ahð~r

0
�1Þþ1 ð37Þ

where ah is the slope of the linear profile of the external nozzle
geometry. Working from the first row in Table 1, expressions for
the pressure gradient and shear stress are
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ffi

1
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�1Þþ1�3

ð38Þ

~t�wffi
1
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Fig. 4 shows the functionality obtained for a linear profile of ~h
(Fig. 4(a)) for different and representative values of ah. The ~t�w
profiles in (Fig. 4(c)) show a marked decrease as ~r 0 increases for
positive values of ah which is accentuated at higher ah. With
negative ah, the ~t�w profiles still present a concave shape but with
a minimum within the nozzle region. This feature is discussed in
detail in Section 4.1.1.1.
The pressure profiles in Fig. 4(d) were obtained by integrating
the gradients in Fig. 4(b):
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� �
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Fig. 4(d) shows a change in the profiles from convex to concave
as ah changes from positive to negative values. This follows the
change in the nozzle shape from a converging to a diverging one.
As ah becomes more positive, the external part of the nozzle
becomes more convergent, concentrating the pressure drop near
the inner radius of the nozzle. Conversely, highly negative ah

values concentrate the pressure loss near the outer rim of the
nozzle. The same information can be extracted from the pressure
gradient (Fig. 4(b)).

Finally, it is noteworthy that when ah¼0, Eq. (40) reduces to
the expression for the radial flow between two parallel disks
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(Middleman, 1998):

� ~p�ffi�lnð~r 0Þ� ~p�o ð41Þ

An important parameter to quantify is the area-averaged shear
stress on the gauged surface, ~t�w

� 
, as this can be related to material

properties when the nozzle deforms the film. This is defined as

~t�w
� 

¼
2

ð1�~r 02i Þ

Z 1

~r 0i

~t�w ~r
0d~r 0 ð42Þ

where ~t�w
� 

¼ twh i=to and to ¼ 3m _m=ðprh2
oroÞ: to is the shear stress

calculated for radial flow between parallel disks with separation ho,
evaluated at ro (Middleman, 1998). Introducing Eq. (39) into Eq. (42),
gives

~t�w
� 

ffi
2

ð1þ ~r 0iÞ ahð~r
0

i�1Þþ1
� � ð43Þ

Fig. 5(a) shows that the average shear stress ~t�w
� 

increases
with Red: it should be noted that these results were all calculated
for a fixed clearance, as varying the clearance for a given flow rate
will also change Red and ~t�w

� 
. The effect of nozzle shape on the

averaged shear stress is stronger when ah40, i.e. convergent
nozzles, as the position where the nozzle approaches the film
most closely is where the circumferential area is also a minimum.

Fig. 5(b) summarises the effect of nozzle width in terms of
~t�w
� 

, the area-averaged shear stress divided by to. When ~r 0i ¼ 1,
the width is negligible. The plots show that ~t�w

� 
increases with

nozzle width when ah is positive. When aho0, ~t�w
� 

is r1 and at
certain values of ~r 0i there is a minimum in ~t�w

� 
, located at

~r 0iffi�
1

2ah
ð44Þ

Minima are obtained for ahr�0.5. The existence of minimum
values of ~t�w

� 
is of interest for measuring deposit thicknesses,

where a low shear stress is advantageous in order to avoid
deforming the deposit. When comparing the reduction in ~t�w
� 

for a nozzle with ~r 0i given by Eq. (44), a suitable reference value is
that evaluated at ~r 0i ¼ 0 (denoted ~t�w

� 
~r 0i ¼ 0

). Introducing Eq. (44)
into Eq. (43) and dividing by ~t�w

� 
~r 0i ¼ 0

gives

~t�w
� 

min

~t�w
� 

~r 0i ¼ 0

ffi�
4ahð1�ahÞ

ð2ah�1Þ2
ð45Þ

Fig. 6 shows the results computed for ahr�0.5. The reduction
in shear stress by using the minimum area-averaged shear stress
exhibits a maximum at ~r 0i ¼ 0:5 (Fig. 6(b)). The plots show that the
reduction in ~t�w

� 
can be in the order of 10% if the inner radius of

the nozzle is made as small as possible.

4.1.1.1. The ‘saddle profile’ case. Peralta et al. (submitted for
publication) demonstrated that a mildly divergent nozzle with a
linear external surface profile and angle of approximately �51
gave a shear stress profile with two peaks of the same magnitude
located at the positions of the inner and outer rim. This is termed
a ‘saddle profile’ and is considered further using the approach
presented above. For this case, (ah) can be related to the
angle (y) by

ah ¼
ro

ho
tan

py
180

� �
ð46Þ

and the shear stress profile on the gauged surface is estimated as

~t�wffi
1

r
ro

� �
ro

ho
tan py

180

� �
r
ro
�1

� �
þ1

h i2
ð47Þ

Evaluating Eq. (47) at ri and assuming that ~t�wffi1 (i.e. a peak at
ri), gives the following expression for the angle that will produce a
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Fig. 6. (a) Dimensionless area-averaged shear stress ~t�w
� 

as a function of ~r 0i for

selected negative values of ah showing the existence of a minimum ~t�w
� 

min
: loci of

minima denoted by the dashed line. (b) Evaluation of Eq. (45) showing the effect

of ah on loci position and magnitude.
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saddle profile, ysp:

yspffi
180

p arctan
ho

ðro�riÞ
1�

ffiffiffiffi
ro

ri

r� �� �
ð48Þ

Expressing the arctan function as an infinite series (Bronshtein
et al., 2007) and recalling that its argument is small (because
e51), gives:

yspffi
180

p
ho

ro�rið Þ
1�

ffiffiffiffi
ro

ri

r� �
ð49Þ

Eq. (49) indicates that ysp is (i) negative; (ii) proportional to ho;
(iii) independent of the flow conditions, and (iv) dependent on ro

and ri, that is, the size of the nozzle.
The distribution of shear stress on the gauged surface for

selected values ysp is compared with CFD simulations in Fig. 7(a).
The profiles exhibit two peaks, as expected, with very good
agreement in magnitudes and locations of the peaks.

Fig. 7(b) shows the dimensionless shear stress values evaluated

at ~r 0i (the inner radius of the nozzle) as a function of the slope angle

of the nozzle rim, for different values of clearance, ho. ysp corre-

sponds to the angle where ~t�w ~r 0i
¼ 1

��� , and becomes more negative as

ho increases. The ~t�w ~r 0i

��� profiles show a strong dependency on ho,
which varies with the nozzle angle. The strong dependence of ~t�w ~r 0i

���
on y in the range close to ysp was also observed by Peralta et al.
(submitted for publication). These results indicate that the desired
effect, of a shear stress distribution close to uniform, is only
achievable with a narrow range of operating conditions for a given
nozzle, so that alternative geometries should be investigated.
4.1.2. Non-linear nozzle profiles

The flexibility of modern fabrication techniques means that
there are few limits on the shapes available for FDG nozzles. Some
geometries are easier to manufacture than others, two examples
being toroidal and parabolic-toroidal profiles (Fig. 8). The non-
dimensional expressions for these profiles are

~h ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r 0�~r i

0
� �

1�~r 0
� �q

ðtoroidalÞ ð50Þ

~h ¼
4ð1� ~hmÞ

ð1�~r 0iÞ
2

~r 02�ð1þ ~r 0iÞ~r
0
þ ~r 0i

h i
þ1 ðparabolic-toroidalÞ ð51Þ

where ~hm is the value of ~h at the position of the minimum
distance between the nozzle and the gauged surface. The shear
stress profiles evaluated for the above geometries are compared
with CFD simulations in Fig. 8 for a representative set of operating
conditions. Good agreement is obtained, supporting the use of the
analytical approach.
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4.2. Specified pressure gradient

The simplest profile that represents also an interesting sce-
nario is that of a linear variation in pressure gradient. The
pressure gradient is written as

~f pgð~r
0
Þ ¼

d ~p�

d~r 0
¼ apgð~r

0
�1Þþ1 ð52Þ

where apg is the slope. From Table 1, the following expressions for
the external nozzle profile and the shear stress on the gauged
surface are obtained:

~hffi
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~r 0 apgð~r
0
�1Þþ1

� �
3

q ð53Þ

~t�wffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
apgð~r

0
�1Þþ1

� �2
~r 0

3

s
ð54Þ

Fig. 9 shows the profiles for each parameter for different and
representative values of apg. In general, the uniform pressure
gradient requires ~h to decrease as ~r 0 increases for apgr0, and this
effect is accentuated as apg becomes more negative. This beha-
viour persists even for apg40. For some positive values of apg, a
minimum is observed in ~h. When apgffi1, the profile changes from
convex to concave with a minimum near ~r 0 ¼ 0.

The corresponding shear stress profiles in Fig. 9(b) show
increasing ~t�w values as ~r 0 decreases for apgZ0, and a minimum
when apgo0. The presence of the minimum indicates that a
saddle profile (in terms of shear stress on the gauged surface) can
be obtained in this case. The figure also shows that a convex type
of profile can be expected for both positive and negatives values
of apg.

The pressure profiles in Fig. 9(c) were evaluated using

� ~p�ffi
apg

2
ð1�~r 02Þþð1�apgÞð1�~r

0
Þ� ~p�o ð55Þ

The plots show a change in the profiles from concave to convex
when apg changes from positive to negative. The pressure values
in this case are lower than those in the previous section because
the gradients are linear.

The area-averaged shear stress can be calculated, as in the case
for linear ~h, using Eqs. (42) and (54), viz.

~t�w
� 

ffi
2

ð1�~r 02i Þ

3

14apg
1þapg�ð1�apgÞ2F1 1,

4

3
;
5

3
;

apg

apg�1

� �� ��

�
3

14apg

~r 0i apgð~r
0

i�1Þþ1
� �	 
2=3

1þapgð2~r
0

i�1Þþð1�apgÞ2F1 1,
4

3
;
5

3
;

apg

apg�1
~r 0i

� �� ��
ð56Þ

where 2F1 a,b; c; x
� �

is the Gauss hypergeometric function (Gasper
and Rahman, 2004). The dependence of ~t�w

� 
on Red and ~r 0i is

plotted in Fig. 10. The profiles exhibit a stronger effect of Red on
~t�w
� 

compared with Fig. 5 ( ~h linear) for a particular ~r 0i value and
the reduced sensitivity of ~t�w

� 
to the magnitude of apg values as ~r 0i

is decreased.

4.2.1. Linear pressure profile: d ~p�=d~r 0 ¼ 1, apg¼0

A second case of interest is where the pressure varies linearly
across the nozzle rim, i.e. apg¼0 and Eq. (52) gives d ~p�=d~r 0 ¼ 1.
The dimensional pressure profile evaluated at the gauged surface
(z¼0) is then given by

�pffi
3m2dRed

2rh3
o

1�
r

ro

� �
�po ð57Þ

where po is the pressure at ro. Comparisons between Eq. (57) and
CFD simulations for different values of Red in Fig. 11 show very
good agreement up to Redffi40. At the highest Red value con-
sidered, Red¼60, the mean percentage error was around 6.64%.

4.3. Specified shear stress profile

The scenario where the shear stress on the gauged surface
varies linearly is now considered. The basis function is

~f sð~r
0
Þ ¼ ~t�w ¼ asð~r

0
�1Þþ1 ð58Þ

where as is the gradient in the shear stress profile. The corre-
sponding forms for the nozzle shape and pressure gradient are

~hffi
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~r 0 asð~r
0
�1Þþ1

� �q ð59Þ

d ~p�

d~r 0
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r 0 asð~r

0
�1Þþ1

� �3q
ð60Þ

The loci for each parameter evaluated for different and
representative values of as are presented in Fig. 12. Fig. 12(c)
shows that ~h decreases as ~r 0 increases for as40, corresponding to
a recessed nozzle with the point of closest approach to the layer
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located at the outer rim. When aso0, there is a minimum in ~h as
~r 0 increases. The pressure gradient profiles in Fig. 12(d) show
strongly non-linear behaviour and are more sensitive to as.
The corresponding pressure profiles are all monotonic in as, given by

� ~p�ffi
2

3
ð1�asÞ

3=2
2F1 �

3

2
,
3

2
;
5

2
;

as

as�1

� ��

�~r 03=2
2F1 �

3

2
,
3

2
;
5

2
;

as ~r
0

as�1

� ��
� ~p�o ð61Þ

where 2F1 a,b; c; x
� �

is the Gauss hypergeometric function (Gasper
and Rahman, 2004).
4.3.1. Constant ~t�w
A special case of Eq. (61) arises when as¼0 and the shear stress

on the surface being studied is uniform. This scenario is desirable
for FDG measurements of deposit strength or deformation.
A number of scenarios were evaluated and compared with CFD
simulations. Fig. 13 shows a comparison with CFD and analytical
predictions of pressure and shear stress on the gauged surface
for different values of Red, where the local pressure is given by
Eq. (61), in dimensional form:

�pffi
m2dRed

rh3
o

1�
r

ro

� �3=2
" #

�po ð62Þ

Fig. 13(a) shows that the agreement was good in all cases, with
a mean percentage error o6%. Absolute pressures are considered
here as these can be measured with reasonable accuracy for
verification purposes. Fig. 13(b)–(d) shows the corresponding
shear stress profiles: the simulations agree with Eq. (58) well
underneath the nozzle lip, with a peak at the inner and outer rim
locations.

Finally, the area-averaged shear stress is given by

~t�w
� 

ffi
2asð1�~r

03
i Þ

3ð1�~r 02i Þ
�asþ1 ð63Þ

The effect of Red and ~r 0i on ~t�w
� 

summarised in Fig. 14 shows
similar behaviour to the results obtained for linear d ~p�=d~r 0.

4.4. Composite nozzles

The analytical expressions developed here can be used to
investigate potential combinations of features. For example, the
nozzle shape could be specified to exploit two aspects of FDG
action, one of which is sensitive to nozzle shape near the inner
rim and a second which is sensitive to shape near the outer rim.
By way of example, Fig. 15 shows a nozzle geometry with an
outer zone of constant ~h and an inner zone with constant ~t�w. The
figure also shows good agreement between the dimensional shear
stress calculated for a particular Red and the composite, analytical
model. This nozzle affords better sensitivity to clearance (data not
shown), important in locating the surface in thickness measure-
ments, and a reasonably uniform shear stress. The scope for
designing nozzles for particular applications is therefore demon-
strated. In these combinations, it is important to note that
Eqs. (34) and (35) must hold for the individual simpler systems.

5. Conclusions

An analysis of the flow pattern under the gauging nozzle has
been developed using the lubrication approximation to obtain
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expressions for the main flow variables in an FDG experiment.
A set of general equations for the external nozzle geometry,
pressure gradient under the nozzle and shear stress on the gauged
surface was obtained. Case studies were presented considering
the simple or common scenarios (i.e. linear profiles of all variables
studied). Computational fluid dynamics simulations were used to
validate the model using representative cases and showed good
agreement. The range of applicability of the expressions lay in the
range estimated by the model.

These results not only provide a tool to investigate the effect of
the external nozzle geometry on parameters affecting the surface
being studied by the FDG technique, in design, but also allow the
effect of changes on operating variables on the performance of an
existing FDG nozzle to be evaluated, i.e. assessing operability. The
tools allow initial configurations of nozzle shape for specified
operating conditions to be identified, for optimisation by CFD
simulations and eventually in vivo by experiments.

Further developments could include extension of the analysis for
systems with higher Reynolds numbers (i.e. significant inertial
effects), non-Newtonian fluids, and porous surfaces (e.g. membranes).
Nomenclature

ai parameter of Eqs. (37), (52) and (58) (i¼h, pg, s)
d diameter of the tube (m)
dt nozzle throat diameter (m)
fi radial profile function for specified variable (i¼h, pg, s)
~f dimensionless radial profile function defined in Eq. (36)

2F1[a,b;c;x] Gauss hypergeometric function
gz standard gravity in z direction (�9.81) (m s�2)
h clearance between the nozzle and the gauged surface

(m)
hinit position of the nozzle relative to the substrate (m)
~h dimensionless clearance (h=ho)
~hm minimum dimensionless clearance
_m mass flow rate (kg s�1)

p pressure (Pa)
~p dimensionless pressure defined by Eq. (8)
~p* dimensionless pressure defined in Eq. (29)
Q flow rate (m3 s�1)
~Q dimensionless flow rate (Q=½2pðro�riÞhoUo�)

r radial position (m)
~r dimensionless radial position defined by Eq. (4)
~r 0 dimensionless radial position defined in Eq. (27)
R radius of the tube (m)
Re Reynolds number (rUoho=m)
Red Reynolds number based on d

Uo mean fluid velocity at the external radius calculated
from the flow rate (m s�1)

vr velocity component in r direction (m s�1)
vz velocity component in z direction (m s�1)
~vr dimensionless velocity component in r direction defined

by Eq. (6)
~vz dimensionless velocity component in z direction defined

by Eq. (7)
vz,ave average velocity at the exit of the tube (m s�1)
V characteristic velocity in z direction (m s�1)
w length of the nozzle rim (m)
z axial position (m)
~z dimensionless axial position defined by Eq. (5)

Greek Letters

a angle of the internal divergent zone of the nozzle (deg)
d thickness of the deposit (m)
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e dimensional relation (ho=ðro�riÞ)
j azimuthal co-ordinate (dimensionless)
y angle of the external surface of the nozzle (dimensionless)
ysp angle of the external surface of the nozzle that gives a

saddle shear stress profile (dimensionless)
l length of nozzle exit (m)
m dynamic viscosity (Pa s)
P characteristic pressure, defined as P¼mUo/(heo) (Pa)
r density (kg m�3)
t shear stress (Pa)
~t dimensionless shear stress (t=½mðUo=hoÞ�)
~t� dimensionless shear stress defined in Eq. (28)

Subscripts

o at the outer extreme of the nozzle
i at the inner extreme of the nozzle
w at the gauged surface
h clearance
pg pressure gradient
s shear stress

Special symbol

/US area-averaged quantity
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